
Much as the Human Genome Project made it possible 
to quickly sequence all the genes in the genome, a big 
focus of systems biology has been to determine how 
these genes functionally interrelate, resulting in the gen­
eration of large molecular network and pathway maps. 
Over the past decade, pathway mapping has been mark­
edly accelerated by a series of groundbreaking technol­
ogies, including gene editing1,2, nucleic acid sequencing3, 
proteomics4 and machine learning5. Fuelled by these 
advances, systems biology pathway maps have impacted 
nearly all facets of biology, including diverse subject 
areas such as developmental biology, neuroscience and 
immunity.

As with many modes of biological inquiry, many 
systems biology studies have been directed at cancer 
research. This focus is owing to the high cancer death 
rates in the general population (~16% of deaths world­
wide6) and, more recently, to the large resources of sys­
tematic and quantitative data that have been generated  
to characterize patients with cancer, cell lines and animal  
models over multiple layers of molecular and pheno­
typic information. In particular, organizations such as  
The Cancer Genome Atlas (TCGA)7 and the Inter­
national Cancer Genome Consortium (ICGC)8 have 
publicly released exome-wide somatic mutations, copy 
number aberrations and in some cases methylomes, 

transcriptomes and proteomes for thousands of tumours 
spanning dozens of tumour types. Cancer systems biol­
ogy has also grown to encompass numerous collabora­
tive research efforts and institutes in most developed 
countries worldwide. For instance, the Cancer Systems 
Biology Consortium, supported by the US National 
Cancer Institute, has brought together dozens of univer­
sities and research institutes to comprehensively under­
stand the complexity of cancer and to advance cancer 
diagnosis and treatment.

Despite all of this activity, to date there has been 
no systematic reckoning of how far cancer systems 
biology pathway mapping and modelling efforts have 
progressed, with respect to either classical molecular 
biology approaches or understanding cancer at large.  
To what extent have pathways derived from systems 
biology studies been able to recapitulate previous knowl­
edge of major cancer signalling pathways? Have these 
same systems approaches allowed us to discover new 
cancer-related pathways, and what are these pathways? 
Have the advances and discoveries in systems biology had 
meaningful impacts for patients with cancer?

To approach these questions, we focused on six major 
types of systems biology approaches that have been 
recently and repeatedly applied to map and model can­
cer pathways (Box 1). These approaches include genetic 
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and protein interaction mapping, inference of gene reg­
ulatory networks, subnetwork identification methods 
and pathway modelling using constraint-based mod­
els or differential equations. For each type of systems 
approach, we surveyed published studies, identified 
their collections of cancer pathway maps and, when 
possible, downloaded their network representations 
(henceforth called ‘systems biology maps’ (SBmaps), 
Fig. 1). We then conducted an analysis to compare and 
contrast the extent to which these SBmaps agree with, 
or are divergent from, cancer pathways curated from the 
literature (literature-curated pathways (LCpathways)). 
Next we evaluated whether these systems biology path­
way mapping approaches have uncovered novel areas of 
biology or therapeutic opportunities. Lastly, we evalu­
ated the extent to which systems biology methods and 
discoveries have been translated to the clinic. We apolo­
gize in advance to those authors whose work may have 
been omitted from this survey should their research fall 

outside the scope of this analysis or because of space 
limitations.

Collection of network and pathway maps
Our survey of cancer systems biology included appro­
aches for direct measurement or inference of protein, 
genetic or transcriptional networks specific to can­
cer processes (Fig. 2a–c) as well as distinct methods to 
identify cancer networks through integration of gen­
eral network databases with tumour molecular profiles 
(Fig. 2d–f; Supplementary methods). We surveyed liter­
ature in PubMed and identified 1,104 research articles 
that applied these systems biology approaches to can­
cer (Supplementary methods; Supplementary Table 1). 
We next sought to download the network maps from 
these studies, provided their network results were read­
ily available in a format that could be parsed. We con­
sidered a network to be accessible if both gene/protein 
and interaction information was included (for example, 

Box 1 | a diversity of methods in cancer systems biology included in this analysis

Mapping of epistatic genetic interaction networks
a primary means of identifying functional relationships between genes, 
and the pathways in which those genes are active, is through mapping  
of epistatic genetic interactions104. when epistatic interactions are 
measured systematically across a panel of genes, these interactions tend 
to cluster genes with very similar functions, which allows the hierarchical 
organization of these genes into functional complexes and pathways105. 
the use of genetic interactions to map cellular wiring has been shown 
most powerfully in model systems such as Saccharomyces cerevisiae, in 
which systematic genetic manipulations have long been tractable106,107. 
with the advent of CrisPr–Cas9 gene editing technology, large-scale 
epistasis interaction mapping has begun to elucidate the architecture  
of pathways in human cancer cells28–32 (Fig. 2a).

Systematic mapping of protein–protein interactions
systematic measurement of biophysical protein interactions is often 
performed as a first step in understanding the structure and function of 
protein complexes or protein signalling pathways. widely used methods 
for protein interaction mapping include affinity purification–tandem  
mass spectrometry (aP–Ms/Ms), co-elution–mass spectrometry108, yeast 
two-hybrid screening109 and the protein-fragment complementation 
assay110. For example, in aP–Ms/Ms, a protein of interest is fused to one  
or more affinity tags. this ‘bait’ is then expressed in cancer cell lines and 
interrogated to identify physically interacting ‘prey’ proteins111,112 (Fig. 2b).

