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Consensus transcriptional 
regulatory networks of coronavirus-
infected human cells
Scott A. Ochsner1, Rudolf T. Pillich2 & Neil J. McKenna   1 ✉

Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and 
human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. 
Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, 
or consensomes, that rank human genes based on their rates of differential expression in MERS-
CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV 
consensomes, we show that high confidence transcriptional targets (HCTs) of MERS, SARS1 and SARS2 
infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a 
series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses 
E2F family HCTs encoding key drivers of DNA replication and the cell cycle; that progesterone receptor 
signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that 
SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection 
consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways 
Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.

Introduction
Infection of humans by coronaviruses (CoV) represents a major current global public health concern. Signaling 
within and between airway epithelial and immune cells in response to infections by CoV and other viruses is 
coordinated by a complex network of signaling pathway nodes. These include chemokine and cytokine-activated 
receptors, signaling enzymes and transcription factors, and the transcriptional targets encoding their downstream 
effectors1–3. Placing the transcriptional events resulting from CoV infection in context with those associated 
with host signaling systems has the potential to catalyze the development of novel therapeutic approaches. The 
CoV research community has been active in generating and archiving transcriptomic datasets documenting the 
transcriptional response of human cells to infection by the three major CoV strains, namely, Middle East res-
piratory syndrome coronavirus (MERS-CoV, or MERS) and severe acute respiratory syndrome coronaviruses 
1 (SARS-CoV-1, or SARS1) and 2 (SARS-CoV-2, or SARS2)4–9. To date however the field has lacked a resource 
that fully capitalizes on these datasets by, firstly, using them to identify human genes that are most consistently 
transcriptionally responsive to CoV infection and secondly, contextualizing these transcriptional responses by 
integrating them with ‘omics data points relevant to host cellular signaling pathways.

We recently described the Signaling Pathways Project (SPP)10, an integrated ‘omics knowledgebase designed 
to assist bench researchers in leveraging publically archived transcriptomic and ChIP-Seq datasets to generate 
research hypotheses. A unique aspect of SPP is its collection of consensus regulatory signatures, or consensomes, 
which rank genes based on the frequency of their significant differential expression across transcriptomic exper-
iments mapped to a specific signaling pathway node or node family. By surveying across multiple independent 
datasets, we have shown that consensomes recapitulate regulatory relationships between signaling pathway nodes 
and their transcriptional targets to a high confidence level10. Here, as a service to the research community to 
catalyze the development of novel CoV therapeutics, we generated consensomes for infection of human cells 
by MERS, SARS1 and SARS2 CoVs. Computing the CoV consensomes against those for a broad range of cellu-
lar signaling pathway nodes, we discovered robust intersections between genes with high rankings in the CoV 
consensomes and those of nodes with known roles in the response to CoV infection. Integration of the CoV 
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consensomes with the existing universes of SPP transcriptomic and ChIP-Seq data points in a series of use cases 
illuminates previously uncharacterized interfaces between CoV infection and human cellular signaling pathways. 
Moreover, while this paper was under review, numerous contemporaneous and independent in vitro and in vivo 
studies came to light that corroborate SARS2 network predictions made using our analysis pipeline. To reach the 
broadest possible audience of experimentalists, the results of our analysis were made available in the SPP website, 
as well as in the Network Data Exchange (NDEx) repository. Collectively, these networks constitute a unique and 
freely accessible framework within which to generate mechanistic hypotheses around the transcriptional interface 
between human signaling pathways and CoV infection.

Results
Generation of the CoV consensomes.  We first set out to generate a set of consensomes10 ranking human 
genes based on statistical measures of the frequency of their significant differential expression in response to 
infection by MERS, SARS1 and SARS2 CoVs. To do this we searched the Gene Expression Omnibus (GEO) 
and ArrayExpress databases to identify datasets involving infection of human cells by these strains. Many of 
these datasets emerged from a broad-scale systematic multi-omics Pacific Northwest National Library analysis 
of the host cellular response to infection across a broad range of pathogens11. Since an important question in the 
development of CoV therapeutics is the extent to which CoVs have common transcriptional impacts on human 
cell signaling that are distinct from those of other viruses, we also searched for transcriptomic datasets involving 
infection by human influenza A virus (IAV). From this initial collection of datasets, we next carried out a three 
step quality control check as previously described10, yielding a total of 3.3 million data points in 156 experi-
ments from 38 independent viral infection transcriptomic datasets (see figshare F112, section 1). Using these 
curated datasets, we next used consensome analysis (see Methods and previous SPP publication10) to generate 
consensomes for each CoV strain. The full consensomes are available in figshare File F112 sections 2 (SARS1), 3 
(SARS2), 4 (MERS) and 5 (IAV). To assist researchers in inferring viral infection-associated signaling networks, 
the consensomes are annotated using the previously described SPP convention10 to indicate the identity of a gene 
as encoding a receptor, protein ligand, enzyme, transcription factor, ion channel or co-node (figshare File F112, 
sections 2-5, columns A-C). In addition, to facilitate identification of transcripts that are selectively regulated in 
response to a specific CoV, or in response to CoV vs IAV infection, transcript percentile rankings for other con-
sensomes are provided in each consensome tab in figshare FileF112. Finally, Table 1 contains links to consensomes 
in the SPP knowledgebase and NDEx repository – see section “Visualization of the CoV transcriptional regula-
tory networks in the Signaling Pathways Project knowledgebase and Network Data Exchange repository” below 
and the instructional YouTube video (http://tiny.cc/2i56rz; strategies 2 (SPP) and 5 (NDEx)) for instructions on 
navigating these resources.

