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Recent evidence demonstrates that novel protein-coding genes can arise de novo from non-

genic loci. This evolutionary innovation is thought to be facilitated by the pervasive trans-

lation of non-genic transcripts, which exposes a reservoir of variable polypeptides to natural

selection. Here, we systematically characterize how these de novo emerging coding

sequences impact fitness in budding yeast. Disruption of emerging sequences is generally

inconsequential for fitness in the laboratory and in natural populations. Overexpression of

emerging sequences, however, is enriched in adaptive fitness effects compared to over-

expression of established genes. We find that adaptive emerging sequences tend to encode

putative transmembrane domains, and that thymine-rich intergenic regions harbor a wide-

spread potential to produce transmembrane domains. These findings, together with in-depth

examination of the de novo emerging YBR196C-A locus, suggest a novel evolutionary model

whereby adaptive transmembrane polypeptides emerge de novo from thymine-rich non-

genic regions and subsequently accumulate changes molded by natural selection.
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The molecular mechanisms and dynamics of de novo gene
birth are poorly understood1,2. It is particularly unclear
how non-genic sequences could spontaneously encode

proteins with specific and useful capacities. To resolve this
paradox, it has been proposed that pervasive translation of non-
genic transcripts can expose genetic variation, in the form of
novel polypeptides, to natural selection, thereby purging toxic
sequences and providing adaptive potential to the organism3,4.
The genomic sequences encoding these novel polypeptides have
been called “proto-genes”, to denote that they correspond to a
distinct class of genetic elements that are intermediates between
non-genic sequences and established genes3. Several non-
mutually exclusive models of de novo gene birth exist2. The
proto-gene model is supported by several studies which reported
that de novo emerging coding sequences tend to display features
intermediate between those observed in non-genic sequences and
those observed in established genes; these features include length,
transcript architecture, transcription level, strength of purifying
selection, sequence composition, structural properties and inte-
gration in cellular networks3,5–9. Furthermore, pervasive trans-
lation of non-genic sequences has been observed repeatedly by
ribosome profiling and proteo-genomics3,10–13, and studies have
shown that random sequence libraries can form defined sec-
ondary structures and harbor bioactive effects14–19. Nonetheless,
it remains unknown if, how, how often, and how rapidly, may
native proto-genes accumulate adaptive fitness-enhancing chan-
ges to become established genes.

Mutations that cause changes to the sequence or expression of
established genes are typically constrained by preexisting selected
effects—the specific physiological processes mediated by the gene
products that are maintained by natural selection20. In contrast,
emerging proto-genes are expected to mostly lack such con-
straints because they do not have selected effects. This would
leave them more readily accessible to evolutionary changes that
have the potential to increase fitness (adaptive changes)3,4. We
reasoned that this initial potential for adaptive changes would
give way as proto-genes mature and the adaptive changes
engender novel selected effects, in turn increasing constraints and
reducing the possibility of future change. This reasoning is akin to
Sartre’s “existence precedes essence” dictum21, and predicts that
mutations affecting the sequence or regulation of proto-genes
should impact fitness differently than mutations affecting the
sequence or regulation of established genes. Specifically, proto-
genes are predicted to evolve under weaker constraints, and
thereby to display a higher potential for adaptive change, than
established genes (Fig. 1a).

In what follows, we confront these theoretical predictions with
systematic measurements of how disruption and overexpression
of open reading frames (ORFs) impact fitness in budding yeast as
a function of the evolutionary emergence status of the ORFs. We
find that most emerging ORFs can be disrupted without detect-
able fitness cost, consistent with a lack of selected effect.
Approximately 10% of emerging ORFs show beneficial fitness
effects when overexpressed, a 3-fold enrichment relative to
established ORFs consistent with a higher potential for adaptive
change. In emerging but not established ORFs, beneficial fitness
effects are associated with a high propensity to encode trans-
membrane (TM) domains. Analyses of genome-wide TM pro-
pensities led us to hypothesize that novel adaptive TM peptides
may spontaneously emerge when thymine-rich non-genic regions
become translated: a “TM-first” model of gene birth. The plau-
sibility of this model is supported by a detailed reconstruction of
the evolutionary history of one locus where an ORF (YBR196C-A)
emerged de novo in a thymine-rich ancestral non-genic region,
accumulated substantial changes under positive selection and
progressively increased its TM propensity to give rise to a protein

that integrates into the membrane of the endoplasmic reticulum
(ER) while retaining the potential for adaptive change. Overall,
our results support an experiential model for de novo gene birth
whereby a fraction of incipient proto-genes can subsequently
mature and, as adaptive changes engender novel selected effects,
progressively become established in genomes in a species-specific
manner.

Results
Emergence status. Two criteria were considered to determine the
emergence status of ORFs: whether they appeared to be emerging
de novo, and whether they appeared to encode a useful protein
product under selective constraints. In keeping with rigorous best
practices1,22,23, young de novo ORFs were identified based on a
combination of inter-specific sequence similarity searches (phy-
lostratigraphy) and syntenic alignments. Similarly, ORFs encod-
ing useful protein products were identified stringently based on
multiple lines of evidence1,8,24,25: inter-specific conservation,
translation signatures, length, and evidence of intra-specific
purifying selection at the codon level. We classified annotated
S. cerevisiae ORFs into two categories: emerging ORFs, which
appear to have arisen de novo and to lack a useful protein pro-
duct; and established ORFs, which encode a useful protein pro-
duct irrespective of whether they emerged de novo or not (Fig. 1b;
Supplementary Data 1; Methods). As expected, emerging ORFs
tend to be short and weakly transcribed relative to established
ORFs (Cliff’s Delta d <−0.7, Mann-Whitney U-test, P < 2.2 ×
10−16 in both cases). Most emerging ORFs (>95%) are annotated
as Dubious or Uncharacterized (Methods). Thus, based on these
data, there is no evidence that emerging ORFs correspond to
canonical protein-coding genes.

Selected effects. We compared estimated fitness costs of dis-
rupting emerging and established ORFs. To this end, we first
examined fitness estimates generated from a large collection of
systematic deletion (non-essential ORFs) and hypomorphic
(essential ORFs) alleles26. After removing ORFs with genomic
locations overlapping other annotated ORFs, we obtained fitness
estimates for the disruption of 239 emerging and 4,410 estab-
lished ORFs (Fig. 1b; Supplementary Data 1). Fitness cost esti-
mates were markedly lower when comparing emerging ORFs to
established ORFs, as expected for loci that lack evidence of
encoding a useful protein product (Cliff’s Delta d=−0.32,
Mann-Whitney U-test, P= 1.5 × 10−17). For example, only 8% of
emerging ORFs were associated with even a small fitness cost
(n= 19; mutant fitness estimate < 0.9), relative to 29% of estab-
lished ORFs (n= 1290; Odds ratio= 0.2; Fisher’s exact test P <
3.6 × 10−15) (Fig. 2a). The true difference in fitness costs between
emerging and established ORFs is more pronounced in reality,
given that hypomorphic alleles were used for essential ORFs
instead of deletion alleles, which would have been lethal. The low
fitness cost of disrupting emerging ORFs in laboratory conditions
was similar to that of established ORFs with similarly low native
expression level (Odds Ratio= 0.6; Fisher’s exact test P= 0.052),
and more pronounced than expected compared to established
ORFs of matched length distribution (Odds Ratio= 0.2; Fisher’s
exact test P= 2.9 × 10−16) (Supplementary Fig. 1a).

We next investigated how the disruption of emerging ORFs
impacts fitness in natural conditions by analyzing intraspecific
sequence variation across 1011 S. cerevisiae isolates27. Counting
the number of isolates in which the ORF structures (defined as
start, stop and reading frame without considering sequence
similarity) were intact in each group, we found ORF structures to
be markedly more variable across isolates for emerging than
established ORFs (Fig. 2b; Supplementary Data 1), including
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established ORFs with matched length and expression level
distributions (Odds ratio > 1.8 in both cases; Fisher’s exact test P
< 3.1 × 10−13 in both cases) (Supplementary Fig. 1b). For
example, while 80% of established ORFs were intact in more