Inference of gene regulatory networks and upstream  
master regulators
a gene regulatory network is a collection of master regulators (for 
example, transcription factors and kinases) that interact to control 
downstream gene expression. a number of methods have been developed 
to infer these networks from genome-wide expression profiles75,113–116. 
araCNe (algorithm for the reconstruction of accurate cellular networks), 
for example, analyses the gene expression profiles of tumours to 
reconstruct cancer-specific transcriptional interaction networks on the 
basis of the pairwise mutual information of each gene pair113,116. it then 
infers an optimal causal path through these gene pairs, which removes  
the vast majority of indirect interaction candidates (Fig. 2c). these inferred 
regulatory networks can then be used to identify critical transcriptional 
regulators driving a phenotype of interest (for example, metastasis),  
novel driver genes and potential mechanisms of action for drugs.

Heat diffusion for integration of protein networks with  
tumour mutations
Heat-diffusion subnetwork identification is a method used to map the 
genetic alterations of a cancer onto a protein interaction network to find 

driver pathways. Genetic alterations for each protein in the network are 
designated as a ‘heat source’, and this heat is then allowed to diffuse 
across the edges of the network, spreading the influence of each genetic 
alteration to neighbouring proteins. Cancer subnetworks are those 
subnetworks in which the nodes both send and receive a significant 
amount of heat (Fig. 2d). a number of network diffusion methods have 
been developed (for example, HotNet, HotNet2, reMiC, varwalker and 
NBs) for identification of cancer pathways117–121. the presence or absence 
of a mutation in each pathway can be used to stratify a tumour cohort  
to reveal distinct cancer subtypes and prognoses, as well as to predict 
differential drug response121,122.

Flux balance analysis for integration of metabolic networks  
with gene expression
Flux balance analysis (extensively reviewed by Bordbar et al.123) uses a 
model of metabolic pathways, encoded by a mathematical matrix, to 
estimate the fluxes through the enzymatic reactions of a cell (that is, their 
rates of substrate-to-product conversion in the steady state) (Fig. 2e). 
Fluxes are typically computed under the assumption that the cell 
population is growing optimally given the available metabolic precursors, 
an assumption that may not always apply in tumours. Fluxes may be 
additionally constrained by genome-wide expression data, which place 
reasonable upper and lower bounds on the rate of each reaction given the 
mrNa or protein levels of its enzymes. Given the metabolic network and 
gene expression profile of a tumour, this approach can indicate which 
metabolic reactions and pathways are most and least active across 
different conditions.

Mechanistic modelling of signalling networks using gene 
expression data
Mechanistic models such as ordinary differential equations or  
fuzzy logic have long been used to simulate the components of a 
biological system (for example, protein kinases of a cancer signalling 
network) and their dynamics, given their functional interrelationships. 
Ordinary differential equations, for example, specify the set of rules that 
govern how the states of interest vary over time and are most useful 
when the structural and functional connections of the system are  
well known. Once the structure has been specified, experimentally 
measured values for some of the states may be used to estimate the 
values of unknown states (for example, using measured phosphoprotein 
levels to estimate activities of upstream kinases). these simulations can 
then be compared with, or validated by, experimentally derived values. 
Mechanistic models are often used to simulate cancer signalling 
pathways (Fig. 2f).

Fuzzy logic
A predictive model that 
attempts to use vague or 
imprecise information to obtain 
accurate predictions and solve 
complex problems.
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adjacency matrix, interaction list or Cytoscape file). This 
step posed an unexpected challenge as we found that 
~96% of studies insufficiently reported their resulting 
networks. For example, networks were provided only 
as static network images in figures, were summarized 
only in pathway or Gene Ontology9 enrichment tables, 
were summarized in difficult-to-parse PDF, Microsoft 
Word or Excel formats or had only a small portion of 
the network available. In other cases, the list of genes,  
proteins and other molecules in the network was 
sufficiently reported but without machine-readable 
information about which pairs of these entities inter­
connect (we nonetheless chose to include these lists in 
our analysis, despite the absence of interactions). All 
identified networks were downloaded directly from 
supplementary material or reconstructed from shared 
raw data and standardized as gene lists representing 
the network. In total, our survey identified 2,162 can­
cer systems biology network maps from 72 publications 
(Supplementary Table 2; the data in network format are 
available in the Network Data Exchange10 (NDEx), an 
online commons where scientists can upload, store and 
share biological networks at all stages of development 
and publication11). We removed all networks with fewer 
than three genes or proteins, yielding 2,042 SBmaps for 
further analysis.

To evaluate the degree to which these SBmaps cov­
ered extant knowledge of cancer processes, we collected 
a list of 241 LCpathways and made them available 
in NDEx12. These LCpathways included entries doc­
umented by the National Cancer Institute Pathway 

Interaction Database effort, the NetPath collection of 
cancer signalling pathways and the Signalling Network 
Open Resource (SIGNOR); overlapping pathways were 
merged where appropriate13–15 (Supplementary Table 3). 
Functional enrichment analysis indicated that both SBmaps 
and LCpathways were broadly representative of cancer 
processes, including anti-apoptotic and proliferative sig­
nalling, DNA replication and repair, immune response, 
metabolism, migration and metastasis, and the tumour 
microenvironment (Fig. 3a). Relative to LCpathways, 
SBmaps showed higher coverage of cell proliferation and 
DNA repair functions and substantially lower coverage 
of immune pathways, likely reflecting the relative ease or 
difficulty, respectively, of interrogating these processes in 
systems biology studies.