Ranking of interferon-stimulated genes (ISGs) in the CoV consensomes.  As an initial benchmark 
for our CoV consensome analysis, we assembled a list of 20 canonical interferon-stimulated genes (ISGs), whose 
role in the anti-viral response is best characterized in the context of IAV infection13. As shown in Fig. 1, many 

Virus Resource Network type DOI Ref.

MERS-CoV SPP Consensome https://doi.org/10.1621/jgxM527b8s.1 129

NDEx Consensome https://doi.org/10.18119/N9QG7S 133

Node family HCT intersection https://doi.org/10.18119/N9PG63 137

Node HCT intersection https://doi.org/10.18119/N96G6R 141

SARS-CoV-1 SPP Consensome https://doi.org/10.1621/k9ygy4i49j.1 130

NDEx Consensome https://doi.org/10.18119/N9KP4G 134

Node family HCT intersection https://doi.org/10.18119/N9JS46 138

Node HCT intersection https://doi.org/10.18119/N92P56 142

SARS-CoV-2 SPP Consensome https://doi.org/10.1621/vTiy8d4Iq7.1 131

NDEx Consensome https://doi.org/10.18119/N9G02W 135

Node family HCT intersection https://doi.org/10.18119/N9F016 139

Node HCT intersection https://doi.org/10.18119/N9Z01V 143

IAV SPP Consensome https://doi.org/10.1621/58AOyXDIAH.1 132

NDEx Consensome https://doi.org/10.18119/N9B60Z 136

Node family HCT intersection https://doi.org/10.18119/N9989R 140

Node HCT intersection https://doi.org/10.18119/N9T609 144

Table 1.  DOI-driven links to consensomes and HCT intersection networks. SPP DOIs point to the tabular web 
version of the consensome, which can be downloaded as an Excel file. NDEx consensome DOIs point to the 
full consensome network; for ease and clarity of display, only the top 5% of the consensome is shown in the 
initial graphic display; in addition, a subset of the data corresponding only to the top 5% of the consensome can 
be reached via a link in the “Description”. NDEx virus node family HCT intersection DOIs point to networks 
containing all node families; NDEx virus node HCT intersection DOIs point to the full HCT intersection 
network; for ease and clarity of display, only the top 5% of the HCT intersection network is shown in the initial 
graphic display; in addition, a subset of the data corresponding only to the top 5% of the HCT intersection 
network can be reached via a link in the “Description”.
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ISGs were assigned elevated rankings across the four viral consensomes. The mean percentile of the ISGs was 
however appreciably higher in the IAV (98.7th percentile) and SARS1 (98.5th percentile; p = 6e-1, t-test IAV vs 
SARS1) consensomes than in the SARS2 (92nd percentile, p = 5e-2, t-test IAV v SARS2) and MERS (82nd per-
centile; p = 7e-5, t-test IAV v MERS) consensomes. This is consistent with previous reports of an appreciable 
divergence between IAV and SARS2 infection with respect to the interferon transcriptional response8. Other 
genes with known critical roles in the response to viral infection have high rankings in the CoV consensomes, 
including NCOA714 (percentiles: SARS1, 98th; SARS2, 97th; MERS, 89th; IAV, 99th), STAT115 (percentiles: SARS1, 
99th; SARS2, 98th; MERS, 89th; IAV, 99th) and TAP116 (percentiles: SARS1, 99th; SARS2, 94th; MERS, 83rd; IAV, 
99th). In addition to the appropriate elevated rankings for these known viral response effectors, the CoV con-
sensomes assign similarly elevated rankings to transcripts that are largely or completely uncharacterized in the 
context of viral infection. Examples of such genes include PSMB9, encoding a proteasome 20S subunit (per-
centiles: SARS1, 98th; SARS2, 97th; MERS, 98th; IAV, 98th); CSRNP1, encoding a cysteine and serine rich nuclear 
protein (percentiles: SARS1, 99th; SARS2, 94th; MERS, 98th; IAV, 94th); and CCNL1, encoding a member of the cell 
cycle-regulatory cyclin family (percentiles: SARS1, 99th; SARS2, 94th; MERS, 99th; IAV, 97th). Finally, a preprint 
of a CRISPR/Cas9 study described validation of 27 human genes as critical modulators of the host response 
to SARS2 infection of human cells17. Corroborating our analysis, 16 of these genes have significant (q < 0.05) 
rankings in the SARS2 consensome, including ACE2 and DYRK1A (both 97th percentile), CTSL (96th percentile), 
KDM6A, ATRX, PIAS1 (all 94th percentile), RAD54L2 and SMAD3 (90th percentile).

