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Abstract 

Networks of genes, proteins, and cells exhibit significant multiscale organization, with           

distinct communities appearing at different spatial resolutions. Here, we apply the concept            

of ‘persistent homology’ to identify network communities that persist within defined scale            

ranges, yielding a hierarchy of robust structures in data. Application to mouse single-cell             

transcriptomes significantly expands the catalog of cell types identified by current tools,            

while analysis of SARS-COV-2 networks suggests pro-viral hijacking of WNT. 

 

 

 

 

  

2 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 18, 2020. . https://doi.org/10.1101/2020.06.16.151555doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.151555
http://creativecommons.org/licenses/by/4.0/


 

Significant patterns in data often become apparent only when looking at the right scale. For               

example, single-cell RNA sequencing data can be clustered coarsely to identify large groupings of              

cells (e.g. general germ layers), or analyzed more sharply to identify compact cell communities              

delineating specific subtypes (e.g. pancreas islet β-cells, thymus epithelium)​1​. Likewise,          

protein-protein interaction networks can inform cellular structures spanning a wide range of spatial             

dimensions, from protein dimers (e.g. leucine zippers) to larger complexes of dozens or hundreds              

of subunits (e.g. proteasome, nuclear pore) to entire organelles (e.g. centriole, mitochondria)​2​.            

Many different approaches have been devised or applied to detect structures in biological data,              

including standard clustering, network community detection, and low-dimensional data         

projection ​3–5​, some of which can be tuned for sensitivity to objects of a certain size or scale                 

(so-called ‘resolution parameters’)​6,7​. Even tunable algorithms, however, face the dilemma that the            

particular scale(s) at which the significant biological structures arise are typically unknown in             

advance. 

Guidelines for detecting robust patterns across scales come from the field of topological             

data analysis, which studies the geometric "shape" of data using tools from algebraic topology and               

pure mathematics​8​. A fundamental concept in this field is “persistent homology”​9​, the idea that the               

core structures intrinsic to a dataset are those that persist across different scales. Recently, this               

concept has begun to be applied to biological networks​10,11​. Here, we sought to integrate concepts               

from persistent homology with existing algorithms for network community detection, resulting in a             

fast and practical multiscale approach we call the ​Hi ​erarchical community ​De ​coding ​F​ramework            

(HiDeF).  

HiDeF works in the three modular phases to analyze the structure of a biological network               

(​Methods ​). The first phase detects network communities, which are identified continually as the             

spatial resolution is scanned, producing a comprehensive pool of candidates across all scales of              
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analysis (​Fig. 1a​). Second, candidate communities arising at different resolutions are pairwise            

aligned to identify those that have been redundantly identified and are thus ​persistent (​Fig. 1b ​).               

Third, persistent communities are analyzed to identify cases where a community is fully or partially               

contained within another (typically larger) community, resulting in a hierarchical assembly of nested             

and overlapping biological structures embedded in the network data (​Fig. 1c​). ​HiDeF is              

implemented as a Python package and can be accessed interactively in the Cytoscape network                           

analysis and visualization environment​12​ (​Code and data availability ​).  

We first explored the idea of measuring community persistence ​via analysis of synthetic             

networks​13 in which ​communities were simulated and embedded at two different scales                    

(​Supplementary Fig. 1a ​; ​Methods ​). Notably, the communities determined to be most persistent                    

by HiDeF were found to accurately recapitulate the simulated communities at the two scales                           

(​Supplementary Fig. 1b-g ​). In contrast, applying community detection algorithms at a fixed            

resolution had limited capability to capture both scales of simulated structures simultaneously            

(​Supplementary Fig. 2; Methods ​).  

We next evaluated whether persistent community detection improves the characterization                   

of cell types. We applied HiDeF to detect robust nested communities within cell-cell similarity                           

networks based on the mRNA expression profiles of 100,605 single cells gathered across the                           

organs and tissues of mice (obtained from the ​Tabula Muris ​project​14​; ​Methods​). These cells had                             

been annotated with a controlled vocabulary of cell types from the Cell Ontology (CO)​15​, ​via                             

analyses of cell-type-specific expression markers​14​. We used groups of cells sharing the same                         

annotations to define a panel of 81 reference cell types and measured the degree to which each                                 

reference cell type could be recapitulated by a HiDeF community of cells (​Methods​). We                           