Comparative evaluation of systems biology maps ver-
sus literature curation. We next evaluated the overlap 
between the sets of genes assigned to each LCpathway 
and SBmap. Strikingly, SBmaps were enriched for all 
241 LCpathways (P < 1 × 10–8 by the hypergeometric test, 
minimum two overlapping genes), with each LCpathway 
matching to 32 SBmaps on average (Fig. 3b). To under­
stand the amount of overlap represented by this sig­
nificant enrichment, each LCpathway was paired 
with the matching SBmap using the highest F score16, 
an accuracy measure combining precision (the frac­
tion of SBmap genes present in the LCpathway) and 
recall (the fraction of LCpathway genes present in the 
SBmap). Indeed, certain LCpathways had been reca­
pitulated by cancer systems biology approaches with 
both high precision and high recall (F > 0.5; Fig. 3c). 
An example is the vascular endothelial growth factor 
(VEGF) and VEGF receptor (VEGFR) pathway, which 
governs angiogenesis and plays a key role in develop­
ment and metastasis of tumour types such as colorec­
tal, breast and lung cancer, where VEGFR inhibitors 
are currently approved for treatment17. The VEGF and 
VEGFR signalling pathway was closely captured by 
an SBmap, Zhang118_27559151, emerging from the 
integration of mutation data with protein interaction 
networks18 (Fig. 3d). This same SBmap also covered a 
highly related LCpathway, VEGFR1-specific signalling 
(Fig. 3d). Other LCpathways well captured by SBmaps 
included polo-like kinase 3 (PLK3) signalling (SBmap  
Park263_26635139 (ref.19)), ERBB growth factor receptor 
signalling (SBmap Creighton2_23792563 (ref.20)), auto­
phagy (SBmap Zhang155_27559151 (ref.18)), Hippo sig­
nalling (SBmap Xiong1_29983373 (ref.21)) and circadian  
rhythms (SBmap Grasso7_22722839 (ref.22)) (Fig. 3c).

Beyond these anecdotes, we found that more than 
70% of LCpathways were matched by SBmaps with 
relatively low recall (less than 0.3) (Fig. 3c). This result 
was readily explained by the further observation that 
LCpathways tend to be much larger than SBmaps pro­
duced by systems biology approaches (median size  
36 genes versus 8 genes; Fig. 3e). For example, the  
β3 integrin cell surface interaction pathway was recov­
ered with high precision by an SBmap (Park318_26635139,  
precision 0.81)19; however, as this SBmap had 15 genes 
versus 43 genes in the LCpathway, this recovery was of 
relatively low recall (0.2; Fig. 3f).

Adjacency matrix
A square matrix used to 
represent the structure of a 
finite network in which rows 
and columns represent nodes 
in the network and the binary 
elements of the matrix 
represent the edges.

Interaction list
A simple, tabular network 
representation containing  
two columns (source and 
target) detailing the edges  
of a network.

Cytoscape
An open-source software 
platform for visualizing 
complex networks and 
integrating these with any  
type of attribute data for 
further analyses.

Functional enrichment 
analysis
A method to identify 
collections of genes or proteins 
(often disease-associated 
pathways) that are over 
represented or under 
represented in a large set  
of genes or proteins.
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Fig. 1 | Structure of the analysis. In the analysis presented here, we defined a scope of 
six major systems approaches used to map and model cancer signalling pathways. For 
these approaches, we identified publications referencing each of these six approaches. 
We then retrieved programmatically accessible pathway maps derived from systems 
biology studies, compared these maps with literature-curated cancer pathways and 
assessed the novel mechanisms emerging from these studies. Finally , we evaluated  
the extent to which systems biology methods and discoveries have been translated  
to the clinic. SBmaps, systems biology maps.
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We also observed LCpathways for which the best- 
matching SBmap had both low precision and low recall, 
despite this overlap having been scored significant by 
the hypergeometric test. These poorly covered path­
ways included those involving GTPases: the RHOA 

signalling pathway, which is important in many cellu­
lar processes, including cytoskeletal organization and 
cell adhesion, regulation of CDC42 activity, which is 
an important regulator of cell cycle progression, and 
regulation of RAC1 activity, which controls many 
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Fig. 2 | Cancer systems biology approaches covered in this analysis.  
Six different approaches are discussed in this article. For additional details, 
see Box 1. a | Discovery of epistatic and functional gene interaction 
networks using genetic perturbation technologies such as CRISPR–Cas9.  
b | Discovery of protein–protein interactions, complexes and signalling 
networks in cancer-relevant contexts. An example of tandem affinity 
purification of a protein of interest coupled with liquid chromatography–
tandem mass spectrometry (LC–MS/MS)-based proteomics is shown. 
Additional techniques are discussed in Box 1. c | Inference of gene 
regulatory networks and upstream master regulators. One example using 
ARACNE (algorithm for the reconstruction of accurate cellular networks)113 
to assemble gene regulatory networks from tumour mRNA expression data 
is shown, where direct regulatory interactions between transcriptional 
regulators and target genes are inferred from gene expression data 
followed by the removal of many potential indirect interactions. Many other 
techniques to identify master regulators exist. Parts d–f show examples of 

integration of existing networks with tumour molecular profiles to identify 
molecular pathways and complexes altered in cancer. d | Integration  
of protein networks with tumour mutations using heat diffusion. Node 
colour corresponds to mutation frequency , modelled as heat. Black  
arrows represent heat diffusion to interacting proteins in the network.  
e | Integration of the glycolysis metabolic network with tumour gene 
expression using flux balance analysis. The metabolic solution space is 
shown with two example reactions, glucose (Gluc) to glucose 6-phosphate 
(G6P) (V1) and phosphoenolpyruvate (PEP) to pyruvate (PYR) (V2), with 
tumour biomass production as the objective function (Vobj). The constrained 
solution space represents the potential values of V1 and V2 that can be 
applied to maximize Vobj. f | Integration of signalling networks with tumour 
gene expression using ordinary differential equations (ODEs). Shown is an 
example ODE describing changes in cell cycle gene expression over time. 
F6P, fructose 6-phosphate; G3P, glyceraldehyde 3-phosphate; gRNA , guide 
RNA. Part d adapted from Leiserson et al.117, Springer Nature Limited.
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cancer-related processes, including glucose transport 
and activation of kinase signalling23. Together, these 
results suggest that many SBmaps capture focused or 
isolated mechanisms within LCpathways, but they do 
not comprehensively recapitulate all genes involved in 
these LCpathways.