To gather evidence for human signaling pathway nodes orchestrating the transcriptional response to CoV 
infection, we next compared transcripts with elevated rankings in the CoV consensomes with those that have 
predicted high confidence regulatory relationships with cellular signaling pathway nodes. We generated four 
lists of genes corresponding to the MERS, SARS1, SARS2 and IAV transcriptomic consensome 95th percentiles. 
We then retrieved genes in the 95th percentiles of available SPP human transcriptomic (n = 25) consensomes and 
ChIP-Seq (n = 864) pathway node consensomes10. For convenience we will refer from hereon to genes in the 95th 
percentile of a viral infection, node (ChIP-Seq) or node family (transcriptomic) consensome as high confidence 
transcriptional targets (HCTs). We then used the R GeneOverlap package18 to compute the extent and signifi-
cance of intersections between CoV HCTs and those of the pathway nodes or node families. We interpreted the 
extent and significance of intersections between HCTs for CoVs and pathway node or node families as evidence 
for a biological relationship between loss or gain of function of that node (or node family) and the transcriptional 
response to infection by a specific virus.

Results of viral infection and signaling node HCT intersection analyses are shown in Fig. 2 (based on 
receptor and enzyme family transcriptomic consensomes), Figs. 3 and 4 (based on ChIP-Seq consensomes for 
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Fig. 1  Rankings of canonical interferon-stimulated genes (ISGs) in the viral consensomes. Shown are the 
percentile rankings of 20 ISGS13 in the SARS1 (a), SARS2 (b), MERS (c) and IAV (d) consensomes. Note that 
numerous genes have identical q-value and percentile values and are therefore superimposed in the plots. Full 
consensome data are provided in figshare File 112 sections 2 (SARS1), 3 (SARS2), 4 (MERS) and 5 (IAV); see also 
Table 1 for links to consensomes in the SPP knowledgebase and NDEx repository. Please refer to the Methods 
section for a full description of the consensome algorithm.
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transcription factors and enzymes, respectively) and figshare File F212 (based on ChIP-Seq consensomes for 
selected co-nodes). figshare File F112, sections 6 (node family transcriptomic HCT intersection analysis) and 
7 (node ChIP-Seq HCT intersection analysis) contain the full underlying numerical data. Please refer also to 
Table 1 for links to virus-node family and virus-node HCT intersection networks in the NDEx repository – 
see section “Visualization of the CoV transcriptional regulatory networks in the Signaling Pathways Project 
knowledgebase and Network Data Exchange repository” below and the instructional YouTube video (http://tiny.
cc/2i56rz; strategy 6) for instructions on navigating these resources. We surveyed q < 0.05 HCT intersections to 
identify (i) canonical inflammatory signaling pathway nodes with characterized roles in the response to CoV 
infection, thereby validating the consensome approach in this context; and (ii) evidence for nodes whose role 
in the transcriptional biology of CoV infection is previously uncharacterized, but consistent with their roles 
in the response to other viral infections. In the following sections all q-values refer to those obtained using the 
GeneOverlap analysis package in R18.

Receptors Reflecting their well-documented roles in the response to CoV infection19–22, we observed appreciable 
significant intersections between CoV HCTs and those of the toll-like (TLRs; q-values: SARS1, 3e-85; SARS2, 5e-49; 
MERS, 2e-33), interferon (IFNR; q-values: SARS1, 1e-109; SARS2, 6e-53; MERS, 1e-24) and tumor necrosis factor 
(TNFR; q-values: SARS1, 1e-48; SARS2, 1e-35; MERS, 5e-32) receptor families (Fig. 2). Indeed, anti-TNF therapy 
has been recently mooted as a potential clinical approach to SARS2 infection23. HCT intersections between CoV 
infection and receptor systems with previously uncharacterized connections to CoV infection, including epidermal 
growth factor receptors (EGFR; q-values: SARS1, 4e-21; SARS2, 3e-48; MERS, 1e-35), and Notch receptor signaling 
(q-values: SARS1, 6e-24; SARS2, 2e-33; MERS, 2e-29; Fig. 2), are consistent with their known role in the context of 
other viral infections24–28. The Notch receptor HCT intersection points to a possible mechanistic basis for the poten-
tial of Notch pathway modulation in the treatment of SARS229. The strong HCT intersection between CoV infection 
and xenobiotic receptors (q-values: SARS1, 1e-30; SARS2, 1e-44; MERS, 5e-32; Fig. 2) reflects work describing a 
role for pregnane X receptor in innate immunity30 and points to a potential role for members of this family in the 
response to CoV infection. In addition, the robust intersection between HCTs for SARS2 infection and vitamin D 
receptor (q = 2e-35) is interesting in light of epidemiological studies suggesting a link between risk of SARS2 infec-
tion and vitamin D deficiency31,32. Consistent with a robust signature for the glucocorticoid receptor across all CoVs 
(GR; q-values: SARS1, 3e-35; SARS2, 1e-35; MERS, 7e-32), recent studies have shown the GR agonist dexametha-
sone is a successful therapeutic for SARS2 infection33. Finally, independent in vitro analyses confirm our predictions 
of the modulation by SARS2 infection of ErbB/EGFR22,34 and TGFBR17,34 signaling systems (Fig. 2).