compared these results to TooManyCells​16 and Conos​17​, two recently developed methods that                       

generate nested communities of single cells in divisive and agglomerative manners, respectively                       
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(​Methods ​). Reference cell types tended to better match communities generated by HiDeF than                         

those of other approaches, with 65% (54/81) having a highly overlapping community (Jaccard                         

index > 0.5) in the HiDeF hierarchy (​Fig. 2a,b​). This favorable performance was observed                           

consistently when adjusting HiDeF parameters to ​formulate a simple hierarchy, containing only the                   

strongest structures, or a more complex hierarchy including additional communities that are less             

persistent but still significant ​(​Fig. 2c​)​. 

The top-level communities in the HiDeF hierarchy corresponded to broad cell lineages                       

such as “T cell”, “B cell”, and “epidermal cell”. Finer-grained communities mapped to more                           

specific known subtypes (​Fig. 2d ​) or, more frequently, putative new subtypes within a lineage. For                             

example, “epidermal cell” was split into two distinct epidermal tissue locations, skin and tongue;                           

further splits suggested the presence of still more specific uncharacterized cell types (​Fig. 2e​).                           

HiDeF communities also captured known cell types that were not apparent from 2D visual                           

embeddings (​Supplementary Fig. 3a,b ​), and also suggested new cell-type combinations. For                     

example, astrocytes were joined with two communities of neuronal cells to create a distinct cell                             

type not observed in the hierarchies of TooManyCells​16​, Conos​17​, or a two-dimensional data                         

projection with UMAP​18 (​Fig. 2f ​, Supplementary Fig. 3c ​). This community may correspond to the                           

grouping of a ​presynaptic neuron, postsynaptic neuron, and a surrounding astrocyte within a                         

so-called “tripartite synapse”.  

Next, we applied HiDeF to analyze protein-protein interaction networks, with the goal of             

characterizing protein complexes and higher-order protein assemblies spanning spatial scales. We           

benchmarked this task by the agreement between HiDeF communities and the Gene Ontology             

(GO)​19​, a database that manually assigns proteins to cellular components, processes, or functions             

based on curation of literature (​Methods​). Application to protein-protein interaction networks from            

budding yeast and human found that HiDeF captured knowledge in GO more significantly than              
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previous pipelines proposed for this task, including the NeXO approach to hierarchical community             

detection ​20 and standard hierarchical clustering of pairwise protein distances calculated by two            

recent approaches​21,22​ (​Fig. 3a,b ​;​ Supplementary Figs. 4,5 ​;​ Methods ​). 

We also applied HiDeF to analyze a collection of 27 human protein interaction                         

networks​23,24​. ​W​e found ​significant differences in the distributions of community sizes across these                       

networks, loosely correlating with the ​different measurement approaches used to generate each                 

network​. ​For example ​, BioPlex 2.0, a network characterizing biophysical protein-protein                  

interactions b​y affinity-purification mass-spectrometry (AP-MS)​25​, ​was dominated by small              

communities ​of ​10-50 proteins​, whereas a network based on ​mRNA coexpression ​26 ​tended                   

towards larger-scale communities of >50 proteins. In the middle of this spectrum, ​the ​STRING                          

network, which integrat​ed ​bio ​physical protein interactions and gene co-expression with a variety                       

of other features​27​, contained both small and large communities (​Fig. 3​c​). In consistent with the                         

observation above, ​the hierarchy of BioPlex has a relatively shallow shape in comparison to that of                             

STRING​, in which communities across many scales formed a deep hierar​chy (​Fig. 3​d,e ​). ​In                 

contrast to clustering frameworks, ​HiDeF recognizes when ​a community is contained by multiple                   

parent communities, which in the context of protein-protein networks suggests that the                       

community participates in diverse (pleiotropic) biological functions. For example, a community                     

corresponding to the MAPK (ERK) pathway participated in multiple larger communities, including                       

RAS ​and RSK pathways, sodium channels, and actin capping, consistent with the central roles of                             

MAPK signaling in ​these distinct biological processes​28 (​Fig. 3​f​). The hierarchies of protein                        

communities identified from each of these networks have been made available as a resource in                             

the NDEx database​29​ (​Code and data availability ​). 