Biases in systems biology pathway maps
As expected, the number of systems biology publications 
exhibited a strong correlation with the total number of 
cancer publications for each pathway overall (Fig. 4a). 
To gain insights into the reasons why certain pathways 
are studied more than others, we next compared the 
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pie chart). b | Analysis of overlap between SBmaps and LCpathways. Blue 
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display purposes, this analysis is limited to SBmaps with 200 or fewer genes 
(representing more than 95% of SBmaps). f | Network diagram of the 
LCpathway ‘β-3-integrin signalling’ and SBmap Park318_26635139 (ref.19). 
The colour mapping is the same as in part d.
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number of cancer systems biology publications for each 
LCpathway with the aggregate mutation frequency of 
each gene in the LCpathway based on mutational data 
from TCGA. Strikingly, the amount an LCpathway was 
studied did not correlate with the aggregate mutation 
frequency (pan-cancer; Fig. 4b). These results suggest 

that the focus of cancer systems biology has been influ­
enced less by the clinical importance of a pathway, in 
terms of the number of mutations observed across can­
cer types, than by issues such as the presence of prior 
publications, funding support for hot topics and the 
availability of relevant experimental reagents (for exam­
ple, specific antibodies and inhibitors needed to study 
a pathway). Such factors may influence researchers to 
focus on better-characterized pathways and away from 
riskier novel leads.

In addition to these biases, we found that a num­
ber of hormone-related LCpathways (for example, 
follicle-stimulating hormone and thyroid-stimulating 
hormone signalling pathways) were more widely studied 
by traditional methods than by systems biology (Fig. 4a), 
which was also reflected by their relatively low F score 
(mean 0.14 ± 0.08). This bias is likely because much of 
cancer systems biology research is performed in cell line 
models, whereas the role of many hormone signalling 
pathways becomes clear only in vivo, where there is an 
intact endocrine system. To further quantify the extent to 
which some cancer genes are understudied despite hav­
ing the appropriate tools and technology, we consulted a 
statistical model of the number of expected publications 
for a gene based on its individual chemical and biolog­
ical characteristics24. Using this model, we identified 22 
experimentally accessible cancer genes/proteins (that 
is, with antibodies, inhibitors and/or assays available 
to study them) that had been studied significantly less 
than expected, including genes that are highly mutated 
in cancer with known roles in oncogenesis (for example, 
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cancer pathways by systems biology. a | Scatterplot 
showing, for each literature-curated pathway (LCpathway), 
the number of publications related to that pathway overall 
versus the number of cancer publications specifically 
related to cancer systems biology. The number of 
publications was retrieved using custom PubMed search 
terms for both cancer systems biology and cancer 
publications for each LCpathway (listed in Supplementary 
Table 3). Selected pathways with few systems biology 
publications relative to overall cancer publications are 
labelled. The line represents the fit of the linear regression 
model, with the 95% confidence interval shown as the 
shaded area (note the log–log axes warp the linear fit).  
b | Scatterplot showing, for each LCpathway , the number 
of cancer systems biology publications related to 
that pathway versus the aggregate mutation count for that 
pathway (determined with The Cancer Genome Atlas 
Pan-Cancer Atlas7). The line represents the fit of the linear 
regression model, with the 95% confidence interval shown 
as the shaded area (note the log–log axes warp the  
linear fit). c | Waterfall plot of the number of expected 
publications divided by the number of observed publications 
for experimentally accessible genes (that is, there are 
antibodies, inhibitors and/or assays available to study 
them). The expected number of publications is based on  
a statistical model using chemical, physical and biological 
features of each gene24. Cancer genes are highlighted  
in pink , with these gene names listed. FSH, follicle- 
stimulating hormone; GM-CSF, granulocyte–macrophage 
colony-stimulating factor ; IL-12, interleukin-12; TSH, 
thyroid-stimulating hormone.
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the genes encoding the discoidin domain receptor tyro­
sine kinase DDR2 (ref.25) and the RNA-binding protein 
RBM10 (ref.26); Fig. 4c).

Potential new mechanisms
Approximately 9% (190/2,120) of the SBmaps were 
novel in that they did not significantly map to any 
LCpathways (F < 0.05; Fig. 5a,b). Most of these maps 
also were not enriched for any known biological pro­
cesses with use of Gene Ontology9 (63%, 120/190; 
Supplementary Table 4). The remaining novel SBmaps 
(37%) were enriched for processes including numer­
ous metabolic pathways, protein catabolism, cell cycle, 
vesicular transport, RNA processing, complement 
activation and protein translation (Fig. 5c–e). In the fol­
lowing sections we discuss some of the novel findings 
uncovered from our analysis of SBmaps as well as the 
findings from select studies that did not have an SBmap 
explicitly available.