Transcription factors Not unexpectedly – and speaking again to validation of the consensomes - the strongest 
and most significant CoV HCT intersections were observed for HCTs for known transcription factor media-
tors of the transcriptional response to CoV infection, including members of the NFκB (q-value ranges: SARS1, 
1e-7-1e-9; SARS2, 9e-3-2e-3; MERS, 1e-3-1e-4)35–37, IRF (q-value ranges: SARS1, 2e-2-1e-31; SARS2, 2e-4-1e-17; 
MERS, 9e-4-7e-5)38 and STAT (q-value ranges: SARS1, 1e-7-1e-55; SARS2, 2e-3-3e-29; MERS, 5e-2-3e-5)39–41 
transcription factor families (Fig. 3). Consistent with the similarity between SARS1 and IAV consensomes 
with respect to elevated rankings of ISGs (Fig. 2a,d), the IRF1 HCT intersection was strongest with the SARS1 
(q = 2e-34) and IAV (q = 3e-49) HCTs. Corroborating our finding of a strong intersection between STAT2 and 
SARS2 infection HCTs (q = 3e-29), a recent preprint has shown that STAT2 plays a prominent role in the response 
to SARS2 infection of Syrian hamsters42. HCT intersections for nodes originally characterized as having a general 
role in RNA Pol II transcription, including TBP (q-values: SARS1, 2e-10; SARS2, 6e-23; MERS, 3e-16), GTF2B/

Fig. 2  High confidence transcriptional target (HCT) intersection analysis of viral infection and human 
receptors or signaling enzymes based on transcriptomic consensomes. Due to space constraints some class 
and family names may differ slightly from those in the SPP knowledgebase. All q-values refer to those obtained 
using the GeneOverlap analysis package in R18. Full numerical data are provided in figshare File F112, section 6; 
see also Table 1 for links to virus-node family HCT intersection networks in the NDEx repository.
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TFIIB (q-values: SARS1, 7e-10; SARS2, 3e-23; MERS, 9e-14) and GTF2F1 (q-values: SARS1, 2e-4; SARS2, 2e-13; 
MERS, 5e-5) were strong across all CoVs, and particularly noteworthy in the case of SARS2. In the case of GTF2B, 
these data are consistent with previous evidence identifying it as a specific target for orthomyxovirus43, and the 
herpes simplex44 and hepatitis B45 viruses. Moreover, a recent preprint has identified a high confidence interaction 
between GTF2F2 and the SARS2 NSP9 replicase34.

Fig. 3  High confidence transcriptional target (HCT) intersection analysis of viral infection and human 
transcription factors based on ChIP-Seq consensomes. White cells represent q > 5e-2 intersections. Due to space 
constraints some class and family names may differ slightly from those in the SPP knowledgebase. All q-values 
refer to those obtained using the GeneOverlap analysis package in R18. Full numerical data are provided in figshare 
File F112, section 7; see also Table 1 for links to virus-node HCT intersection networks in the NDEx repository.
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In general, intersections between viral infection and ChIP-Seq enrichments for transcription factors and other 
nodes were more specific for individual CoV infection HCTs (compare Fig. 2 with Figs. 3 and 4 and figshare File 
F112, sections 6 and 7). This is likely due to the fact that ChIP-Seq consensomes are based on direct promoter 
binding by a specific node antigen, whereas transcriptomic consensomes encompass both direct and indirect 
targets of specific receptor and enzyme node families.

Enzymes Compared to the roles of receptors and transcription factors in the response to viral infection, the 
roles of signaling enzymes are less well illuminated – indeed, in the context of CoV infection, they are entirely 

Fig. 4  High confidence transcriptional target (HCT) intersection analysis of viral infection and human 
signaling enzymes based on ChIP-Seq consensomes. White cells represent non-significant (q > 5e-2) 
intersections. Due to space constraints some class and family names may differ slightly from those in the 
SPP knowledgebase. All q-values refer to those obtained using the GeneOverlap analysis package in R18. 
Full numerical data are provided in figshare File F112, section 7; see also Table 1 for links to virus-node HCT 
intersection networks in the NDEx repository.
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unstudied. Through their regulation of cell cycle transitions, cyclin-dependent kinases (CDKs) play important 
roles in the orchestration of DNA replication and cell division, processes that are critical in the viral life cycle. 
CDK6, which has been suggested to be a critical G1 phase kinase46,47, has been shown to be targeted by a num-
ber of viral infections, including Kaposi’s sarcoma-associated herpesvirus48 and HIV-149. Consistent with this 
common role across distinct viral infections, we observed robust intersection between the CDK family HCTs 
(q-values: SARS1, 8e-23; SARS2, 2e-31; MERS, 1e-30; Fig. 2) and the CDK6 HCTs (q-values: SARS1, 1e-7; SARS2, 
8e-8; MERS, 3e-4; Fig. 4) and those of all viral HCTs. As with the TLRs, IFNRs and TNFRs, which are known 
to signal through CDK650,51, intersection with the CDK6 HCTs was particularly strong in the case of the SARS2 
HCTs (Fig. 4). Again, the subsequent proteomic analysis we alluded to earlier34 independently corroborated our 
prediction of a role for CDK6 in the response to SARS2 infection. Consistent with a recent study52, the intersec-
tion of HCTs for the lysine demethylase KMT2A was much stronger with IAV (q-value = 2e-9) than with any of 
the CoVs (q-values: SARS1, 7e-2; SARS2, 2e-3; MERS, 1e-2).