than 90% of isolates, indicating that they are fixed within the
species, this was only the case for 41% of emerging ORFs.
Furthermore, estimates of within-species nucleotide diversity
were markedly higher for emerging ORFs than established ORFs
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Fig. 1 Adaptive proto-gene evolution: theory and empirical testing. a Theoretical model. Left: The evolution from non-genic sequences to proto-genes to
genes is represented as in ref. 3. Sequence composition (stars) refers to the distribution of nucleotides and codons in the sequence (more stars signify a
more “gene-like” sequence composition). Left: The transition from non-genic sequences to proto-genes is mediated by gains of ORFs, transcription and
translation; the transition from proto-genes to genes occurs along a continuum; the processes governing transitory emergence (gains and losses) of proto-
genes through neutral mutations or toxic purging are not investigated in this manuscript (faded out). Right: Our focus is to understand how evolutionary
changes to proto-genes impact fitness. Proto-genes are predicted to display an increased potential for adaptive evolutionary change because they are
depleted in selected effects relative to established genes. b Operational classification of emerging and established ORFs and summary of strain resources.
We empirically test the theoretical model by systematically assessing how emerging ORFs impact fitness in budding yeast. Emerging ORFs are young (our
inter-species conservation analyses found no detectable homologs outside of the Saccharomyces sensu stricto genus and no conserved syntenic homolog in
S. kudriavzevii and S. bayanus) and do not display strong evidence that they encode a useful protein product under intraspecific purifying selection
(Methods). Empirical testing of the theoretical prediction (a) involves experimentally measuring the fitness of disruption and overexpression alleles for
both classes of ORFs. The numbers of emerging and established ORFs subjected to each analysis are indicated.
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Fig. 2 Disruption of emerging ORFs is generally inconsequential for fitness. a Disruption of emerging ORFs imposes lesser fitness costs than disruption
of established ORFs. Empirical cumulative distribution function for emerging (blue) and established (black) ORFs; fitness of mutant strains in rich media
(YPD) at 30 °C as estimated by ref. 26, averaged over multiple alleles per ORF when applicable. Vertical red line illustrates the fraction of ORFs for each
group with fitness effects less than 0.9. Note that the x axis extends beyond 1. b ORF structures are more variable for emerging than established ORFs
across 1011 S. cerevisiae isolates. Empirical cumulative distribution function for emerging (blue) and established (black) ORFs; ORF structure defined as
intact in a pairwise alignment if the positions of the start codon and stop codons are maintained, the frame is maintained, and intermediate stop codons are
absent. Vertical red line illustrates the fraction of ORFs for each group found intact in less than 90% of isolates. c Emerging ORFs display higher nucleotide
diversity than established ORFs across S. cerevisiae isolates. Density distributions for emerging (blue) and established (black) ORFs; nucleotide diversity
estimated over multiple alignments lacking unknown base calls exclusively. Vertical dashed lines represent group means.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14500-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:781 | https://doi.org/10.1038/s41467-020-14500-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Cliff’s Delta d=−0.34, Mann-Whitney U-test P= 6.4 × 10−46)
(Fig. 2c; Supplementary Data 1). Altogether, our results
confirmed that disrupting emerging ORFs is generally incon-
sequential for survival of yeast in both laboratory and natural
settings, as expected for loci that lack evidence of encoding a
useful protein product, and consistent with a lack of selected
effects. The findings in natural isolates, in particular, show that
emerging ORFs evolve under weaker selective pressures than
established ORFs. It is thus unlikely that emerging ORFs
correspond to canonical protein-coding genes whose physiologi-
cal implications outside of the laboratory remain to be
discovered24,25.

Potential for adaptive change. Across kingdoms, one type of
evolutionary change that typically accompanies the maturation of
young genes is an increase in expression level28. It follows that,
according to our prediction (Fig. 1a), increasing the expression
level of emerging ORFs should increase the organism’s fitness
more frequently than when the same perturbation is imposed on
established ORFs (whose expression levels have presumably been
molded by natural selection). Alternatively, if emerging ORFs
mostly correspond to spurious non-genic loci with no role in de
novo gene birth, increasing their expression level should generally
be neutral or toxic, and not provide fitness benefits.

Systematic overexpression screens have been shown to identify
adaptive mutations that also occur in laboratory evolution
experiments29. We thus developed a dedicated overexpression
screening strategy to identify ORFs that increased relative fitness
upon increased expression. In brief, colony sizes of individual
overexpression strains were compared with those of hundreds of
replicates of a reference strain with the same genetic background
on ultra-high-density arrays (Fig. 3a; Methods). This strategy
allowed us to identify ORFs whose overexpression significantly
increased colony size relative to the reference (“increased relative
fitness”), ORFs whose overexpression significantly decreased
colony size relative to the reference (“decreased relative fitness”),
and ORFs whose colony sizes were statistically indistinguishable
from those of the reference strain (“unchanged relative fitness”)
(Fig. 3b).

We deployed our screening strategy on a plasmid-based
overexpression collection30 containing 285 emerging ORFs and
4362 established ORFs (Figs. 1b, 3a; Supplementary Data 1),
having verified that the presence of an overexpression plasmid
did not lead to a detectable growth defect relative to a plasmid-
free strain (Supplementary Fig. 2) and that our strategy could
detect significant changes in relative fitness with high specificity
(False positive rate for increased relative fitness: 0.08%; for
decreased relative fitness: 2.65%; Methods). Strains overexpres-
sing 14 emerging and 49 established ORFs displayed increased
relative fitness, representing 4.9 and 1.1% of the total number of
emerging and established ORFs tested, respectively (Fig. 3b,
Supplementary Data 2–3). Overall, overexpressing most ORFs did
not significantly change colony sizes relative to the reference
strain. Nevertheless, overexpression of emerging ORFs was 4.5
times more likely to increase relative fitness, and 3.1 times less
likely to decrease relative fitness, than overexpression of
established ORFs (Fig. 3c). The tendency of emerging ORFs to
increase fitness when overexpressed was also observed in the
context of a pooled competition in the same media (Mann-
Whitney U-test, P= 5.5 × 10−32) (Supplementary Fig. 3a). Emer-
ging ORFs associated with increased relative fitness displayed
effect sizes ranging from 7.9 to 19% (Supplementary Fig. 3b,
Supplementary Data 2). One of the beneficial emerging ORFs
identified by our screens was MDF1 (YCL058C), one of the best-
studied examples of adaptive de novo origination31,32.

Expanding our screening strategy to five environments of
varying nitrogen and carbon composition (Supplementary
Table 1, Supplementary Data 3), we found that strains over-
expressing emerging ORFs were consistently 3- to 6-fold more
likely to increase relative fitness and 3- to 4-fold less likely to
decrease relative fitness, compared to strains overexpressing
established ORFs, across all environments tested (Fig. 3d).
Notably, while overexpression of only 2.9% of established
ORFs increased relative fitness in at least one environment
(n= 126), this was the case for 9.8% of emerging ORFs (n= 28)
(Fisher’s exact test P= 1.2 × 10−7; Odds ratio: 3.7; Fig. 3e,
Supplementary Fig. 4a, b). Sixty percent (17/28) of these
adaptive emerging ORFs provided fitness benefits across two or
more environmental conditions, rejecting a null model where
adaptive emerging ORFs would correspond to stochastic samples
of non-deleterious emerging ORFs (empirical P-value < 10−5;
Supplementary Fig. 4b, c). The higher likelihood of observing
adaptive effects in emerging ORFs relative to established ORFs
could not be explained by their short length or low native
expression levels (Fig. 3e).

Disruption of the 28 adaptive emerging ORFs appeared
similarly inconsequential for fitness as disruption of other
emerging ORFs, both in laboratory and in natural settings (P >
0.05 when comparing fitness cost of deletion using Fisher’s exact
test, ORF intactness using Fisher’s exact test and nucleotide
diversity across isolates using Mann-Whitney U-test). Further-
more, these ORFs were never found to be toxic in any of the
conditions we tested, in contrast with established ORFs which
can be toxic in one environment even when increasing fitness in
another (Supplementary Data 3). The pronounced differences in
how disruption and overexpression of emerging ORFs impact
fitness compared to established ORFs are in line with the
adaptive proto-gene evolution prediction (Fig. 1a). Overall, our
results (Figs. 2, 3) show that overexpression of unconstrained
emerging ORFs can provide fitness benefits across multiple
environments.

Beneficial capacities. The molecular mechanisms that may
mediate the beneficial effects we observed remain mysterious. It
has been suggested that high levels of intrinsic structural disorder
may be associated with adaptive fitness effects4, and it was recently
shown that random sequences with high intrinsic structural dis-
order have low aggregation propensity and are generally well-
tolerated by cells19. However, the relationship between disorder
and de novo gene birth has been contested3,8,33–37. In S. cerevisiae,
in particular, recently-evolved ORFs are predicted to be less dis-
ordered than conserved ones3,8,34,36 and increasing the expression
of disordered proteins causes deleterious promiscuous interac-
tions38. We investigated whether the 28 adaptive emerging ORFs
identified in our screens exhibited high intrinsic disorder, after
verifying that adaptive, neutral and deleterious emerging ORFs
presented indistinguishable ORF length distributions (Mann-
Whitney U-tests P > 0.3 for all comparisons). Disorder predictions
suggested that the translated products of the 28 adaptive emerging
ORFs were slightly less disordered than neutral and deleterious
emerging ORFs (Cliff’s Delta d=−0.25 and d=−0.31, respec-
tively; Mann-Whitney U-test P= 0.03 and P= 0.02, respectively).
Our data (Fig. 4a, Supplementary Fig. 5a, Supplementary Data 1)
thus indicate that high disorder is unlikely to be a beneficial
capacity that promotes de novo gene birth in S. cerevisiae,
although it may be in other lineages with differing regulatory
systems39.