To explore multiscale data analysis in the context of an urgent public health issue, we                             

considered a recent application of AP-MS that characterized interactions between the 27                       
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SARS-COV-2 viral subunits and 332 human host proteins​30​. We used network propagation to                         

select a subnetwork of the BioPlex 3.0 human protein interactome​31 proximal to these 332                           

proteins (1948 proteins and 22,835 interactions) and applied HiDeF to identify its community                         

structure (​Methods​). Among the 252 persistent communities identified (​Supplementary Fig. 6​),                     

we noted one consisting of human ​Transducin-Like Enhancer (TLE) family proteins, ​TLE1, TLE3,                    

and TLE5, which interacted with SARS-COV2 Nsp13, a highly conserved RNA synthesis protein in                           

corona and other nidoviruses (​Fig. 3g​)​32​. TLE proteins are well-known inhibitors of the Wnt                           

signaling pathway​33​. ​Inhibition of WNT, in turn, has been shown to reduce coronavirus replication ​34                           

and recently proposed as a COVID-19 treatment​35​. If interactions between Nsp13 and TLE                         

proteins can be shown to facilitate activation of WNT, TLEs may be of potential interest as drug                                 

targets. 

Community persistence provides a basic metric for distilling biological structure from data,            

which can be tuned to select only the strongest structures or to include weaker patterns that are                 

less persistent but still significant. This concept applies to diverse biological subfields, as             

demonstrated here for single cell transcriptomics and protein interaction mapping. While these            

subfields currently employ very different analysis tools which largely evolve separately, it is             

perhaps high time to seek out core concepts and broader fundamentals around which to unify               

some of the ongoing development efforts. ​To that effect, the methods explored here have wide                       

applicability to analyze ​the multiscale organization of many other biological systems, including               

those related to chromosome organization, the microbiome and the brain.  
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ONLINE CONTENT 

Methods 

Overview of the approach 

Consider an undirected network graph , representing a set of biological ​objects (vertices) and a     G           
set of ​similarity relations between these objects (edges). Examples of interest include networks of              
cells, where edges represent pairwise cell-cell similarity in transcriptional profiles characterized by            
single-cell RNA-seq, or networks of proteins, where edges represent pairwise protein-protein           
biophysical interactions. We seek to group these objects into ​communities (subsets of objects) that              
appear at different scales and identify approximate ​containment relationships among these           
communities, so as to obtain a hierarchical representation of the network structure. The workflow is               
implemented in three phases. Phase I identifies communities in at each of a series of spatial         G         
resolutions . Phase II identifies which of these communities are ​persistent by way of a γ               
pan-resolution ​community graph , in which vertices represent communities, including those   GC         
identified at each resolution, and each edge links pairs of similar communities arising at different               
resolutions. Persistent communities correspond to large components in . Phase III constructs a        GC      
final hierarchical structure that represents containment and partial containment relationships   H         
(directed edges) among the persistent communities (vertices).  

 

Phase I: Pan-resolution community detection 

Community detection methods generally seek to maximize a quantity known as the ​network             
modularity​, as a function of community assignment of all objects​36​. A ​resolution parameter             
integrated into the modularity function can be used to tune the scale of the communities               
identified ​7,37,38​, with larger/smaller scale communities having more/fewer vertices on average (​Fig.           
1a​). Of the several types of resolution parameter that have been proposed, we adopted that of the                 
Reichardt-Bornholdt configuration model ​37​, which defines the generalized modularity as: 
 

 

where defines a mapping from objects in to community labels; is the degree of vertex ;        G     ki       i  
is the total number of edges in ; is the resolution parameter; indicates that verticesm         G  γ      (i, j)δ      

and are assigned to the same community by ; and is the adjacency matrix of . ​Toi   j            A       G   

determine we use the extended Louvain algorithm implemented in the Python package             
louvain-igraph (​http://github.com/vtraag/louvain-igraph ​; version 0.6.1). Values of are sampled      γ    
logarithmically between lower and upper bounds and at a minimum density such that for      γmin   γmax         
all  there exist at least 10 nearby  satisfying:γ γ′  
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Two values satisfying the above formula are defined as -​proximal​. The sampling step, which γ          γ      
was practically set to 0.1 to sufficiently capture the interesting structures in the data; it is                
conceptually similar to the Nyquist sampling frequency in signal processing ​39​. We used =            γmin   
0.001, which we found always resulted in the theoretical minimum number of communities, equal to               
the number of connected components in . We used ​= 25 for single-cell data (​Fig. 2​,      G    γmax         
Supplementary Fig. 3 ​) and ​= 50 for simulated networks (​Supplementary Figs. 1,2​) and    γmax           
protein interaction networks (​Fig. 3​, Supplementary Figs. 4-6 ​). Performing Louvain community           
detection at each over this defined progression of values resulted in a set of communities at   γ                
each .γ   