Potential new mechanisms in cancer metabolism. 
Dysregulated cellular metabolism is one of the longest- 
studied phenomena in cancer research, beginning with 
the seminal work of Otto Warburg nearly 100 years 
ago27. Intriguingly, systems-level studies continue to 
identify novel interactions and aspects of cancer metab­
olism. For example, recent advances in CRISPR–Cas9 
gene editing technology and large-scale epistasis inter­
action mapping have begun to elucidate the architec­
ture of metabolic pathways in human cancer cells28–32.  
A study mapping epistatic genetic interactions in leukae­
mia cells using CRISPR interference28 has helped define a 
number of pathways and protein complexes, including 
one potentially important in human chronic lympho­
cytic leukaemia metabolism. Here the authors con­
structed a large loss-of-function genetic interaction map 
by testing the pairwise silencing of 222,784 gene pairs  
(472 × 472 genes) previously shown to be important for 
cell proliferation. By clustering the identified genetic 

Hypergeometric test
A statistical test used to 
calculate the statistical 
significance of having drawn 
specific successes from a given 
population, often used to 
identify subpopulations that 
are over represented or under 
represented in that population.

F score
A measure of a test’s accuracy 
that takes into account both 
the precision and the recall  
of the test to compute the 
score. Similarly to precision and 
recall, the F score has a highest 
value of 1 and a lowest value  
of 0.

STRING
A database of known and 
predicted protein–protein 
interactions that includes both 
direct (physical) and indirect 
(functional) interactions.

Epistasis
The phenomenon whereby 
genetic alterations at two or 
more genetic loci (for example, 
mutations or deletions in 
different genes) produce a 
phenotype that is unexpected 
on the basis of the phenotypes 
of each of the single genetic 
alterations.

CRISPR interference
A genetic perturbation 
technique that allows sequence 
specific repression of gene 
expression in prokaryotic  
and eukaryotic cells.
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interactions, the authors were able to reconstruct a 
number of pathways and protein complexes such as 
mTOR signalling, the proteasome complex and nucleo­
tide excision repair. In addition, the authors were able 
to identify novel components of pathways and protein 
complexes such as assignment of the protein encoded 
by the largely uncharacterized gene TMEM261 as a 
potential component of the electron transport chain 
(Horlbeck28_30033366; Fig. 6a)28. The electron trans­
port chain controls oxidative phosphorylation, which 
drives aerobic ATP production and has been suggested 
to be a potential target for cancer treatment33. TMEM261 
expression has been shown to correlate with favour­
able prognosis in endometrial and renal cancer (Human 
Protein Atlas34), suggesting a potentially important role 
in several cancer types (Fig. 6a).

Genome-wide metabolic models have also begun to 
provide insights into how metabolic networks influence 
cancer processes such as immune activation or evasion. 
For example, Bordbar et al.35 developed a genome-scale 
metabolic model of macrophages using flux balance 
analysis to determine the metabolites and metabolic 
pathways important for macrophage activation. Not 
only was this model able to identify metabolites associ­
ated with immune activation (for example, glucose and 
arginine) and immune suppression (for example, trypto­
phan and vitamin D3), but these model predictions were 
also supported by multiomic analysis (transcriptomics, 
proteomics and metabolomics) of macrophage activa­
tion. This study suggested that the metabolic capabilities 
of effector immune cells (for example, production and 
excretion of metabolites) may act as remote sensors that 
mediate the local immune activation status of macro­
phages and other immune cells. This finding has been 
supported by a number of other studies demonstrating 
that alterations of the concentrations of specific metab­
olites in the tumour microenvironment reduce detection 
of tumours by the immune system36. There have been 
numerous attempts at similar genome-scale models 
of human metabolism, spanning thousands of genes, 
metabolic reactions and metabolites37–46. These models 
have been used to identify novel associations between 
cancer proliferation and the Warburg effect, to stage 
tumours on the basis of metabolic states and to identify 
novel oncometabolites and drug opportunities, such as 
targeting recurrently mutated metabolic enzymes (for 
example, isocitrate dehydrogenase 1 (IDH1) or fatty acid 
synthase (FASN)), whose gain of function can result in 
promiscuous catalytic activities, thereby perturbing the 
metabolic network43–46. Other models have focused on 
the best-known metabolic pathways in cancer and were 
able to accurately predict cancer cell growth rates, global 
metabolic activity during proliferation and response  
to metabolic-based therapy47.

Potential new mechanisms in cancer initiation and pro-
gression. While many SBmaps recapitulate portions of 
LCpathways, some capture fundamental new pathway 
directions for cancer research. Large-scale systems-level 
analyses are uncovering a number of novel routes  
for the initiation and progression of cancer. For instance, 
the SBmap Bell16_21720365 (ref.48), derived from 

network diffusion of ovarian tumour mutation and DNA 
copy number alteration profiles, was among those that 
were not enriched for any known functions in our sys­
tematic comparison of SBmaps and LCpathways. We 
found that this SBmap interconnected genes within 
chromosomal regions that have been shown to have 
copy number alterations (for example, RFX1, RFX2, 
RFX3, SKI and NFIX) or expression changes (for exam­
ple, PIR) from chromosomal alterations induced by 
human papillomavirus (HPV) infection49–53 (Fig. 6b). 
These genetic alterations are a result of deregulated 
E6 and E7 HPV proteins, which lead to chromosomal 
instability through inhibition of p53 and the induction 
of oxidative stress leading to the accumulation of spe­
cific (epi)genetic changes in the genome54,55. This SBmap 
may therefore be associated with HPV-induced ovar­
ian carcinogenesis, a little-studied and controversial 
phenomenon56–58.