In S. cerevisiae, young ORFs display high GC content8 and a
high propensity to encode transmembrane (TM) domains relative
to ancient ORFs, the latter presumably mediated by a sequence
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(Fisher’s exact P < 0.00002). d Emerging ORFs are consistently more likely to increase fitness and less likely to decrease fitness than established ORFs
when overexpressed in five different environments. “N”: poor (−), complete (+) or rich (++) supplementation of amino acids; C: complete (+) or rich
(++) supplementation of carbon sources (Supplementary Table 1). Odds ratios, horizontal dashed lines, error bars: as in c. All odds ratios are significantly
different from 1 (Fisher’s exact P < 0.00002). Data provided in Supplementary Data 3. e Proportion of ORFs displaying increased relative fitness effects in
at least one environment (adaptive ORFs). Blue: emerging ORFs (28/285); White with solid contour line: established ORFs (126/4305); White with dashed
contour line: established ORFs sampled with replacement according to the distribution of lengths and native expression levels of emerging ORFs. While
sampling shorter or less expressed established ORFs did marginally increase the proportion found adaptive, none of these factors was sufficient to explain
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14500-z ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:781 | https://doi.org/10.1038/s41467-020-14500-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


ba

dc

0.25

0.30

0.35

0.40

0.45

0.50

Adaptive Neutral Deleterious

G
C

 c
on

te
nt

0.00

0.25

0.50

0.75

1.00

Adaptive Neutral Deleterious

D
is

or
de

r 
co

nt
en

t

0.0

0.2

0.4

0.6

Adaptive Neutral Deleterious

W
ith

 T
M

 d
om

ai
n 

(T
M

H
M

M
M

)

0.0

0.2

0.4

0.6

0.8

Adaptive Neutral Deleterious

W
ith

 T
M

 d
om

ai
n 

(P
ho

bi
us

)

Neutral

E
stablished O

R
F

s
E

m
erging O

R
F

s

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

TM content (TMHMM)

P
ro

ba
bi

lit
y 

(li
ne

s)
, c

la
ss

 fr
eq

ue
nc

y 
(b

ar
s)

Model with interaction Model without interaction

Adaptive decreasedDeleterious
e

Fig. 4 TM propensity is associated with beneficial fitness effects in emerging ORFs. a High disorder is not associated with adaptive fitness effects. The
distributions of the fraction of ORF length predicted to encode disordered residues (Disorder content) in adaptive, neutral and deleterious emerging ORFs
are shown as violin plots. Adaptive emerging ORFs are less disordered than neutral and deleterious emerging ORFs (Mann-Whitney U-test, P= 0.03 and
P= 0.02, respectively). Stars represent averages of the populations. b High GC content is not associated with adaptive fitness effects. The distributions of
the fraction of ORF length that is G/C in adaptive, neutral and deleterious emerging ORFs are shown as violin plots. Adaptive emerging ORFs have a lower
GC content than neutral emerging ORFs (Mann-Whitney U-test, P= 0.004). Stars represent averages of the populations. c, d Strong association between
high TM propensity and adaptive fitness effects. The fraction of ORFs predicted to contain at least one full TM domain according to TMHMM (c) and
Phobius (d) in adaptive, neutral and deleterious emerging ORFs are shown. TM propensity is significantly greater in adaptive than neutral emerging ORFs in
both cases. Error bars: standard error of the proportion. See also Supplementary Fig. 6. e Multinomial logistic regression modeling supports a statistical
interaction between emergence status and TM content. Frequency of adaptive, neutral and deleterious ORFs as a function of their predicted TM content
(TMHMM) is indicated by vertical bars, for established and emerging ORFs separately. Probabilities predicted at 42 values in the range [0, 1] (matching
the frequency bins) by multinomial logistic regression models are indicated by lines (full: model with interaction; dashed: model without interaction). The
model with interaction between TM content and emergence status is a better fit to the data than the model without interaction.
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composition biased towards hydrophobic and aromatic
residues3,9,40. We investigated whether these properties may
promote beneficial fitness effects. GC content was slightly lower
in adaptive than neutral emerging ORFs (Cliff’s Delta d=−0.24;
Mann-Whitney U-test P= 0.04) but statistically indistinguishable
between adaptive and deleterious emerging ORFs (Mann-
Whitney U-test P= 0.33) (Fig. 4b, Supplementary Fig. 5b,
Supplementary Data 1). It is thus unlikely that high GC
content promotes de novo gene birth in S. cerevisiae by
conferring beneficial capacities to the expression products of
emerging ORFs.

Adaptive emerging ORFs however displayed a strikingly higher
propensity to form TM domains than neutral and deleterious
emerging ORFs, according to two prediction algorithms with high
specificity and sensitivity, TMHMM and Phobius41–44. Compar-
ing the proportion of ORFs with predicted TM domains between
adaptive and neutral emerging ORFs yielded Odds Ratio > 2.7
and Fisher’s exact P < 0.025 for both algorithms; comparisons
between adaptive and deleterious emerging ORFs yielded Odds
Ratio > 3.7 and Fisher’s exact P < 0.007 for both algorithms
(Fig. 4c, d, Supplementary Data 1). In contrast, there were no
significant differences between adaptive, neutral and deleterious
established ORFs (Odds Ratio < 1.5 and Fisher’s exact P > 0.06
for both algorithms; Supplementary Fig. 5c, d, Supplementary
Data 1).

Similarly, the fraction of residues predicted as TM over the
length of the ORFs (TM content) was significantly associated with
fitness benefits in emerging ORFs. Comparing TM content
between adaptive and neutral emerging ORFs yielded Cliff’s Delta
d > 0.3 and Mann-Whitney U-test P < 0.003 for both algorithms,
and comparing TM content between adaptive and deleterious
emerging ORFs yielded Cliff’s Delta d > 0.4 and Mann-Whitney
U-test P < 0.0005 for both algorithms (Supplementary Fig. 6,
Supplementary Data 1). This association was again negligible and
insignificant in established ORFs (comparisons between adaptive
and neutral or deleterious established ORFs: Cliff’s Delta d < 0.07
and Mann-Whitney U-test, P > 0.19 for both algorithms;
Supplementary Fig. 6, Supplementary Data 1).

To formalize these observations, we re-analyzed the relation-
ship between ORF emergence status, TM content and fitness
measurements using multinomial logistic regression modeling.
Two nested models were fitted to predict experimental relative
fitness (categorical: adaptive, neutral, deleterious). In the first one,
the predictor variables were TM content (continuous) and ORF
emergence status (categorical: emerging, established). In the
second one, we added an interaction term between TM content
and emergence status. We found that adding this interaction term
significantly increased the fit to the data (ANOVA. P= 0.005;
D= 10.7; df= 2; Fig. 4e). In a ten-fold cross validation of the two
models, the model with the interaction term consistently showed
better predictive power than the model without (higher Mathews
Correlation Coefficient in all ten iterations, with an average of
0.29 versus 0.23 for the model without the interaction term;
Paired Wilcoxon test P= 0.006). The interaction term had a
coefficient statistically different from zero in the comparison
between adaptive and neutral ORFs (Z-test P= 0.002) but not in
the comparison between neutral and deleterious ORFs (Z-test
P= 0.97). Thus, this statistical modeling was also consistent with
the notion that overexpression of emerging ORFs containing TM
domains promotes higher fitness.

Evolutionary origins of transmembrane domains. To inter-
rogate the evolutionary origins of these adaptive emerging TM
domains, we compared the TM propensities of established and

emerging ORFs with those of artificial ORFs corresponding to the
hypothetical translation products of intergenic sequences pre-
dicted after removing intervening stop codons (iORFs; Supple-
mentary Data 4; Methods). TM propensities were lowest in
established ORFs (23% predicted to have a TM domain), inter-
mediate in emerging ORFs (46%) and highest in iORFs (57%)
(overall χ2 test P < 2.2 × 10−16; Fig. 5a). These results, consistent
with a previous study40, held when established ORFs and iORFs
were sampled to match the length distribution of emerging ORFs
(established ORFs: 21%, iORFs: 56%; overall χ2 test P < 2.2 ×
10−16; Supplementary Fig. 7a).

Interestingly, scrambled control sequences retaining the same
length and nucleotide composition as the real genomic sequences
displayed high TM propensities (Fig. 5a). Previous analyses
encompassing multiple species have shown that GC content
negatively correlates with expected TM propensity34 and that the
TM domains of established membrane proteins consist of
stretches of hydrophobic and aromatic residues encoded by
thymine-rich codons45. We thus investigated whether the high
thymine content of yeast intergenic sequences46 may facilitate the
emergence of novel polypeptides containing TM domains.

A strong influence of thymine content on TM propensity was
observed regardless of ORF emergence status, ORF length, or
whether the sequences were real or scrambled (Fig. 5b,
Supplementary Fig. 7b, Supplementary Data 4). Established ORFs
appeared depleted in TM domains given their thymine content
(Fisher’s exact P < 2.2 × 10−16, Odds Ratio: 0.54); yet, for those
with TM domains, the fraction of sequence length predicted to be
in the domains was higher than expected from their thymine
content (Cliff’s Delta d= 0.37, Mann-Whitney U-test, P < 2.2 ×
10−16). In contrast, emerging ORFs and iORFs appeared enriched
in TM domains relative to their thymine content (iORFs: Fisher’s
exact P < 2.1 × 10−16, Odds Ratio: 2.1; emerging ORFs: Fisher’s
exact P= 0.02, Odds Ratio: 1.3). We also estimated the TM
propensity of small unannotated ORFs that pervasively occur
throughout the genome (sORFs). TM propensity in sORFs was
also largely driven by their thymine content, and markedly
increased when they occupied a larger portion of the intergenic
region from which they were extracted (Spearman’s rho= 0.92,
P= 4 × 10−8; Fig. 5b, c, Supplementary Data 5). Altogether, these
results showed that the yeast genome harbors a pervasive TM
propensity, facilitated by a high thymine content, and further
magnified by additional intergenic sequence properties.

This discovery converges with our finding that overexpressing
emerging ORFs with TM domains tends to increase relative
fitness (Fig. 4). Together, they suggest the plausibility of a TM-
first model of gene birth, whereby thymine sequence biases in
intergenic regions that pre-date the acquisition of translation
signals may facilitate the emergence of adaptive proto-genes with
TM domains (Fig. 5d).