 

Phase II: Identification of persistent communities 

To identify persistent communities, we define the pairwise similarity between any two communities             
 and  as the Jaccard similarity of their sets of objects, and :a b (a) s (b)s   

 

Pairwise community similarity is computed only for pairs of communities identified at two different              
-proximal resolution values, as communities within a resolution do not overlap. To representγ              

these similarities, we define a ​pan-resolution ​community graph , in which vertices are        GC      
communities identified at any resolution and edges connect pairs of similar communities having             

. Each component of defines a family of similar communities spanning resolutions,(a, b) τJ  >      GC          
for which the ​persistence can be naturally defined by the number of distinct values covered by             γ     
the component. For each component in larger than a persistence threshold , the biological      GC       χ    
objects participating in more than % of communities represented by the vertices of that     p          
component define a ​persistent community.  

 

Phase III: A hierarchy of nested and overlapping communities 

We initialize a hierarchical structure represented by , a directed acyclic graph (DAG) in which       H         
each vertex represents a persistent community. A ​root ​vertex is added to represent the community               
of all objects. The containment relationship between two vertices, and , is quantified by the         v   w      
containment index​ (​CI​): 

 

which measures the fraction of objects in shared with . An edge is added from to in if       w    v       v   w   H   
is larger than a threshold ( is -contained by ). Since for all (aI(v, )C w       σ  w   σ   v   (v, w)  J  < τ   ,v w   

property established by the procedure for connecting similar communities in phase II), setting             
guarantees to be acyclic. In practice we used a relaxed threshold which τ /(1 )σ ≥ 2 + τ   H             τ ,σ =    

we found generally maintains the acyclic property but includes additional containment relations. In             
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the (in our experience rare) event that cycles are generated in , i.e. and           H   I(v, ) C w ≥ τ   I(w, ) C v ≥
, we add a new community to , the union of  and , and remove  and  from .τ H v w v w H  

Finally, redundant relations are removed by obtaining a transitive reduction ​40 of , which           H   
represents the hierarchy returned by HiDeF describing the organization of communities. The            
biological objects assigned to each community are expanded to include all objects assigned to its               
descendants. Throughout this study, we used the parameters = 0.75, = 5, = 75. Generally,        τ   χ    p     
we observed that the conclusions drawn in this study were robust to this choice of parameters                
(​Supplementary​ ​Fig. 5 ​).  

 

Simulated benchmark networks 

Simulated network data were generated using the Lancichinetti–Fortunato–Radicchi (LFR)         
method ​13 (​Supplementary Figs. 1,2 ​). We used an available implementation (LFR benchmark           
graphs package 5 at ​http://www.santofortunato.net/resources​) to generate benchmark networks         
with two levels of embedded communities, a coarse-grained (macro) level and a fine-grained             
(micro) level. Within each level, a vertex was exclusively assigned to one community. Two              
parameters, 𝜇​c and 𝜇​f​, were used to define the fractions of edges violating the simulated community                
structures at the two levels. All other edges were restricted to occur between vertices assigned to                
the same community (​Supplementary Fig. 1a​). We fixed other parameters of the LFR method to               
values explored by previous studies​7​. In particular, ​N = 1000 (number of vertices), ​k = 10 (average                 
degree), ​maxk = 40 (maximum degree), ​minc = 5 (minimum number of vertices for a               
micro-community), ​maxc = 20 (maximum number of vertices for a micro-community), ​minC = 50              
(minimum number of vertices for a macro-community), ​maxC = 100 (maximum number of vertices              
for a macro-community), ​t​1 = 2 (minus exponent for the degree sequence), ​t​2 = 1 (minus exponent                 
for the community size distribution). The numbers of coarse-grained communities and fine-grained            
communities in each simulated network were approximately bounded by ​minC​, ​maxC​, ​minc and             
maxc (10-20 and 50-200, respectively), and the sizes of communities within each level were set to                
be close to each other (as ​t​2​ = 1).  