Some SBmaps capture only a portion of an 
LCpathway but add new interactions between genes  
to well-described pathways. For example, a recent study 
of the interactome of the serine/threonine kinase NDR1 
(also known as STK38), which is involved in cell prolif­
eration, using a FLAG-tagged NDR1 for affinity puri­
fication of NDR1-binding proteins coupled with liquid 
chromatography–tandem mass spectrometry identifi­
cation, significantly recapitulated the Hippo signalling 
pathway (Xiong1_29983373, F = 0.49)21. This SBmap 
was thus enriched for a number of major Hippo pathway 
proteins, including MOB1A, STK4, STK3, SAV1 and 
RASSF2 (refs21,59). In addition to recapitulating these 
major Hippo signalling components, the study authors 
identified and validated FRYL as a novel interactor 
of NDR1 and potential pathway component (Fig. 6c). 
Intriguingly, FRYL is an undercharacterized transcrip­
tional co-activator (only 12 publications in PubMed 
referencing FRYL at the time of this writing), the gene 
of which is mutated in ~12% of patients with cutaneous 
melanoma (TCGA Pan-Cancer Atlas7), suggesting a 
potentially important role in cancer.

Potential new mechanisms in feedback loops and ther-
apeutic resistance. Mechanistic models of cancer sig­
nalling have been extensively used to study complex 
phenomena such as feedback loops60, crosstalk between 
pathways61–65, oncogene addiction66 and response to 
therapy67–71. For example, Shin et al.60 showed that the 
influence of ERK and WNT signalling pathways on 
epithelial–mesenchymal transition is greatly affected 
by multiple positive feedback loops. Through extensive 
ordinary differential equation modelling of combina­
tions of feedback loops, they found that activated ERK 
counteracts protein kinase Cδ (PKCδ) inhibition by gly­
cogen synthase kinase 3β (GSK3β), leading to decreased 
E-cadherin expression and a more mesenchymal pheno­
type. Conversely, a RAF kinase inhibitor protein (RKIP) 
feedback loop had the opposite effect (SBmap and 
model code not available; Fig. 6d). Together these simu­
lations have demonstrated that a small number of sig­
nalling components can encode biological specificity in  
epithelial–mesenchymal transition, a finding supported 
by other modelling approaches60,72.

Network diffusion
A method to analyse how the 
topology of a network impacts 
how information spreads 
across a given network.
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Similarly, a high-throughput protein interaction 
screen identified the kinase NUAK2 as a novel YAP/
TAZ activator (SBmap not available), which represents 
a positive feedforward loop driving Hippo signalling and 
cancer progression73. Loss of NUAK2 activity further 
decreased cell proliferation and tumour growth, suggest­
ing NUAK2 as a potential therapeutic target for tumours 
driven by Hippo signalling. Interactome profiling has 
even begun to reveal mutation-specific rewiring of pro­
tein complexes resulting in altered therapeutic efficacy. 
A recent study of protein phosphatase 2A (PP2A) using 
affinity purification–mass spectrometry found that PP2A 
with the recurrent tumour-promoting R183W mutation 
rewires the PP2A interactome towards striatin-interacting  
phosphatase and kinase (STRIPAK) and integrator complex 
components (SBmap not available)74. These interactions 
lead to MAPK pathway activation and reduced MEK 
inhibitor sensitivity.

Similarly, novel driver genes75 as well as mechanisms 
of response and resistance to therapy76–78 have been 
uncovered by studying the underlying gene regulatory 
networks. For example, master regulator computational 
analysis (Box 1) following treatment with the BET bro­
modomain inhibitor JQ1 in castration-resistant prostate 
cancer (SBmap not available) found 23 altered master 
regulators that contribute to JQ1 activity76. The study 
authors subsequently validated three of these (CBX3, 
MCM2 and MCM5) but the full activity of JQ1 likely 
involves a combination of all 23. Use of BET bromo­
domain inhibitors is a promising strategy to treat aggres­
sive subtypes of castration-resistant prostate cancer 
that no longer respond to androgen receptor-targeting 
agents. Moving forward, resistance to BET inhibitors is 
inevitable; however, a deep understanding of these mas­
ter regulators could provide strategies to prevent BET 
inhibitor resistance. A similar study was performed 
to find potential mechanisms of resistance involving 
master regulators following treatment with a PI3K and 
mTOR inhibitor or a MEK inhibitor in basal-like breast 
cancer77. The study authors found increases in activity 
of MAPK, BCL-2 and nuclear factor-κB (NF-κB) sig­
nalling pathways in PI3K and mTOR inhibitor-treated 
cells and increased PI3K, integrin and JUN N-terminal 
kinase (JNK) signalling pathway activation in MEK 
inhibitor-treated cells. Inhibition of these master regu­
lator pathways in combination with either the PI3K and 
mTOR inhibitor or the MEK inhibitor enhanced the effi­
cacy of these drugs and could therefore help to prevent 
or overcome resistance to these therapies.

Progress to clinical systems biology
Although clinical translation of systems biology has 
arguably been slow, this pace parallels the slow progress 
of translation seen for molecular and ‘omics’ research 
more generally79,80. For instance, technological advances 
in proteomics, genome sequencing and gene expression 
profiling have resulted in more than 150,000 articles 
documenting thousands of biomarkers; however, fewer 
than 100 of these biomarkers have been validated for 
routine clinical practice79.