A TM-first emerging ORF caught in the process of fixation. We
sought to test the plausibility of the TM-first model by retracing
the evolutionary history of one specific locus. We focused on
YBR196C-A, one of the 28 adaptive emerging ORFs identified in
our screens. YBR196C-A is a 150 nt uncharacterized ORF located
on chromosome II with a putative TM domain that accounts for
almost half of the protein length (23/49 aa). We could not find
published experimental evidence that YBR196C-A is natively
translated, yet its ORF structure appears stable within S. cerevisiae
(intact ORF in 95% of isolates).

We visualized cells overexpressing Ybr196c-a-EGFP by con-
focal microscopy (Methods). The protein colocalized with two
markers of the ER membrane: Scs2-TM and Sec13 (Fig. 6a, b,
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Fig. 5 Pervasive transmembrane propensity throughout the genome. a Propensity of ORFs to form TM domains. TM domains predicted by Phobius in this
and following panels. Scrambled sequences maintain the same length and nucleotide composition as the real genomic sequences. Intervening stop codons are
removed from iORFs and scrambled sequences. sORFs occur pervasively in the genome. Error bars: standard error of the proportion. Data can be found in
Supplementary Data 4. b Thymine content influences TM propensity. From left to right: established ORFs, emerging ORFs, iORFs, sORFs, as in a. Top panel: Bar
graph represents the fraction of ORFs that encode a putative TM domain, binned by thymine content (bin size=0.1) and compared between real (pink) and
scrambled (brown) sequences. Error bars represent standard error of the proportion. Overlaid density plots represent the distribution of all sequences per
category. Bottom panel: scatterplot showing the fraction of sequence length predicted to be TM residues as a function of thymine content. Only ORFs predicted
to encode a putative TM domain are included in the bottom panel. Individual real (pink) and scrambled (brown) sequences are shown in the scatterplot with
transparency; points of higher intensity indicate that sequences were sampled multiple times. Linear fits with 95% confidence intervals are shown. Data can be
found in Supplementary Data 4. c Additional intergenic sequence signals increase the probability that sORFs contain TM domains. Only sORFs between 25 and
75 codons that are fully contained within intergenic regions were included in this analysis. Blue rectangles on horizontal black lines illustrate how sORFs of a
given length can occupy a small (left) or large (right) fraction of intergenic sequence length. Horizontal dashed lines represent the fraction of emerging ORFs
(light blue) and iORFs (dark blue) between 25 and 75 codons predicted to contain putative TM domains. Error bars represent standard error of the proportion.
Data can be found in Supplementary Data 5. d A new hypothesis for adaptive proto-gene evolution. Our data suggest that intergenic thymine content influences
the TM propensity of novel translated products, which in turn may influence their potential for adaptive change.
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Supplementary Fig. 8). In a fraction of the cells, the protein also
localized to puncta, which colocalized with Scs2-TM but not
Sec13 (Supplementary Fig. 8). We did not observe localization at
the cell periphery, nor colocalization with mitochondrial,
peroxisomal or vacuolar markers (Supplementary Fig. 8). As a
control, we visualized using the same methods the protein
encoded by another emerging ORF (YAR035C-A) which has no
predicted TM domains and was not found to be adaptive in our
screens. We observed colocalization with the mitochondria
(Supplementary Fig. 9). In sum, microscopy confirmed that
Ybr196c-a associates with a select subset of cellular membranes.

Next, we used biochemical approaches to ascertain whether
Ybr196c-a was merely peripherally associated with the membrane
or was a bona fide integral membrane protein. We performed
membrane association assays using a combination of buffer and
centrifugation treatments to define the fraction of Ybr196c-a
partitioning with membranes from cell extracts. The majority of

Ybr196c-a pelleted with the membrane fraction (Fig. 6c, compare
lanes S1 to P1). Neither washing the pellet in lysis buffer nor
treating it with 6M urea removed a significant amount of
Ybr196c-a from the membrane (Fig. 6c, compare P1 to P2 and
P3), as expected for an integral membrane protein and consistent
with the Sec61 control. Ybr196c-a remained in the pelleted
fraction after carbonate treatment, as did the Sec61 integral
membrane protein control, whereas Pdi1, an ER luminal protein,
was released (Fig. 6d, compare P1 to P2). Ybr196c-a and Sec61
only became considerably solubilized and released from the
membrane fraction (~50% each) when 1% SDS was added to
solubilize membranes (Fig. 6d, compare S3 to P3). Taken
together, these biochemical data provide strong evidence that
the YBR196C-A locus can encode an ER-resident, integral
membrane protein.

Having experimentally verified the TM propensity of Ybr196c-
a, we retraced its evolutionary origins. Extensive sequence
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Fig. 6 TM propensity of the Ybr196c-a protein. a Ybr196c-a colocalizes at the ER with Scs2-TM. Chromosomally integrated mCherry-Scs2-TM and
plasmid-borne Ybr196c-a-EGFP localization was assessed using confocal microscopy. White line is scale bar= 2μ. b Ybr196c-a colocalizes at the ER with
Sec13. Chromosomally integrated Sec13-RFP and plasmid-borne Ybr196c-a-EGFP localization was assessed using confocal microscopy. White line is scale
bar= 2μ. c Membrane association assay. Cell lysates were fractionated by centrifugation into a cytosolic fraction in the supernatant (S1) or a pelleted
membrane fraction (P1). The pellet was suspended in either lysis buffer (LB) and centrifuged to generate S2 and P2 fractions, or buffer containing 6M urea,
which solubilizes peripheral membrane proteins, to generate S3 and P3 fractions. Fractions were then subjected to SDS-PAGE and immunoblotted with
anti-GFP (to detect Ybr196c-a), anti-Sec61 (an integral ER-membrane protein), and anti-Pdi1 (an ER luminal protein) antibodies. A dot indicates the full-
length Ybr196c-a-EGFP fusion protein and the bands of lower MW are degradation products of this fusion. A star indicates a spurious soluble protein of
higher MW than Sec61 that is recognized non-specifically by the anti-Sec61 antibody. Primary uncropped blots are provided in the Source Data file.
d Carbonate extraction assay. Cellular membranes were treated with a buffer control (S1/P1), Na2CO3 (S2/P2) to extract peripherally associated
membrane proteins or luminal proteins, such as the ER luminal protein Pdi1, or 1% SDS (S3/P3) to at least partially solubilize integral membrane proteins,
such as the Sec61 integral membrane protein control. Integral membrane proteins such as Sec61 and Ybr196c-a remain in the pellet fraction post carbonate
treatment (P2), unlike soluble proteins like Pdi1 which shift to the solubilized supernatant (S2). Fractions were assessed by immunoblotting as in Fig. 6c.
Primary uncropped blots are provided in the Source Data file.
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similarity searches across a broad phylogenetic range (BLAST E-
value threshold 0.001; Methods) failed to identify sequences
similar to YBR196C-A in species beyond the Saccharomyces
genus, consistent with a recent origin within the past 18 Myrs47.
Aligning syntenic sequences across six Saccharomyces species
revealed that ORFs of varying lengths in different reading frames
were present in some, but not all, species of the clade, with highly
variable primary sequences (Supplementary Fig. 10a). Ancestral
reconstruction of the genomic region along the clade (Methods;
Fig. 7a) showed that no potential ORF longer than 30 codons was
present in the Saccharomyces ancestor, in any reading frame
(Supplementary Fig. 10b), confirming the de novo origination of
YBR196C-A.

The initial ORF that became YBR196C-A (YBR_Initial) likely
originated at the common ancestor of S. kudriavzevii, S. mikatae,
S. paradoxus and S. cerevisiae and already encoded putative TM
domains. In fact, the ancestral non-genic sequence at the base of
the clade already contained a suite of codons that would have had
the capacity to encode TM domains, had it not been interrupted
by stop codons (Fig. 7a). This TM propensity persisted in most
extant sequences despite substantial primary sequence changes.
Consistent with our previous analyses (Fig. 5), YBR196C-A is
extremely T-rich (48%, 99th percentile of all annotated ORFs) and
so are its extant relatives and reconstructed ancestors. The

inferred evolutionary history of the YBR196C-A locus was
therefore consistent with a TM-first scenario.

YBR_Initial underwent major changes in primary sequence
including frameshifts, truncations and elongation throughout
Saccharomyces evolution (Fig. 7a). Furthermore, examination of
syntenic loci in five S. paradoxus isolates showed that the
YBR196C-A homolog in this species failed to display an
equivalent level of intraspecific constraints as YBR196C-A in S.
cerevisiae. An ORF was present in the syntenic loci of four out of
five isolates but it displayed frameshift-induced variation in
length and sequence, despite substantial conservation in the TM-
containing N-terminal region of the alignment (Supplementary
Fig. 10c). Thus, our screening possibly captured YBR196C-A in
the process of becoming established in the S. cerevisiae genome,
after going through substantial changes since YBR_Initial may
have first presented its TM domains to the action of natural
selection.