Some community detection algorithms include iterations of local optimization and vertex           
aggregation, a process that, like HiDeF, also defines a hierarchy of communities, albeit as a tree                
rather than a DAG. We demonstrated that without scanning multiple resolutions, this process alone              
was insufficient to detect the simulated communities at all scales (​Supplementary Fig. 2​). We              
used Louvain and Infomap ​41,42​, which have stable implementations and have shown strong            
performance in previous community detection studies​43​. For Louvain, we optimized the standard            
Newman-Girvan modularity (equivalent to , see above) using the implementation at   γ = 1        
http://github.com/vtraag/louvain-igraph ​. For Infomap, we used the version 1.0.0-beta.47, and set          
‘Markov time’ (the ‘resolution parameter’ of Infomap) to 1 and other parameters to default. In               
general, these settings generated trees with two levels of communities. Note that Infomap             
sometimes determined that the input network was non-hierarchical, in which cases the coarse- and              
fine-grained communities were identical by definition. 
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Single-cell RNA-seq data 
Mouse single-cell RNA-seq data (​Fig. 2​) were obtained from the ​Tabula Muris project​14​,             
(​https://tabula-muris.ds.czbiohub.org/​), which contains two datasets generated with different        
experimental methods of separating bulk tissues into individual cells: FACS and microfluidic            
droplet. We applied HiDeF to the shared nearest neighbor graph parsed from the data files (R                
objects) provided in that study, focusing analysis on the FACS dataset. The same analysis of the                
droplet dataset supported the same conclusion (data not shown). Application of HiDeF to this              
dataset generated a hierarchy of 273 communities (​Fig. 2d​). ScanPy 1.4.5 ​44 was used to create               
tSNE or UMAP embeddings and associated two-dimensional visualizations​18 as baselines for           
comparison (​Fig. 2e,f​; Supplementary Fig. 3a,b ​). Through previous analysis of the single-cell            
RNA data, all cells in these datasets had been annotated with matching cell-type classes in the                
Cell Ontology (CO)​15​. Before comparing these annotations with the communities detected by            
HiDeF, we expanded the set of annotations of each cell according to the CO structure, to ensure                 
the set also included all of the ancestor cell types of the type that was annotated. For example, CO                   
has the relationship “[keratinocyte] (is_a) [epidermal_cell]”, and thus all cells annotated as            
“keratinocyte” are also annotated as “epidermal cell”. The CO was obtained from            
http://www.obofoundry.org/ontology/cl.html and processed by the Data Driven Ontology Toolkit         
(DDOT)​45​ retaining “is_a” relationships only. 

We compared HiDeF to TooManyCells​16 and Conos​17 as baseline methods. The former is a                           
divisive method which iteratively applies bipartite spectral clustering to the cell population until the                           
modularity of the partition is below a threshold; the latter uses the Walktrap algorithm to                             
agglomeratively construct the cell-type hierarchy​46​. ​TooManyCells (version 0.2.2.0) was run with                
the parameter ​“​min-modularity​” set to 0.025 as recommended in the original paper​16​, ​with other              
settings set to default. This process generated dendrograms (binary trees) with 463 communities.             
The Walktrap algorithm was run from the Conos package (version 1.2.1) with the parameter “step”               
set to 20 as recommended in the original paper​17​, yielding a dendogram. The ​greedyModularityCut              
method in the Conos package was used to select ​N fusions in the original dendrogram, resulting in                 
a reduced dendrogram with 2 ​N​+1 communities (including ​N internal and N+1 leaf nodes). Here we               
used ​N​ = 125, generating a hierarchy with 251 communities (​Fig. 2c​).  

The communities in each hierarchy were ranked to analyze the relationships between            
cell-type recovery and model complexity (​Fig. 2c​). HiDeF communities were ranked by their             
persistence; Conos and TooManyCells were ranked according to the modularity scores those            
methods associate with each branch-point in their dendrograms. Conos/Walktrap uses a score            
based on the gain of modularity in merging two communities, whereas TooManyCells uses the              
modularity of each binary partition.  