CCNT2 is another member of the cyclin family that, along with CDK9, is a component of the viral-targeted 
p-TEFB complex53. Reflecting a potential general role in viral infection, appreciable intersections were observed 
between the CCNT2 HCTs and all viral HCTs (q-values: SARS1, 4e-4; SARS2, 6e-3; MERS, 7e-5; Fig. 4). Finally in 
the context of enzymes, the DNA topoisomerases have been shown to be required for efficient replication of sim-
ian virus 4054 and Ebola55 viruses. The prominent intersections between DNA topoisomerase-dependent HCTs 
and the CoV HCTs (q-values: SARS1, 3e-15; SARS2, 6e-21; MERS, 1e-26; Fig. 2) suggest that it may play a similar 
role in facilitating the replication of these CoVs.

Hypothesis generation use cases.  We next wished to show how the CoV consensomes and HCT inter-
section networks, supported by existing canonical literature knowledge, enable the user to generate novel hypoth-
eses around the transcriptional interface between CoV infection and human cellular signaling pathways. Given 
the current interest in SARS2, we have focused our use cases on that virus. figshare File F212 contains an addi-
tional use case linking the telomerase catalytic subunit TERT to CoV infection that was omitted from the main 
text due to space constraints. Unless otherwise stated, all q-values below were obtained using the GeneOverlap 
analysis package in R18. We stress that all use cases represent preliminary in silico evidence only, and require rig-
orous pressure-testing at the bench for full validation.

Hypothesis generation use case 1: transcriptional regulation of the SARS2 receptor gene, 
ACE2.  ACE2, encoding membrane-bound angiotensin converting enzyme 2, has gained prominence as the 
target for cellular entry by SARS156 and SARS257. An important component in the development of ACE2-centric 
therapeutic responses is an understanding of its transcriptional responsiveness to CoV infection. Interestingly, 
based on our CoV consensome analysis, ACE2 is more consistently transcriptionally responsive to infection by 
SARS CoVs (SARS1: 98th percentile, consensome q value (CQV)10 = 1e-25; SARS2: 97th percentile, CQV = 4e-7) 
than by IAV (78th percentile, CQV = 3e-8) or MERS (49th percentile, CQV = 2e-16; figshare File F112, sections 
2-5). The data points underlying the CoV consensomes indicate evidence for tissue-specific differences in the 
nature of the regulatory relationship between ACE2 and viral infection. In response to SARS1 infection, for exam-
ple, ACE2 is induced in pulmonary cells but repressed in kidney cells (Fig. 5). On the other hand, in response 
to SARS2 infection, ACE2 is repressed in pulmonary cells - a finding corroborated by other studies58,59 - but 
inducible in gastrointestinal cells (Fig. 5). These data may relate to the selective transcriptional response of ACE2 
to signaling by IFNRs (92nd percentile; figshare File F112, section 8) rather than TLRs (48th percentile; figshare 
File F112, section 9) or TNFRs (13th percentile, figshare File F112, section 10). These findings are consistent with a 
recent study confirming repression of induction of ACE2 by interferon stimulation and by IAV infection60. Our 
data reflect a complex transcriptional relationship between ACE2 and viral infection that may be illuminated in 
part by future single cell RNA-Seq analysis in the context of clinical or animal models of SARS2 infection.