We further determined that adaptive mutations are actively
shaping the molecular changes observed in the protein sequence,
consistent with our model (Fig. 1). A positive selection test across
the four Saccharomyces species containing ORFs yielded statis-
tically significant results (P= 0.01, LRT: D= 8.9, df= 2; see
Methods) and identified three sites under positive selection. These
results were robust to the choice of statistical model (Methods)
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Fig. 7 Evolutionary history of the YBR196C-A locus. a YBR196C-A emerged in an ancestral non-genic sequence with high TM propensity. Results of
ancestral reconstruction software are summarized along the Saccharomyces genus phylogenetic tree. Branch lengths are not meaningful. Theoretical
translations of extant and reconstructed sequences are shown, with ORF boundaries indicated by a green M and a red star. For ORF-less sequences, frames
displayed were chosen for illustration purposes. Except for the intergenic ancestor, the translation of the sequence that aligns to the start codon of
YBR196C-A is shown, in the relevant frame, and until the first stop codon is reached. TM propensity as predicted by Phobius is shown in pink. b–d Predicted
3D structures for the translation products of YBR_Initial (b), YBR_Intermediate (c) and YBR196C-A (d). Model 1 predictions by Robetta are shown. YBR_Initial
is predicted to encode an all-β strand protein. YBR_Intermediate is predicted to encode a protein with β-strands and an α-helix. YBR196C-A is predicted to
encode a protein with a long α-helix and no β-strands.
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and showed slightly increased significance when focusing on the
TM region of the alignment (First 30 codons: P= 0.007, LRT:
D= 10, df= 2). Furthermore, a pairwise dN/dS (omega) calcu-
lated over the first 30 codons of the alignment between S.
cerevisiae and S. paradoxus was significantly greater than 1
regardless of the model used (YN: 4.5, LWL85: 1.7, LPB93: 3.8,
NG86: 1.9).

To investigate the impact of this rapid sequence evolution at
the protein level, we inspected the predicted 3D structures of the
putative proteins encoded along the S. cerevisiae branch of the
phylogenetic tree: Ybr_initial, Ybr_intermediate and Ybr196c-a
(Fig. 7). All three shared a conserved predicted TM domain in the
N-terminal region, but this domain contained a Gly in Ybr_initial
and Ybr_intermediate that mutated to Ala in Ybr196c-a
(Supplementary Fig. 10d). A second, Phe-rich, low complexity
TM domain was predicted for Ybr_initial and Ybr_intermediate
in the C-terminal region of the alignment, presenting Gly and Pro
residues (Supplementary Fig. 10d). Gly and Pro are known for
their low helix propensity in solution48 and in a membrane
environment49, and partially hindered the formation of α-helical
structures in 3D models generated with the ab initio prediction
server Robetta50. In fact, the protein models for Ybr_initial were
almost all β strands rather than helices (Fig. 7b). Protein models
of Ybr_intermediate as well were either mostly β strands (two out
of five models) or presented a helix at the N-terminal region and
β strands at the C-terminal region (three out of five models;
Fig. 7c). In contrast, all models of Ybr196c-a were devoid of β
strands and showed α helices flanked by Pro in the N-terminus
and a pair of charged Arg in the C-terminus. Four out of five
models yielded a robust TM helical structure spanning 20
residues (Fig. 7d). Explicit solvent molecular dynamics simula-
tions of these 3D structures in a membrane bilayer strongly
supported the potential for YBR196C-A to encode a single-pass
membrane-spanning protein (Supplementary Fig. 11). These
simulations suggest that evolutionary changes accumulating over
millions of years since YBR_Initial first emerged have increased
the TM propensity at this locus.

To explore this hypothesis, we used confocal microscopy to
visualize EGFP-tagged extant and reconstructed homologous
ORFs in the family of YBR196C-A when they were overexpressed
in S. cerevisiae cells (Fig. 8; Methods). We observed colocalization
with Scs2-TM at the ER membrane and in puncta again for
Ybr196c-a, as in Fig. 6a. Similar fluorescence patterns were
observed for the S. paradoxus homolog of YBR196C-A, but not
for the S. mikatae or S. kudriavzevii homologs. The closest
reconstructed ancestor of Ybr196c-a and its S. paradoxus
homolog, Ybr_intermediate, also colocalized with Scs2-TM at
the ER membrane and in puncta. In contrast, cells overexpressing
Ybr_initial showed generally diffuse cytoplasmic fluorescence and
intense puncta, with only exceedingly rare cases where faint ER
localization could be discerned. These observations are consistent
with the evolutionary and structural models presented in Fig. 7,
supporting the hypothesis that YBR_Initial has accumulated
adaptive changes that increased its TM propensity in the
phylogenetic branch that lead to S. cerevisiae and S. paradoxus.

Discussion
By combining evolutionary, structural and overexpression ana-
lyses of the YBR196C-A locus (Figs. 6–8), we provided an
unprecedented view of how a thymine-rich intergenic sequence
with high TM propensity may, upon acquisition of translation
signals, be molded by positive selection into a genuine TM pro-
tein with the potential for adaptive change, and mature over
millions of years. Future studies are needed to determine in which
circumstances Ybr196c-a is natively translated and uncover what

specific activities of the protein are under positive selection. To
date, this is the only locus whose evolutionary history has been
investigated in enough detail to corroborate a TM-first model of
de novo gene emergence (Fig. 5d). The TM-first model is an
attractive hypothesis that may explain how sequences that were
not translated previously could spontaneously exhibit secondary
structures with the potential for adaptive change.

Our analyses suggest that a simple thymine bias suffices to
generate a diverse reservoir of novel TM peptides (Fig. 5a–c), and
that incipient proto-genes with TM domains are more likely to
increase fitness than proto-genes without TM domains (Fig. 4).
This could account for the observation that young ORFs have
high TM propensities across multiple yeast species3,40. Beyond
yeast, putative de novo genes with TM domains have also been
characterized51–54. Furthermore, evidence suggests that the
fitness-enhancing capacities of small TM proteins might extend
to bacteria as well as to mouse18,55–57. Finally, unannotated TM
sequences may also be pervasively translated in bacteria, insects
and mammals58–60. The TM-first model could therefore repre-
sent a prevalent route of molecular innovation across phyla. The
membrane environment might provide a natural niche for novel
TM peptides, shielding them from degradation by the protea-
some, and allowing subsequent evolution of specific local inter-
actions while reducing the potential for deleterious promiscuous
interactions throughout the cytoplasm. The TM domains may be
lost in the subsequent stages of de novo gene evolution. We
hope that future studies will quantify the prevalence of the TM-
first mechanism and investigate the many exciting questions it
raises.

How might expression of a TM proto-gene confer a growth
advantage? No current model anticipated this and, to our
knowledge, this is the first report of a structural feature being
empirically associated with adaptiveness in the context of de novo
emergence besides life-saving antifreeze glycoproteins in polar
fishes61. One might consider several speculative models. Expres-
sion of TM proto-genes may cause a preconditioning stress,
modestly inducing the unfolded protein response, or the
expression of heat-shock proteins or other protein chaperones.
This type of preconditioning stress has been shown across species
to confer a benefit in responding to subsequent exposure to
stressors62–66, which might extend more generally to nutrient-
related stresses such as the ones used in our experiments67. Novel
TM domains might also associate with larger membrane proteins,
such as transporters or signaling proteins, mediating beneficial
rewiring of the cellular network68,69. Alternatively, insertion of
proto-gene TM domains could alter the biophysical properties of
the lipid bilayer itself, slowing diffusion of lipids within the
bilayer, reducing diffusion of molecules across the membrane or
altering membrane curvature through molecular crowding70–72.
No single model likely explains their adaptive effects universally.

Why are most adaptive proto-genes not fixed within S. cere-
visiae? It is estimated that adaptive mutations resulting in a 10%
fitness increase would reach 5% of the population in ~200 gen-
erations and fix in ~500 generations29. Given that the adaptive
effects we observed were in this range (Supplementary Fig. 3),
why haven’t increases in expression levels been selected for? Part
of the answer likely relates to the artificial nature of our screening
strategy. The highly increased expression levels triggered by our
plasmid-based system may be unattainable from single regulatory
mutations, and weaker changes in expression levels might be
outcompeted by other genomic mutations in the wild. It is also
quite likely that sequences found to be beneficial in our specific
laboratory growth conditions may not have the same effects in
natural environments. However, it is also possible that the cir-
cumstances that would enable these adaptive effects to manifest in
nature simply have not occurred yet since these ORFs emerged.
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Fig. 8 Evolution of TM domain propensity throughout the process of de novo emergence. The sequences of extant and reconstructed homologs of
YBR196C-A (Fig. 6a) were fused to EGFP and expressed in S. cerevisiae cells with chromosomally integrated mCherry-Scs2-TM (Methods). A representative
micrograph taken with consistent imaging and adjustments is shown for each, except for the strain overexpressing YBR_Initial, for which two micrographs
are shown. The top one uses consistent imaging and adjustments, but it is not representative. Instead, it shows a rare instance where colocalization
with the ER is observed. The bottom one is representative for this strain, with largely cytosolic fluorescence and a few puncta. It is adjusted differently than
the other micrographs because the cytosolic signals were significantly higher than those for other strains. The label “Ybr-EGFP” indicates the imaging
column where homologs of YBR196C-A are shown. White line is scale bar= 2μ.
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Another explanation might be that evolutionary tradeoffs
constrain the evolution of adaptive proto-genes. For instance,
expressing novel sequences could be beneficial in some environ-
ments or life stages of the organism, but deleterious in others—as
has been reported for multiple genes in yeast73,74. Tradeoffs could
also act on the molecular properties of proto-genes as they
undergo substantial evolutionary changes over time (Figs. 1 and
7). We showed that certain TM proto-genes can confer fitness-
enhancing effects if their expression increases (Figs. 3–4), but
what would happen if their length also increased, as is thought to
often occur during the maturation of young proteins2? This might
trigger deleterious fitness effects, since, in yeast, elaborate cellular
systems control the insertion and folding of TM proteins and
prevent their aggregation75. Such tradeoffs could explain why TM
propensity is associated with adaptiveness in emerging ORFs, but
not in established ORFs (Fig. 4), and why TM domains are
generally underrepresented in the established proteome (Fig. 5).
We are keen to speculate that evolutionary tradeoffs prevent the
majority of incipient proto-genes from reaching established status
–translated unconstrained sequences vastly outnumber species-
specific established genes across species3,13,76—and maintain
transitory emerging sequences in the genome for millions of
years6,28,37,77–79. Future studies are needed to understand why
sequences with the potential for adaptive change may never
realize this potential.