 

Protein-protein interaction networks 

We obtained a total of 27 human protein interaction networks gathered previously by survey              
studies​23,24​, along with one integrated network from budding yeast (​S. cerevisiae​) that had been              
used in a previous community detection pipeline, NeXO​20​. This collection contained two versions of              
the STRING interaction database, with the second removing edges from text mining (labeled             
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STRING-t versus STRING, respectively; ​Fig. 3 ​). Benchmark experiments for the recovery of the             
Gene Ontology (GO) were performed with STRING and the yeast network (​Fig. 3a,b​,             
Supplementary Fig. 4 ​). The reference GO for yeast proteins was obtained from            
http://nexo.ucsd.edu/​. A reference GO for human proteins was created by the DDOT package ​45​. 

HiDeF was directly applied to all of the above benchmark networks. The NeXO             
communities were obtained from ​http://nexo.ucsd.edu/​, with a robustness score assigned to each            
community. To benchmark communities created by hierarchical clustering, we first calculated two            
versions of pairwise protein distances (HC.1 and HC.2; ​Fig. 3a,b; Supplementary Fig. 4 ​) using              
Mashup and DSD​21,22​. Mashup was used to embed each protein as a vector, with 500 and 800                 
dimensions for yeast and human, as recommended in the original paper​21​. A pairwise distance was               
computed for each pair of proteins as the cosine distance between the two vectors. DSD generates                
pairwise distances by default. Given these pairwise distances, UPGMA clustering was applied to             
generate binary hierarchical trees. Following the procedure given in the NeXO and Mashup             
papers​20,21​ communities with <4 proteins were discarded.  

Since all methods had slight differences in the resulting number of communities,            
communities from each method were sorted in decreasing order of score, enabling comparison of              
results across the same numbers of top-ranked communities. HiDeF communities were scored by             
persistence. NeXO communities were scored by the robustness value assigned to each community             
in the original paper​20​. To score each community ​c ​of hierarchical clustering (branch in the               
dendrogram), a one-way Mann-Whitney U-test was used to test for significant differences between             
two sets of protein pairwise distances: (set 1) all pairs consisting of a protein in ​c and a protein in                    
the sibling community of ​c​; (set 2) all pairs consisting of a protein in each of the two children                   
communities of ​c​. The communities were sorted by the one-sided p-value of significance that              
distances in set 1 are greater than those in set 2.  

 

Analysis of SARS-COV-2 viral-human protein network 

332 human proteins identified to interact with SARS-COV-2 viral protein subunits were obtained             
from a recent study​30​. This list was expanded to include additional human proteins connected to               
two or more of the 332 virus-interacting human proteins in the BioPlex 3.0 network​31​. These               
operations resulted in a network of 1948 proteins and 22,835 interactions. HiDeF was applied to               
this network with the same parameter settings as for other protein-protein interaction networks (see              
previous ​Methods sections), and enrichment analysis was performed via g:Profiler​47 (​Fig. 3f;            
Supplementary Fig. 6 ​).  

 

Code and data availability 

HiDeF is available through CDAPS (Community Detection APplication and Service), which enables            
simultaneous visualization of the hierarchical model and the underlying network data and is             
integrated with the Cytoscape visualization and analysis environment. The Cytoscape App can be             
downloaded at: ​http://apps.cytoscape.org/apps/cycommunitydetection ​. 
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HiDeF is separately available as a Python package: ​https://github.com/fanzheng10/HiDeF​.  

The hierarchical models generated in this study can be obtained as a network collection within the 
Network Data Exchange (NDEx) database ​29​: 
http://www.ndexbio.org/#/networkset/9460f0d2-ac0b-11ea-aaef-0ac135e8bacf​. These models 
include the hierarchy of murine cell types (​Fig. 2​), the hierarchies of yeast and human protein 
communities identified through protein network analysis (​Fig. 3​), and the hierarchy of human 
protein complexes targeted by SARS-COV2 (​Supplementary Fig. 6​). 
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Figures 

 