Hypothesis generation use case 2: evidence for antagonistic cross-talk between progesterone 
receptor and interferon receptor signaling in the airway epithelium.  A lack of clinical data has so 
far prevented a definitive evaluation of the connection between pregnancy and susceptibility to SARS2 infection 
in CoVID-19. That said, SARS2 infection is associated with an increased incidence of pre-term deliveries61, and 
pregnancy has been previously associated with the incidence of viral infectious diseases, particularly respiratory 
infections62,63. We were therefore interested to observe consistent intersections between the progesterone receptor 
(PGR) HCTs and CoV infection HCTs (q-values: SARS1, 3e-35; SARS2, 5e-41; MERS 5e-28), with the intersec-
tion being particularly evident in the case of the SARS2 HCTs (Fig. 2; figshare File F112, section 6). To investigate 
the specific nature of the crosstalk implied by this transcriptional intersection in the context of the airway epithe-
lium, we first identified a set of 12 genes that were HCTs for both SARS2 infection and PGR. Interestingly, many 
of these genes encode members of the classic interferon-stimulated gene (ISG) response pathway13. We then 
retrieved two SPP experiments involving treatment of A549 airway epithelial cells with the PGR full antagonist 
RU486 (RU), alone or in combination with the GR agonist dexamethasone (DEX). As shown in Fig. 6, there was 
unanimous correlation in the direction of regulation of all 12 genes in response to CoV infection and PGR loss 
of function. These data are consistent with the reported pro-inflammatory effects of RU486 in a mouse model of 
allergic pulmonary inflammation64. Interestingly, SARS2-infected pregnant women are often asymptomatic65,66. 
Based on our data, it can be reasonably hypothesized that suppression of the interferon response to SARS2 infec-
tion by elevated circulating progesterone during pregnancy may contribute to the asymptomatic clinical course. 
Indeed, crosstalk between progesterone and inflammatory signaling is well characterized in the reproductive 
system, most notably in the establishment of uterine receptivity67 as well as in ovulation68. Consistent with our 
hypothesis, a recently launched clinical trial is evaluating the potential of progesterone for treatment of COVID-
19 in hospitalized men69. Interestingly, the recently reported inhibition by progesterone of SARS2 replication in 
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Vero 6 cells70 indicates an additional mechanism, distinct from its potential crosstalk with the interferon response, 
by which progesterone signaling may impact SARS2 infection.

Hypothesis generation use case 3: association of an epithelial to mesenchymal transition 
transcriptional signature with SARS2 infection.  Epithelial to mesenchymal transition (EMT) is the 
process by which epithelial cells lose their polarity and adhesive properties and acquire the migratory and inva-
sive characteristics of mesenchymal stem cells71. EMT is known to contribute to pulmonary fibrosis72, acute 
interstitial pneumonia73 and acute respiratory distress syndrome (ARDs)74, all of which have been reported in 
connection with SARS2 infection in COVID-1975–77. We were interested to note therefore that significant HCT 
intersections for three well characterized EMT-promoting transcription factors were specific to SARS2 infection 
(q-values: SNAI2/Slug78, 2e-2; EPAS1/HIF2α79, 9e-9; LEF180, 1e-3; Fig. 3, bold symbols; figshare File F112, section 
7). Consistent with this, intersections between HCTs for TGFBRs, SMAD2 and SMAD3, known regulators of 
EMT transcriptional programs81 – were stronger with HCTs for SARS2 (q-values: TGFBRs, 2e-31; SMAD2, 2e-7; 
SMAD3, 5e-17) than with those of SARS1 (q-values: TGFBRs, 6e-29; SMAD2, 2e-2; SMAD3, 3e-9) and MERS 
(q-values: TGFBRs, 1e-16; SMAD2, 3e-3; SMAD3, 2e-12) – see also Figs. 2 and 3 and figshare File F112, sections 6 
and 7). Moreover, a recent CRISPR/Cas9 screen identified a requirement for both TGFBR signaling and SMAD3 
in mediating SARS2 infection17.

To investigate the connection between SARS2 infection and EMT implied by these HCT intersections, we 
then computed intersections between the individual viral HCTs and a list of 335 genes manually curated from 
the research literature as EMT markers82, see also figshare File F112, section 11. In agreement with the HCT 
intersection analysis, we observed significant enrichment of members of this gene set within the SARS2 HCTs 
(q = 4e-14), but not the SARS1 or MERS (both q = 2e-1) HCTs (Fig. 7a). Consistent with previous reports of a 
potential link between EMT and IAV infection83, we observed significant intersection between the EMT signature 
and the IAV HCTs (q = 1e-4).

One possible explanation for the selective intersection between the literature EMT signature and the SARS2 
HCTs relative to SARS1 and MERS was the fact that the SARS2 consensome was exclusively comprised of epi-
thelial cell lines, whereas the SARS1 and MERS consensomes included non-epithelial cell biosamples (figshare 

Fig. 5  Hypothesis generation use case 1: strain- and tissue-specific regulation of ACE2 in response to CoV 
infection of human cells. All data points are p < 0.05. Refer to figshare File F112, section 1 for full details on the 
underlying datasets. Abbreviations: CV, cardiovascular; GI, gastrointestinal; KI, kidney; OT, others.
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File F112, section 1). To exclude this possibility therefore, we next calculated airway epithelial cell-specific con-
sensomes for SARS1, SARS2 and MERS and computed intersections between their HCTs and the EMT signature. 
We found that significant intersection of the EMT signature with the CoV HCTs remained specific to SARS2 
(q-values: SARS1 & MERS, 2e-1; SARS2, 1e-8) in the lung epithelium-specific CoV consensomes.