Overall, our results indicate that increased expression of a
substantial proportion of emerging coding sequences, especially
those with TM domains, is likely beneficial under some condi-
tions. We expect that this proportion might rise above the 10%
observed in this study (Fig. 3), a fraction that already far exceeds
observations based on random sequences17,18,55,80, if emerging
sequences were screened across additional conditions and wider
ranges of expression levels. Hence, while emerging sequences
show no evidence of encoding a useful protein product in the
present state of the organism, they have the potential to do so in
the future. Might the potential for adaptive change also be carried
by the hundreds of emerging ORFs, excluded from this study, that
are translated but not annotated in the yeast genome3? If this
were the case, instead of asking how de novo gene birth is possible
given the complexity of useful proteins, we might ask why de
novo gene birth and retention is so rare given the pervasiveness of
potentially adaptive proto-genes in the genome.

Methods
Classification of S. cerevisiae ORFs. Genome annotations for 6310 S. cerevisiae
ORFs from the Saccharomyces Genome Database (SGD)81 were used keeping a
consistent version with ref. 3. Protein-coding signatures were derived from 3 lines
of evidence as in ref. 3: signatures of translation in ribosome profiling datasets;
signatures of intra-species purifying selection estimated from 8 S. cerevisiae strains;
ORF length longer than expected by random mutations (300nt). ORFs were
categorized as young when they (1) had no homologs detectable by phylostrati-
graphy beyond the Saccharomyces clade (conservation level ≤4) as in3 and (2) had
no syntenic homolog with more than 50% sequence similarity in S. kudriavzevii or
S. bayanus.

The synteny analysis was performed as follows. We identified syntenic blocks
for young ORFs across four Saccharomyces species by using the downstream and
upstream genes of the putative young ORFs as anchors. The orthologs of the
anchor genes were downloaded from ref. 82 and the genomic sequences were taken
from ref. 83 for S. paradoxus, and ref. 82 for S. mikatae, S. bayanus and S.
kudriavzevii. In cases where a continuous syntenic block could not be constructed
between two anchor genes, it was constructed by aligning the ±1 kb region
surrounding the anchor gene with the largest number of orthologs (identified by
ref. 84; downloaded from SGD). Multiple alignment of the syntenic blocks were
generated using MUSCLE85 using the default parameters of the msa R package86.

For each syntenic block, we identified all non-S. cerevisiae ORFs that overlapped
with the S. cerevisiae young ORFs within the ORF ± 200 bp region of the alignment.
The overlapping region of the ORFs were extracted from the alignment, translated,
and re-aligned pairwise. Similarity between ORFs was calculated by taking the ratio
of the number of identical amino acids over the overlapping portion of the
alignment divided by the length of S. cerevisiae ORF.

All annotated young ORFs (per phylostratigraphy and synteny analysis) that
displayed fewer than 3 of the protein-coding signatures were assigned to the
emerging ORFs group. All other ORFs (old ORFs and young ORFs with strong
protein-coding signatures) were assigned to the established ORFs group. The list of
emerging and established ORFs is this study is available in Supplementary Data 1.

We also defined artificial intergenic ORFs (iORFs) and genomic small ORFs
(sORFs) as follows. iORFs were generated as in ref. 8: first, non-annotated genomic
regions were extracted from genomic sequences using bedtools subtract87 and the
annotation GFF file downloaded from SGD. Then, stop codons in the +1 reading
frame were removed, and the sequences in that frame were translated and used to
calculate the various properties. sORFs include all non-annotated ORFs that
showed no signs of translation from ref. 3, that were longer than 75nt, and did not
entirely overlap annotated ORFs in any strand (n= 18,503). Coordinates of iORFs
and sORFs are available in Supplementary Data 4.

Description of yeast ORFs. We used data from external sources, and sequence-
based prediction tools, in our analyses. These descriptions can be found together
with results of our other analyses in Supplementary Data 1. Annotation status of
emerging ORFs was downloaded from SGD. At least 95% of emerging ORFs are
annotated as dubious or uncharacterized according to both the 2011 S. cerevisiae
genome annotation (consistent with ref. 3) and the current one (R64-2-1). RNA
expression levels were lifted from ref. 3, where RNA-seq data in rich media from
ref. 88 were re-analyzed. Disruption fitness estimates for individual ORFs were
extracted from the summary across a double mutant array at 30 °C from ref. 26,
averaging multiple alleles corresponding to the same ORF together. Competitive
fitness of overexpression was estimated from read intensity after 20 generations of
growth as reported by ref. 30. Estimates for intrinsic disorder were lifted from ref. 3,
where DISOPRED2, a prediction tool with per residue false positive rate of 3.2%89,
was used. GC content was calculated using a python script as in ref. 8. TM pro-
pensities were estimated using two prediction tools: TMHMM and Phobius41–44.
Two measures of TM propensity were used: the presence of at least one full
predicted TM domain, and the fraction of ORF length predicted by the tools to be
TM (TM content). For Ybr196c-a and its extant and reconstructed homologs, we
performed additional analyses of TM propensities described in the Methods section
entitled “Protein structure analyses”.

Yeast strains and growth media. Barcoded haploid yeast overexpression strains
in the BY4741 background from the BarFLEX collection30 were used for screening
purposes together with the reference strain with matched genetic background. The
reference strain was created by growing a randomly selected BarFLEX strain on
SC+GLU+G418+ 5FOA to chase the plasmid, then transforming the plasmid-
less strains with the destination plasmid pBY011. Overexpressed ORFs included in
the screen analyses are listed in Supplementary Data 1. All strains were kept in SC-
URA+GLU+G418 glycerol stocks at −80 °C in 384-well format until used for
screening.

Using the Gateway System® (Life Technologies, Carlsbad, CA), the ORFs
studied by microscopy were first cloned into donor vector pDNOR223 using BP
recombination (Gateway BP Clonase II Enzyme Mix, Life Technologies) and then
transferred to destination vector pAG426GAL-ccdB-EGFP by LR recombination
(Gateway LR Clonase II Enzyme Mix, Life Technologies). The expression vectors
were then used to transform multiple strains carrying organelle markers that were
chromosomally-tagged with fluorescent proteins, using the LiAc/PEG/ssDNA
protocol90 and selected on media lacking uracil. Growth medium composition are
detailed in Supplementary Table 1, strain genotypes in Supplementary Table 2 and
plasmids in Supplementary Table 3.

Overexpression strategy to estimate relative fitness. Using a Singer ROTOR
robotic plate handler (Singer Instrument Co. Ltd), overexpression and reference
strains where transferred from glycerol archives to agar plates and then robotically
combined into 1536-density agar plates (SC-URA+GLU+G418; see Supple-
mentary Table 1). Cells on these plates were then transferred with the same robot
at the same density to SC-URA+GAL+G418 where they were incubated for a
day. This process was repeated once, following which the cells were robotically
transferred to 6144-density agar plates in the screening conditions (in Supple-
mentary Table 1). Throughout this transfer process, five 1536-density source plates
were copied 4 times, yielding on average 4 technical replicates per overexpression
strain and 3072 replicates for the reference strain per screening condition. Speci-
fically, 768 replicates of the reference strain were arrayed on one out of the five
1536-density plates in an alternating pattern with a replicate of the reference strain
in every other row/column. Only four 1536-density source plates can be transferred
to a single 6144-density plate, therefore 4 out of the five 6144-density plates
contained 768 replicates of the reference strain. The alternating pattern of the
reference strain from the 1536-density plate was carried over to the 6144-density
plate. As a result, the reference strain was systematically spread throughout the
plate, appearing every 4 columns/rows, and each colony replicate of the same
overexpression strain was always surrounded by different neighbors. This experi-
mental set up was designed to mitigate neighbor effects, for instance a fast-growing
colony negatively impacting the growth of its neighbors.
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Colony size was estimated at the time point when the reference strain had
reached saturation, which varied depending on the screening condition. Digital
images of the plates were acquired in 8-bit JPEG with a SLR camera (18Mpixel
Rebel T3i, Canon USA Inc., Melville/NY) with an 18−55 mm zoom lens. A white
diffusor box with bilateral illumination and an overhead mount for the camera in a
dark room were used. The workflow we used for colony size quantification was
similar to91: (a) each plate was imaged 3 times to control for technical variability in
image acquisition, (b) each image was cropped to the plate, (c) a colony grid at
expected density was overlaid on the plate image, (d) each image was binarized by
thresholding the ratio between background pixel intensity vs. colony pixel intensity,
(e) the number of pixels at each position on the grid was counted, (f) empty
positions on the grid were temporarily removed to avoid affecting the spatial
normalization in the next steps, (g) the number of pixels at each position on the
grid were averaged across all 3 images, (h) spatial normalization and border
normalization were applied to remove local, nutrient-based growth effects as in92,
(i) grid values were normalized by the mode of pixel counts per plate to allow
comparison of values across plates, (j) empty positions on the grid were added
back, (k) outer rows/columns were excluded from downstream analysis (depth of 5
for 6144-density plates) because, even after applying the spatial and border
normalization algorithms, reduced border artifacts could still be detected.
Normalized colony size was then defined as the average of the normalized number
of pixels per grid point corresponding to technical replicates of each overexpression
strain. Our measurement of normalized colony size in SC-URA+GAL+G418
were highly correlated with previously published competitive fitness estimates30

based on barcode signal intensity readings for the same overexpression collection
grown in liquid media of the same composition for 20 generations (Pearson
Correlation Coefficient: R= 0.73, P < 2.2e−16). However, our screening strategy
allowed to use our quantitative measurements of normalized colony size to identify
strains with significantly increased or decreased fitness relative to the reference
strain.