Fig. 1. Identification of persistent communities with HiDeF. a, Increasing the spatial resolution             
generally increases the number of communities and decreases the average community size. ​b,             
Pan-resolution community detection yields a candidate pool of communities. Communities that are            
robustly identified across a wide range of resolutions are considered persistent and retained. ​c, Set               
containment analysis is used to define the relationships between communities, leading to ​d, the              
final hierarchical model, in which vertices of increasing depths from the root represent communities              
of increasingly high resolutions. 
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Fig. 2. A hierarchy of mammalian cell types from single-cell transcriptomes. a-b, ​Recovery of              
reference cell types by HiDeF (y axis) in comparison to Conos​17 or TooManyCells​16 (x axis of                
panels a or b, respectively). For each reference cell type (points), the extent of recovery is                
measured as the maximum Jaccard similarity of the set of reference cells with those of any                
detected community. ​c, Percentages of reference cell types recovered (Jaccard similarity > 0.5)             
among the top ​N ranked cell communities. Communities are ranked in the descending order of               
score for each community detection tool (​Methods​). ​d, Hierarchy of 273 putative mouse cell types               
identified by HiDeF. Vertices are cell communities, with color gradient indicating the extent of the               
optimal match (Jaccard similarity) to a reference cell type. Selected matches to reference cell types               
are labeled. Gray regions indicate sub-hierarchies (epidermal cells, astrocytes/neurons, and          
hepatocytes) related to subsequent panels and other figures (​Supplementary Fig. 3​). ​e​, Epidermal             
cell communities. Left: UMAP 2D projection of all cells, with epidermal cells highlighted in dark               
blue. Middle: Sub-hierarchy of epidermal cell communities as determined by HiDeF. Right:            
Correspondence between the UMAP projection and the sub-hierarchy, with colors marking the            
same cell populations across the two representations. ​f, Astrocyte and neuron communities. Left:             
UMAP 2D projection of all cells, with astrocytes and neurons highlighted in dark blue. Middle:               
Sub-hierarchy of astrocyte and neuron communities as determined by HiDeF. Cells in the three              
small communities are highlighted in the below UMAP projections. Right: Broader UMAP context             
with cells colored and labeled as per the original ​Tabula Muris​ analysis​14​. 
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Fig. 3. Hierarchical community structure of protein networks. ​a-b​, Percent recovery of cellular             
components documented in GO by four community detection methods (colored traces) versus            
number of top communities examined. A community is said to recover a cellular component if               
Jaccard similarity > 0.1 for the two sets of proteins. Communities ranked in descending order of                
score for each community detection tool (​Methods​). A yeast network​20 and the human STRING              
network​27 were used as the inputs of ​a and ​b​, respectively. HC.1 and HC.2 represent UPGMA                
hierarchical clustering of pairwise distances generated by the Mashup and DSD tools​21,22​,            
respectively. ​c, Distributions of community sizes (x-axis, number of proteins) for three human             
protein networks: BioPlex 2.0 ​25​, Coexpr-GEO​26​, and STRING​27​. ​d, Community hierarchies identified           
for BioPlex 2.0 (upper) or STRING (lower) databases. Vertex sizes and colors indicate the number               
of proteins in the corresponding communities. ​e, Twenty-seven public databases of protein-protein            
interaction networks were analyzed by HiDeF and profiled by the maximum depths of their resulting               
hierarchies (y axis), which do not correlate with their total sizes (numbers of proteins, x axis;                
numbers of edges, color bar). ​f, Convergence of communities into multiple super-systems. A             
community of mitogen-activated protein kinases and dual-specificity phosphatases (purple, center)          
participates in three distinct larger communities involving separate functions related to RAS            
pathways (green), sodium channels (pink), and acting capping (blue). The corresponding           
hierarchical relationships of these communities are depicted at lower right. The source network is              
Reactome ​48​. ​g, ​A community of interacting human proteins targeted by the SARS-COV-2 viral             
protein Nsp13 (​Methods​). Direct interactors of Nsp13 (TLE1, TLE3, TLE5) are shown in orange.  
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Supplementary Fig. 1. Exploring simulated networks. a, ​The LFR generative model was used             
to simulate networks with 1000 vertices and average degree 10 (​Methods​). The simulation             
included two layers of communities, “coarse” (10-20 communities, 50-100 vertices per community)            
and “fine” (25-200 communities, 5-40 vertices per community), with each fine community nested             
within a coarse community. Two “mixing parameters” 𝜇​c and 𝜇​f controlled the amount of noise, by                
setting the fraction of edges violating the coarse and fine community structures, respectively. ​b-d,              
HiDeF analysis of three simulated networks created with different mixing parameters: low balanced             
noise (b); increased noise in fine communities (c); and increased noise in coarse communities (d).               
Each plot shows the number of identified communities (y axis) as the resolution is progressively               
scanned (x axis). The number of communities increases with the resolution parameter, with             
plateaus matching the actual numbers of coarse and fine communities in the simulated network              
(dashed lines). Note that the sizes of the plateaus (i.e. the extent of community “persistence”, see                
text) are affected by the mixing parameters. ​e-g​, Companion plots to panels (b-d). Points represent               
identified communities, delineated by size (y axis) and persistence (x axis). Blue/gray point colors              
indicate a match/non-match to a true community in the simulated network (Jaccard similarity >              
0.75). Note that when noise is low (e), the highest persistence communities correctly recover              
simulated communities with near-perfect accuracy, e.g. for persistence threshold >20.  
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Supplementary Fig. 2. Comparison of methods in recovery of simulated communities. ​HiDeF            
is compared with the Louvain and Infomap algorithms​41,42​, with Louvain and Infomap fixed at their               
default single resolutions (​Methods​). The three precision-recall plots (​a-c​) compare the           
performance of the three algorithms in recovering simulated communities at different settings of the              
coarse/fine mixing parameters (see Supplementary Fig. 1). The communities returned by HiDeF            
are ordered by persistence to produce a precision-recall curve of community recovery (blue,             
Jaccard similarity > 0.75), whereas Louvain and Infomap generate results with fixed precision and              
recall (green and orange points, respectively). The results for 20 simulated networks are overlaid              
on the same plots. 