We next retrieved the canonical EMT genes in the SARS2 HCTs and compared their percentile rankings with 
the other CoV consensomes. Although some EMT genes, such as CXCL2 and IRF9, had elevated rankings across 
all four viral consensomes, the collective EMT gene signature had a significantly higher mean percentile value 
in the SARS2 consensome than in each of the other viral consensomes (Fig. 7b; SARS2 mean percentile = 97.5; 
SARS1 mean percentile = 86, p = 1e-5, t-test SARS2 v SARS1; MERS mean percentile = 63, p = 1e-9, t-test SARS2 
v MERS; IAV mean percentile = 76, p = 2e-7, t-test SARS2 v IAV)). A column named “EMT” in figshare File F112, 
sections 2 (SARS1), 3 (SARS2), 4 (MERS) and 5 (IAV) identifies the ranking of the EMT genes in each of the viral 
consensomes.

Given that EMT has been linked to ARDs74, we speculated that the evidence connecting EMT and SARS2 
acquired through our analysis might be reflected in the relatively strong intersection between ARDs markers in 
SARS2 HCTs compared to other viral HCTs. To test this hypothesis we carried out a PubMed search to identify 
a set of 88 expression biomarkers of ARDs or its associated pathology, acute lung injury (ALI). A column named 
“ALI/ARDs” in figshare File F112, sections 2 (SARS1), 3 (SARS2) 4 (MERS) and 5 (IAV) identifies the expression 
biomarker genes using the PubMed identifiers for the original studies in which they were identified. Consistent 
with our hypothesis, we observed appreciable intersections between this gene set and the HCTs of all four viruses 
(SARS1 odds ratio (OR) = 7, q = 5e-9; SARS2 OR = 10.4, q = 1e-9; MERS, OR = 4.2, q = 2e-5; IAV OR = 6.8; 
q = 9e-8) with a particularly strong intersection evident in the SARS2 HCTs.

Although EMT has been associated with infection by transmissible gastroenteritis virus84 and IAV83, this is to 
our knowledge the first evidence connecting CoV infection, and specifically SARS2 infection, to an EMT signa-
ture. Interestingly, lipotoxin A4 has been shown to attenuate lipopolysaccharide-induced lung injury by reducing 
EMT85. Moreover, several members of the group of SARS2-induced EMT genes have been associated with signa-
ture pulmonary comorbidities of CoV infection, including ADAR86, CLDN187 and SOD288. Of note in the context 
of these data is the fact that signaling through two SARS2 cellular receptors, ACE2/AT2 and CD147/basigin, 
has been linked to EMT in the context of organ fibrosis89–91. Finally, a recent preprint has described EMT-like 
transcriptional and metabolic changes in response to SARS2 infection92. Collectively, our data indicate that EMT 
warrants further investigation as a SARS2-specific pathological mechanism.

Hypothesis generation use case 4: SARS2 repression of E2F family HCTs encoding cell cycle reg-
ulators.  Aside from EPAS1 and SNAI2, the only other transcription factors with significant HCT intersections 
that were specific to the SARS2 HCTs were the E2F/FOX class members E2F1 (q-values: SARS1, 5e-1; SARS2, 
1e-2; MERS, 4e-1), E2F3 (q-values: SARS1, 6e-1; SARS2, 5e-2; MERS, 7e-1), E2F4 (q-values: SARS1, 1; SARS2, 
9e-3; MERS, 1) and TFDP1/Dp-1 (q-values: SARS1, 1; SARS2, 3e-4; MERS, 1; Fig. 3, bold symbols; figshare File 
F112, section 7). These factors play well-documented interdependent roles in the promotion (E2F1, E2F3, TFDP1) 
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Fig. 6  Hypothesis generation use case 2: antagonism between PGR and SARS2 inflammatory signaling in the 
regulation of viral response genes in the airway epithelium. GMFC: geometric mean fold change. PGR loss of 
function (LOF) experiments were retrieved from the SPP knowledgebase145.
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and repression (E2F4) of cell cycle genes93,94. Moreover, E2F family members are targets of signaling through 
EGFRs95 and CDK696, both of whose HCTs had SARS2 HCT intersections that were stronger those of the other 
CoVs (EGFRs: q-values: SARS1, 4e-21; SARS2, 3e-48; MERS, 1e-35; CDK6: q-values: SARS1, 1e-7; SARS2, 8e-8; 
MERS, 2e-4); Figs. 2 and 4). Based on these data, we speculated that SARS2 infection might impact the expression 
of E2F-regulated cell cycle genes more efficiently than other CoVs. To investigate this we retrieved a set of SARS2 
HCTs that were also HCTs for at least three of E2F1, E2F3, E2F4 and TFDP1 (figshare File F112, section 3, columns 
E2F1, E2F3, E2F4, TFDP1 & 95th 3/4). Consistent with the role of E2F/Dp-1 nodes in the regulation of the cell 
cycle, many of these genes – notably CDK1, PCNA, CDC6, CENPF and NUSAP1 – are critical positive regulators 
of DNA replication and cell cycle progression97–101 and are known to be transcriptionally induced by E2Fs102–105. 
Strikingly, with the exception of E2F3, all were consistently repressed in response to SARS2 infection (Fig. 8a). 
To gain insight into the relative efficiency with which the four viruses impacted expression of the E2F/Dp-1 
HCT signature, we compared their mean percentile values across the viral consensomes. Consistent with efficient 
repression of the E2F/Dp-1 HCTs by SARS2 infection relative to other viruses, their mean percentile ranking was 
appreciably higher in the SARS2 consensome (97th percentile) than in the SARS1 (76th percentile; p = 6e-12, t-test 
SARS2 v SARS1), MERS (71.2 percentile; p = 9e-6, t-test SARS2 v MERS) and IAV (71.2 percentile; p = 2e-5, 
t-test SARS2 v IAV) consensomes (Fig. 8b). Although manipulation of the host cell cycle and evasion of detection 
through deregulation of cell cycle checkpoints has been described for other viruses106–108, this represents the first 
evidence for the profound impact of SARS2 infection on host cell cycle regulatory genes, potentially through 
disruption of E2F mediated signaling pathways. The SARS2 infection-mediated induction of E2F3 (Fig. 8a) may 
represent a compensatory response to transcriptional repression of other E2F family members, as has been pre-
viously observed for this family in other contexts109,110. Consistent with our prediction in this use case, while this 
paper was in revision, a study appeared showing that infection by SARS2 results in cell cycle arrest111. Our results 
represent evidence that efficient modulation by SARS2 of E2F signaling, resulting in repression of cell cycle regu-
latory genes, may contribute to its unique pathological impact.