For every screen, we binned all screened ORFs in 3 categories (increased fitness,
decreased fitness and unchanged) according to their relative fitness compared to
the reference strain. The P-values of a non-parametric Mann-Whitney U-test
comparing the distributions of technical replicates of each overexpression strain
with that of the reference strain were corrected for multiple hypothesis testing
using Q-value estimations as defined in93. ORFs where categorized as having
increased or decreased relative fitness effect when overexpressed when the Q-value
was lower than 0.01 and the normalized colony size was higher than 95%, or lower
than 5%, of the technical replicates reference, respectively. All other ORFs were
classified as unchanged. The classification of emerging and established ORFs for
each of the five screens is presented in Fig. 3 are reported in Supplementary Data 3.

These results were then integrated as follows: ORFs that increased fitness when
overexpressed in at least 1/5 conditions were labeled “adaptive”; ORFs that
decreased fitness in at least 1/5 conditions and never increased it in any of the 5
conditions were labeled “deleterious”; all other tested ORFs were labeled “neutral”.
These labels apply to Figs. 4–5.

We aimed to estimate the proportion of strains from our overexpression
collection that could be erroneously found to increase or decreased relative fitness
using our screening and analysis strategy. We considered that false positives could
arise either due to technical reasons or biological reasons. Technical false positives
could stem from inherent variability in our screening platform and colony size
analysis, or from our statistical method for identifying strains with significant
relative fitness effects. Biological false positives could stem from strains exhibiting
true relative fitness effects where the effect would not be linked to the
overexpression plasmid. To estimate a false positive rate combining all of these
possible error sources, we deployed our strategy in SC+GAL+G418 growth
media to a copy of our overexpression collection that we previously exposed to SC
+GLU+G418+ 5FOA for 48 h to chase the plasmids out of every strain. We
repeated this experiment twice. One of the replicates detected 0 strains as showing
any significant relative fitness effect. The second replicate detected spurious
increases in relative fitness for 0.15% of the strains and spurious decreases in
relative fitness for 5.30% of the strains. On average, we therefore estimate that the
combined biological and technical false positive rate of our assay is 0.08% for
increases, and 2.65% for decreases, in relative fitness. These estimates are an order
of magnitude lower than what is observed when the strains are overexpressing
emerging and established ORFs in SC-URA+GAL+G418 (Fig. 3b, c),
demonstrating the high specificity of our strategy. The quality of our dataset is
further supported by the fact that the same emerging ORFs tend to be found as
increasing relative fitness in multiple environments at a rate much higher than
expected by chance (empirical P < 0.00001; Supplementary Fig. 4c).

Intraspecific evolutionary analyses. The VCF file for 1011 S. cerevisiae isolates
sequenced by27 was downloaded from the 1002 Yeast Genome website (http://
1002genomes.u-strasbg.fr/files/1011Matrix.gvcf.gz). For each single-exon anno-
tated ORF, nucleotide diversity and ORF intactness (defined as presence of start
codon and stop codon in the same reading frame, with no intermediate stops) was
derived from the VCF file based on all isolates that had calls for every position in
the sequence using custom scripts. The results of these analyses are shown in Fig. 2
and Supplementary Fig. 1.

Genomes of five S. paradoxus isolates (CBS432, N44, UWOPS91917,
UFRJ50816, YPS138) were acquired from ref. 94, selected to give a broad
representation of S. paradoxus evolutionary diversity. The syntenic region of
YBR196C-A was obtained by aligning the sequence between and including the
neighboring genes YBR196C and YBR197C among all S. paradoxus strains and S.
cerevisiae S288C using MUSCLE. This alignment is shown in Supplementary
Fig. 10c.

Interspecific evolutionary analyses. Similarity searches using the Ybr196c-a
protein sequence as query were performed with TBLASTN against the Sacchar-
omyces genomes and all fungal genomes downloaded from GENBANK, and with
BLASTP against the NCBI nr database, using a relaxed E-value threshold of
0.00195.

To reconstruct the ancestral state of YBR196C-A (Fig. 7a), we first identified and
extracted its orthologous regions in all other Saccharomyces species. We exploited
SGD’s fungal alignment resource to download ORF DNA+ 1 kb up/downstream
for guiding analyses. A multiple alignment of these sequences was generated using
MAFFT96. A second, codon-aware alignment was generated with MACSE97. Using
the MAFFT alignment, a phylogenetic tree was generated with PhyML98 with the
following parameters “-d nt -m HKY85 -v e -o lr -c 4 -a e -b 0 -f e -u species_tree.
nwk” where “species_tree.nwk” is the species topology. Ancestral reconstruction
was performed with PRANK99 (on an alignment performed by PRANK, and not
the one generated by MAFFT) using the above-mentioned tree as a guide and the
parameters “-showanc -showevents –F”. The ancestral sequences were extracted
from the alignment output file of PRANK, and gaps were removed to obtain the
nucleotide sequences, which were then translated into amino acid sequences.

Pairwise dN/dS (omega) was calculated using yn00 from PAML100. Selection
tests were performed using codeml from PAML. Specifically, the aforementioned
codon-aware alignment (regenerated with only the 4 species Skud, Smik, Scer,
Spar) and the corresponding PhyML guide tree were used together with the site
model to perform the M1a—M2a (model= 0, nsites= 1 and 2) and M7—M8
(model= 0, nsites= 7 and 8) Likelihood Ratio Tests of positive selection, as
detailed in the PAML manual. The Bayes Empirical Bayes method at P > 0.99 was
used to identify sites under selection.

Statistical analyses. All statistical analyses presented in this manuscript can be
reproduced using the scripts and Supplementary Data tables provided on github.
The statistical analyses involved in the analyses of yeast colony sizes are described
in the Methods section “Overexpression screening strategy to estimate relative
fitness”. All statistical analyses consisting of comparing groups of sequences were
performed in R using χ2, Odds Ratio and Fisher tests (for count data), and Cliff’s
delta and Mann-Whitney U-tests (for continuous data). Fisher’s and Mann-
Whitney tests are two-sided.

We performed empirical simulations to statistically control for the distribution
of ORFs' length and expression level. In order to obtain a length distribution from a
target population (e.g., established ORFs) similar to a template population
(emerging ORFs), we performed sampling with replacement using a version of
inverse transform sampling as follows. First, the template population’s distribution
(the emerging ORF distribution in our case) was calculated using bins. Then, ORFs
from the target populations were drawn with replacement according to this
distribution.

When sampling established ORFs to control for length as presented in
Supplementary Fig. 1 and Fig. 3e, the distribution of length of emerging ORFs was
calculated using bins of 50 nucleotides, grouping those few between 800 and 2000
nucleotides. When sampling established ORFs to control for expression as
presented in Supplementary Fig. 1 and Fig. 3e, the distribution of expression levels
of emerging ORFs was calculated using bins of 1 log, grouping those few between 3
and 6 logs. When sampling established ORFs, iORFs and sORFs to control for
length as presented in Fig. 5 and Supplementary Fig. 7, the distribution of length of
emerging ORFs was calculated using bins of 25 codons, grouping those few
between 300 and 650 codons. For sORFs specifically, all instances between 150 and
650 codons were grouped together as long sORFs are extremely rare. The data used
to perform these analyses are shared in Supplementary Data 1 and 4.

We performed empirical simulations to statistically control for ORFs sequence
composition. Scrambling of nucleotide sequences was performed with a custom
Python script, as follows: nucleotide positions of the sequence were randomized
and whenever an in-frame stop codon was formed from the randomization, its 3
positions were randomized again until they did not form a stop codon. Sequences
analyzed in Fig. 5 and Supplementary Fig. 7 were at least 25 codons long. The
scrambled ORFs are listed in Supplementary Data 4.

The multinomial logistic regression presented in Fig. 4e and associated text was
performed using the multinom function of the nnet R package. The simple model
was defined as:

fitness category � emergence statusþ TM content

The complex model was defined as:

fitness category � emergence statusþ TM contentþ emergence status : TM content

The dataset included all 4647 ORFs, classified as adaptive, neutral or deleterious
(fitness_category, response variable). The ORFs are also divided into emerging and
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established (emergence_status, categorical predictor variable) and associated with a
TM content predicted by TMHMM (continuous predictor variable; interpretation
of the results does not change if Phobius predictions are used instead). Coefficient
P-values were calculated using Z-tests. The two models (simple, complex) were
compared based on residual deviance using the anova() R function. Ten-fold cross
validation was performed as follows. The entire dataset was randomly assigned to
ten bins. In each iteration, a bin was excluded to be used as the test set as is. The
other nine bins constituted the training data. To overcome the class imbalance in
our training data, especially with respect to the adaptive class, we over-sampled the
adaptive class to 300 individuals while under-sampling the neutral and deleterious
classes to 300 individuals. In each iteration, both models were trained on these
artificially balanced training sets and then applied to the test set (which had not
been artificially balanced). Mathews Correlation Coefficients were subsequently
calculated for each prediction, based on total False Positives, False Negatives, True
Positives and True Negatives across the three classes (micro-averaging). For
example, False Positives were calculated by summing counts of cases where the
prediction was neutral but the true value was not neutral, cases where the
prediction was adaptive but the true value was not adaptive and cases where the
prediction was deleterious but the true value was not deleterious.