Despite these caveats, there has indeed been some 
very recent progress in implementing systems biology 

methods and discoveries in clinical practice (Table 1). For 
example, the investigational VeriStrat test scores patient 
prognosis in lung cancer using mass spectrometry-based 
proteomics and a k-nearest neighbours model. The 
model assigns patients to either good or poor clin­
ical outcomes on the basis of features of mass spec­
tral peaks81,82. Similarly, there have been a number of 
efforts to create gene expression classifiers for breast 
cancer diagnosis and prognosis, such as the Genomic 
Grade Index83, PAM50 (ref.84), Breast Cancer Index85,86, 
EndoPredict87, RxPonder88, Oncotype DX89 and the 
US Food and Drug Administration (FDA)-approved 
breast cancer prognostic test MammaPrint90. While 
many of the above-mentioned advances have been 
for breast cancer, similar tests are being developed for 
lung cancer91 and acute lymphoblastic leukaemia92, 
among other cancers. The overall efficacy of such tests 
is not entirely characterized, as prognostic tests such as 
Oncotype DX and MammaPrint have been shown to 
have low-to-moderate concordance with one another93. 
For this reason, some consider prognostic gene signa­
tures to have limited clinical utility at present and have 
suggested revised clinical trial designs for their effective 
evaluation94. Nonetheless, two multigene diagnostic 
tests measuring cancer-associated mutations have also 
recently been approved by the FDA (MSK-IMPACT 
and FoundationOne CDx), which are the first multigene 
diagnostic tests to be approved for clinical use95,96.

Currently, many clinical trials are designed to test a 
single marker (for example, efficacy of inhibitors of ALK 
receptor tyrosine kinase in patients harbouring ALK rear­
rangements)97. Such has been the paradigm for advanc­
ing individual targeted therapies. In contrast, biomarkers 
emerging from systems biology are generally at the path­
way level and thus not amenable to a single marker trial 
design. A typical systems biology-based predictive algo­
rithm will use a large amount of data (for example, muta­
tional panel and gene expression profile) to determine 
whether a patient will respond to therapy. To fit such algo­
rithms into the clinical trial framework, fundamentally 
different trial designs are needed. Adaptive trial designs 
such as basket trials and umbrella trials may therefore be 
more appropriate to evaluate systems biology platforms98,99 
(reviewed by Senft et al.100). As the data from these newer 
types of trials become available, the field can begin to 
evaluate predictive treatment models against standard 
practice in retrospective studies. Similarly, new predictive 
models could then be developed by pooling clinical data 
sources and training models on mutation panels (such as 
the MSK-IMPACT or FoundationOne CDx panels) using 
k-fold cross validation to tune and evaluate the model94. 
Collaborative research networks such as the Oncology 
Research Information Exchange Network (ORIEN), 
the American Association for Cancer Research project 
Genomics Evidence Neoplasia Information Exchange 
(GENIE) and the Quantum Immuno-oncology Lifelong 
Trial (QUILT) programme will likely be critical for these 
types of studies. In the future, one could imagine a sce­
nario in which all patients are profiled against large pan­
els (for example, mutation, epigenetic and immune) that 
inform a predictive algorithm to match each patient to a 
combination of therapies predicted to be most effective.

Striatin-interacting 
phosphatase and kinase 
(STRIPAK) and integrator 
complex
An evolutionarily conserved 
supramolecular protein 
complex which regulates the 
phosphorylation status and 
therefore activation status of 
various pathways.

k-nearest neighbours model
A non-parametric machine 
learning method used for 
classification and regression 
tasks that learns to classify  
new cases on the basis of a 
similarity measure (for example,  
distance functions).

Basket trials
Trials designed to test the 
effects of a single drug,  
or a combination of drugs,  
in a variety of cancer types  
on the basis of the presence  
of a specific biomarker.

Umbrella trials
Trials designed to test the 
effect of different drugs on  
the basis of the presence of 
different biomarkers within  
a single cancer type.

k-fold cross validation
A resampling procedure used 
to evaluate machine learning 
models on a limited data 
sample by repeatedly splitting 
the data into training and  
test sets.

www.nature.com/nrc

A n a ly s i s

http://oriencancer.org
http://oriencancer.org
http://www.aacr.org/Research/Research/Pages/aacr-project-genie.aspx
http://www.aacr.org/Research/Research/Pages/aacr-project-genie.aspx
https://clinicaltrials.gov/ct2/results?term=QUILT
https://clinicaltrials.gov/ct2/results?term=QUILT


Conclusions
Over the past two decades, systems biology has matured 
considerably and has been transformed by powerful new 
experimental and computational technologies. These 
improvements, along with the continued efforts of a rap­
idly growing systems biology community, have proven 
reasonably effective at recapitulating knowledge of can­
cer pathways. In particular, publicly accessible SBmaps 
were able to recover the vast majority of LCpathways 
with significant overlap, although further investigation 
showed that this overlap is generally characterized by 
high precision but relatively low recall. One reason for 
the generally low recall is that SBmaps tend to be small 
relative to cancer pathways assembled through litera­
ture curation, with the consequence that they can never 
achieve full recovery of the LCpathway. Whether this 
size difference reflects an inherent difference between 
systems biology and other modes of biological investi­
gation is unclear, since SBmaps are the products of indi­
vidual studies, whereas LCpathways are the synthesized 
products of many studies.

Systems biology has identified a number of novel 
SBmaps that were not well represented in the literature, 
at least as captured by LCpathways. It is interesting that 
many of these SBmaps also were not enriched for genes 
with known biological processes or functions. Either 
these pathways are false positives or there is a sizable 
opportunity for identifying new cancer pathway asso­
ciations; these two opposing possibilities are currently 
not easily distinguished. Certainly the novel SBmaps 
advance some noteworthy hypotheses, for instance HPV 
involvement in ovarian carcinogenesis and potential new 
genes in the Hippo pathway. Moving forward, a greater 
emphasis on focused follow-up experiments is needed 
to systematically validate pathway hypotheses that have 
arisen from systems approaches.