 

  

24 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted June 18, 2020. . https://doi.org/10.1101/2020.06.16.151555doi: bioRxiv preprint 

https://paperpile.com/c/ZwJR03/eZJe+Zd6p
https://doi.org/10.1101/2020.06.16.151555
http://creativecommons.org/licenses/by/4.0/


 

 

Supplementary Fig. 3. Example cell types captured by HiDeF but not by other approaches.              
a, t-SNE projection of all cells, with the epidermal cell type highlighted (blue). ​b, ​UMAP projection                
of all cells, with the hepatocyte cell type highlighted (blue). ​c​. Distances between astrocyte and               
neuron communities in the cell-type hierarchies generated by HiDeF, Conos, or TooManyCells.            
HiDeF identifies a specific super-community joining both cell types (<1000 cells), whereas such a              
specific community is not identified by Conos and TooManyCells. 
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Supplementary Fig. 4. Recovery of GO terms from community detection in protein networks.             
HiDeF and alternative methods were applied to build a hierarchy of protein communities from              
analysis of an integrated protein interaction network for budding yeast (Top: NeXO) or human              
(Bottom: STRING). The hierarchy of each method (colors) is scored by its recovery of GO terms                
(Jaccard similarity > 0.1; Left: Biological Process; Right: Molecular Function) as a function of the               
number of top-scoring protein communities examined. HC, Hierarchical Clustering based on either            
of two protein pairwise distance functions (Mashup and DSD)​21,22​.  
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Supplementary Fig. 5. Robustness of GO term recovery to the choice of parameters. ​a​,              
Using the performance analysis depicted in Fig. 3b, the Area Under Curve (AUC) was computed               
for different sets of HiDeF parameters (​p​, 𝜏). This AUC was compared to that of HC.1 (hierarchical                 
clustering of pairwise distances generated by Mashup ​21​) to generate an equal number of             
communities (​Methods​). Note the ratio HiDeF AUC / HC.1 AUC is always higher than 1, indicating                
that the favorable performance of HiDeF is robust to parameter choice. As per Fig. 3b, the analysis                 
was undertaken using the STRING network and the GO Cellular Component branch. ​b​, Similar              
analysis with subsampling of network edges (in which a random 10% of network edges are               
removed prior to community detection at each resolution).  
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Supplementary Fig. 6. Hierarchy of communities of human proteins interacting with           
SARS-COV-2. ​A hierarchy generated by HiDeF (​Methods​) contains 252 communities of 1948            
human proteins (communities are vertices, containment relations are edges, similar to Fig. 3d).             
Communities colored red are enriched (odds ratio > 1.5) for the 332 human proteins interacting               
with viral proteins of SARS-COV-2. Selected communities are labeled by gene set enrichment             
function provided in CDAPS (​Code and data availability​). 
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