Protein structure analyses. Secondary structure for extant and reconstructed
YBR196C-A homologs was predicted using psiPred101 (Supplementary Fig. 10d).
Since these sequences showed no significant homology with known proteins, an ab
initio prediction server, Robetta50, was used for 3D structure predictions. Trans-
lated sequences for YBR196C-A, YBR-Intermediate and YBR_Initial were used as
an input for ab initio prediction. For YBR196C-A and YBR_Initial, 4 out of 5, and
for YBR-Intermediate 3 out of 5 showed high structural similarity with slight
differences in the conformation of the N and C-terminal (Model 1 for each
sequence is shown in Fig. 7b–d). Ybr196c-a with the predicted TM domain
spanning the membrane and the C-terminal beyond R30R31 outside the mem-
brane was further simulated using molecular dynamics (Supplementary Fig. 11).

We performed molecular dynamics simulations, for which a visual
representation is presented in Supplementary Fig. 11. For these analyses,
membrane simulation inputs were generated using CHARMM-GUI102,103.
Molecular dynamics were run using CHARMM36m104 force field parameters at
303.23 K using Langevin dynamics. The cell box size varied semi-isotropically with
a constant pressure of 1 bar using Monte Carlo barostat. Six-step CHARMM-GUI
protocol for 225 ps was used for equilibration. Particle Mesh Ewald (PME) was
used for periodic boundary conditions (PBC) for evaluation of long-range
electrostatic interactions, Lennard-Jones force-switching function used for van der
Waals (VDW) and electrostatics calculations with nonbonded cutoff 12 Å.
Simulations were run with 2 fs time-step utilizing SHAKE algorithm to constraint
hydrogen bonds. All simulations were run for 200 ns using Ambertools 18105 with
Cuda and first 50 ns were disregarded as equilibration time. DPPC106 was chosen
for building the lipid bilayer as PC is highly abundant in yeast membranes107 and
bilayer thickness of around 37 Å is consistent with that of the ER membrane108.
TIP3P explicit water model, KCl with 0.15M and default water thickness of 17.5 Å
were used. Length of X and Y was taken as 75 Å and DPPC ratio was used 10:10,
resulting in approximately 83 lipid molecules on both leaflets of the membrane.
Terminal group patching applied to N and C terminals of the peptide. The initial
position of the TM region of the peptide was oriented using aligned along the Z
axis. The system built with replacement method and ions added with Ion Placing
method of “distance”. Visual Molecular Dynamics109 and PyMol110 version 1.8
were used for analysis and visualization of the trajectories.

Probing the TM propensity of Ybr196c-a and homologs. Membrane association
assay111 (Fig. 6c) were performed as follows. Yeast strain ARC0011 transformed
with C-terminally EGFP-tagged YBR196C-A ORF expressed from the GAL10pr
(see in Supplementary Table 2) were grown to an optical density (OD 600 nm) of
1.0. Fifty OD600 units of cells were harvested by centrifugation and pellets were
frozen in liquid nitrogen and stored at −80 °C. Cells were resuspended in lysis
buffer [20 mM HEPES, (pH 7.4), 50 mM KOAc, 2 mM EDTA, 1 mM DTT, and
0.1M sorbitol plus protease inhibitors (Complete Mini, EDTA-free, Roche)], glass
beads were added and agitated on a Disruptor Genie four times for 30 s each with
1 min intervals of recovery between each pulse at 4 °C. Lysates were placed in a
clean tube and cleared of unbroken cells by two centrifugations at 3000g for 3 min.
The resulting lysate was split into three equal volumes and membranes were pel-
leted by centrifugation at 21,100g for 20 min at 4 °C. Supernatant and pellet
fractions were maintained from one spin and are denoted as S1 and P1, respec-
tively. The remaining two membrane pellets were washed with lysis buffer and
recollected by centrifugation at 21,100 x g for 20 min at 4 °C. The pellet from
sample 2 was resuspended and mock-treated with lysis buffer while the pellet from
sample 3 was resuspended and treated with lysis buffer supplemented with 6M urea
for 15 min at 4 °C. Pellets from samples 2 and 3 were recollected by centrifugation
and separated as P2 and P3 from their supernatants, S2 and S3, as above. Each
sample was TCA precipitated with 1/10 volume of 50% TCA and incubated on ice
for 20 min followed by centrifugation at 12,000 x g for 5 min. Precipitated protein
was resuspended in 50 μl of SDS/Urea sample buffer [8M Urea, 200 mM Tris-HCl
(pH 6.8), 0.1 mM EDTA pH 8.0, 100 mM DTT, and 100 mM Tris base], incubated
at 37 °C for 10 min and centrifugation at 12,000 x g for 2 min prior to analyses via

SDS-PAGE and immune-blotting. Immunoblots were probed with anti-GFP (sc-
9996, Santa Cruz Biotechnology, Inc.), anti-Pdi1 (ab4644, Abcam), and anti-
Sec61112 primary antibodies and either goat-anti-mouse or goat-anti-rabbit IRDye-
conjugated florescent secondary antibodies (LI-COR, Lincoln, Nebraska) before
imaging on a LI-COR Clx Infrared Imaging system. Primary uncropped blots are
provided in the Source Data file.

Carbonate membrane extraction113,114 was conducted as well (Fig. 6d). The
same strain background, plasmid transformations, growth conditions, initial cell
harvesting and cell lysis methods were used as described above for the membrane
association assay. Lysates cleared from unbroken cells were split into 3 equal
volumes, and membranes were pelleted by centrifugation at 21,100g for 20 min at 4
°C. The membrane pellets were resuspended in 30 μl of buffer 88 [20 mM HEPES
(pH 6.8), 150 mM potassium acetate, 5 mM magnesium acetate, 250 mM sorbitol
and the protease inhibitors described above] and treated with either (1) 500 μl lysis
buffer, (2) 500 μl lysis buffer with 0.1M Na2CO3, or (3) 500 μl lysis buffer with 1%
SDS. Samples were incubated on ice for 30 min and subjected to centrifugation at
100,000g for 1 h at 4 °C. The supernatant was removed and set aside for TCA
precipitation, while the pellet was resuspended in 500 μl of the appropriate buffer
(1, 2, or 3 as listed earlier). Each sample was next TCA precipitated, resuspended,
analyzed by SDS-PAGE and immunoblotting with antibodies as described for the
membrane association assay above. Primary uncropped blots are provided in the
Source Data file.

Cellular localization (Figs. 6a, b, 8; Supplementary Figs. 8, 9) was determined
using yeast transformed with C-terminally, EGFP-tagged ORFs (see Supplementary
Table 2) expressed from the GAL10pr and imaged using a Nikon (Tokyo) Eclipse
Ti inverted swept-field confocal microscope (Prairie Instruments, Middleton, WI)
equipped with an Apo100x (NA 1.49) objective. Pre-cultures were made in SC-
URA+GLU+G418 and then transferred to SC-URA+GAL+G418 for 24 h,
prior to imaging. Images were acquired using an electron-multiplying charge
coupled device camera (iXon3; Andor, Belfast, United Kingdom) and Nikon NIS-
Elements software was used to manipulate image acquisition parameters and post-
acquisition processing was done using this same software, ImageJ (National
Institutes of Health) and Photoshop (Adobe Systems Inc., San Jose, CA). An
unsharp mask was applied in Photoshop to all images. Co-localization of EGFP-
tagged emerging ORFs with subcellular membrane-bound organelles was assessed
using mCherry-Scs2-TM as an ER-localized marker (Supplementary Table 2),
Sec13-RFP as a ER-Golgi marker (Supplementary Table 2), Pex3-RFP as a
peroxisomal marker (Supplementary Table 2), MitoTrackerTM Red CMXRos
(Thermo Fisher Scientific, Waltham, MA) mitochondrial superoxide indicator
as a mitochondrial marker, and CellTracker Blue CMAC (7-amino-4-
chloromethylcoumarin) dye (Life Technologies, Carlsbad, CA) as a vacuole lumen
marker. Cells were incubated with 0.1 μMMitoTracker Red CMXRos for 20 min or
100 μM of CMAC blue for 15 min for mitochondrial or vacuolar staining,
respectively, prior to imaging94. For YBR196C-A and YAR035C-A, we verified that
the EGFP signal was generated by our plasmid construct by visualizing the
mCherry-Scs2-TM, Sec13-RFP and Pex3-RFP strains in SC+GAL+G418 after a
pre-culture in SC+GLU+G418.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated/analyzed in this study are available in the main text, in
the Supplementary Figs. and Tables and as Supplementary Data files. All supplementary
data are also on github: https://github.com/annerux/AdaptiveTMproto-genes. The source
data underlying Fig. 6c, d are provided as a Source Data file. Strains are available from the
corresponding authors upon reasonable request.

Code availability
Image processing and relative fitness estimations are available at: https://github.com/
bbhsu/protogene-analysis. Synteny analyses are available at: https://github.com/oacar/
synal. Other analyses are available at: https://github.com/annerux/AdaptiveTMproto-
genes.
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