It is important to note that the cancer literature refer­
ence used in this survey, LCpathways, combines informa­
tion curated by noble but imperfect human editors from 
multiple tissue types and cellular contexts. It is likely that 
the definition and meaning of each LCpathway varies 
across tumour tissue types, akin to the context specificity 

Table 1 | example clinical trials implementing systems biology methods or discoveries

Systems approach Cancer type Trial name Phase or 
type of trial

Year 
started

Current 
status

Clinical trial 
identifiera

Gene expression profiling

Oncotype DX Breast TAILORx Phase 3 2006 Active, not 
recruiting

NCT00310180

MammaPrint Breast MINDACT Phase 3 2007 Active, not 
recruiting

NCT00433589

Oncotype DX or 
MammaPrint

Breast OPTIMA Phase 3 2012 Recruiting ISRCTN42400492

Transcriptome and 
FoundationOne CDx

Multiple WINTHER NAb 2013 Suspended NCT01856296

Gene expression 
signatures

Prostate PROVENGE Prospective 2014 Complete NCT02237170

10-gene expression 
signature

Thyroid ThyroidPrint Prospective 2017 Recruiting NCT03309631

11-gene expression 
signature

Sarcoma PREDISARC Prospective 2018 Recruiting NCT03625791

Mutation profiling

MSK-IMPACT Multiple MSK-IMPACT Prospective 2013 Recruiting NCT01775072

Transcriptome and 
FoundationOne CDx

Multiple WINTHER NA 2013 Suspended NCT01856296

38-gene mutation 
profiling

Colorectal 
cancer

GENESIS NA 2015 Complete NCT02595645

Gene mutation profiling 
and radiomics

Hepatocellular 
carcinoma

Med-HCC-1 Observational 2015 Active, not 
recruiting

NCT02372162

FoundationOne CDx Multiple I-PREDICT Observational 2015 Recruiting NCT02534675

Other systems approaches and discoveries

Gene mutation profiling 
and radiomics

Hepatocellular 
carcinoma

Med-HCC-1 Observational 2015 Active, not 
recruiting

NCT02372162

Single-cell analysis Melanoma PEMSYS Phase 2 2018 Recruiting NCT03534635

Polypharmacologyc Non-small cell 
lung cancer

Ceritinib Plus 
Docetaxel

Phase 1 2018 Recruiting NCT03611738

Clinical trials were selected to highlight ongoing trials that cover various tissue types and to highlight additional efforts beyond  
those explicitly discussed. NA , not applicable. aClinical trials with ‘NCT’ identifiers can be accessed in the ClinicalTrials.gov database. 
The ISRCTN42400492 trial can be accessed in the ISRCTN registry. bNot applicable is used to describe trials without FDA-defined 
phases. cPolypharmacology is the design or use of a single drug to target multiple pathways and an extension of network medicine. 
This trial is the first trial implementing a polypharmacology compound to target multiple pathways simultaneously.
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observed for genetic interaction networks across cancer 
cell lines29. Given the myriad interconnections among 
cellular factors, whether cancer pathways can truly be 
described according to a discrete set of independent 
pathway maps seems unlikely. In this light, our compar­
ison of SBmaps and LCpathways should not be viewed 
so much as a validation of experimental results against 
a gold standard as a contrast between two distinct and 
complementary modes by which cancer pathways have 
been studied.

Moving forward, an enormous opportunity for 
cancer systems biology and its pathway maps is in the 
interpretation of cancer genotype and somatic tumour 
alterations. Large-scale genomic studies continue to 
catalogue new mutations and single-nucleotide variants 
associated with disease. However, our knowledge of how 
genomic context dictates gene or pathway function, and 
ultimately a cancer phenotype, remains incomplete. For 
this reason, functional genomic studies (for example, 
genetic interaction mapping) are becoming much more 
prevalent to understand how individual genetic vari­
ants and mutations influence larger biological networks 
as a whole. Functional genomic maps of cancer across 
genotypes thus provide the wiring diagrams necessary 
to understand how individual genotypes drive diverse 
cancer phenotypes.

Clearly, a major limitation of our census of cancer 
pathways was its restriction to SBmaps accessible for 
download. Working to ensure that current and future 
SBmaps are truly available for public access will undoubt­
edly improve recall of the cancer literature and the dis­
covery of new cancer pathways. Indeed, while great 
strides have been made in establishing standards for 
publication and sharing of genomic101, transcriptomic102 
and proteomic data103, publication and data-sharing 
standards for networks are still evolving. This lack of 

standardized network storage and sharing clearly hinders 
the ability to use and compare cancer networks identi­
fied by systems biology studies, as well as the ability of 
researchers to reproduce the work of others, slowing pro­
gress towards understanding cancer at the network level. 
To improve the availability of networks in the future,  
we urge journals to examine their standards for network 
content and investigators working with networks to 
either share their networks in the supporting material of 
their articles or upload their network models to network 
sharing repositories. As one solution to this problem we 
recently developed NDEx11, which is integrated with the 
Cytoscape environment for network visualization and 
analysis, allowing seamless movement of networks to or 
from the cloud. Similarly, repositories exist to store and 
host quantitative ordinary differential equation models 
of biological networks, such as BioModels and CellML. 
The models in these repositories are often stored as 
code (for example, C++ and MATLAB), which allows 
researchers to readily reproduce the results from these 
network studies. GitHub, which is commonly used to 
distribute code, could potentially also be used to share 
network models.

While cancer systems biology has moved more slowly 
clinically, the application of systems biology to medical 
practice has the potential to become the future of med­
icine. This vision includes individualized cancer treat­
ment that is based on altered cancer networks, immune 
landscapes and evolutionary trajectories rather than on 
tumour pathology alone. Continued efforts to profile 
the therapeutic courses of patients and their genomic, 
transcriptomic and proteomic information, along with 
improvements in machine learning, are poised to yield 
huge advances in the years to come.
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