Visualization of the CoV transcriptional regulatory networks in the Signaling Pathways Project 
knowledgebase and Network Data Exchange repository.  To enable researchers to routinely gener-
ate mechanistic hypotheses around the interface between CoV infection human cell signaling, we next made the 
consensomes and accompanying HCT intersection analyses freely available to the research community in the 
SPP knowledgebase and the Network Data Exchange (NDEx) repository. Table 1 contains digital object identifier 
(DOI)-driven links to the consensome networks in SPP and NDEx, and to the virus-node and virus-node family 
HCT intersection networks in NDEx.

We have previously described the SPP biocuration pipeline, database and web application interface10. Figure 9 
shows the strategy for consensome data mining on the SPP website. The individual CoV consensomes can be 
accessed by configuring the SPP Ominer query form as shown, in this example for the SARS2 consensome 
(Fig. 9A). Figure 9B shows the layout of the consensomes, showing gene symbol, name, percentile ranking and 

Fig. 7  Hypothesis generation use case 3: evidence for a SARS2 infection-associated EMT transcriptional 
signature. (a) CoV HCT intersection (INT) with the literature-curated EMT signature for all-biosample and 
lung epithelium-specific consensomes. The IAV consensome is comprised of lung epithelial cell lines and was 
therefore omitted from the lung epithelium-only consensome analysis. Refer to the column “EMT” in figshare 
File F112, section 3 for the list of EMT SARS2 HCTs. q-values refer to those obtained using the GeneOverlap 
analysis package in R18. (b) Comparison of mean percentile ranking of the EMT-associated SARS2 HCTs across 
viral consensomes. Note that SARS2 HCTs are all in the 97–99th percentile and are therefore superimposed in 
the scatterplot. Indicated are the results of the two-tailed two sample t-test assuming equal variance comparing 
the percentile rankings of the SARS2 EMT HCTs across the four viral consensomes.
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other essential information. Genes in the 90th percentile of each consensome are accessible via the user interface, 
with the full consensomes available for download in a tab delimited text file. Target gene symbols in the consen-
some link to the SPP Regulation Report, filtered to show only experimental data points that contributed to that 
specific consensome (Fig. 9C). This view gives insights into the influence of tissue and cell type context on the 
regulatory relationship. These filtered reports can be readily converted to default Reports that show evidence for 
regulation of a specific gene by other signaling pathway nodes. As previously described, pop-up windows in the 
Report provide experimental details, in addition to links to the parent dataset (Fig. 9D), curated accordingly to 
our previously described protocol10. Per FAIR data best practice, CoV infection datasets – like all SPP datasets – 
are associated with detailed descriptions, assigned a DOI, and linked to the associated article to place the dataset 
in its original experimental context (Fig. 9D). The full list of datasets is available for browsing in the SPP Dataset 
listing (https://www.signalingpathways.org/index.jsf).

The NDEx repository facilitates collaborative publication of biological networks, as well as visualization of 
these networks in web or desktop versions of the popular and intuitive Cytoscape platform112–114. Figure 10 shows 
examples of consensome and HCT intersection network visualizations within the NDEx user interface, in which 
transcripts or nodes, respectively, are organized using SPP’s Category-Class-Family classification10. For ease 
of viewing, the initial rendering of the full SARS2 (Fig. 10a) and other consensome networks shows a sample 
(Fig. 10a, red arrow 1) containing only the top 5% of regulated transcripts; the full data can be explored using 
the “Neighborhood Query” feature available at the bottom of the page (red arrow 2). The integration in NDEx 
of the popular Cytoscape desktop application enables any network to be seamlessly be imported in Cytoscape 
for additional analysis (red arrow 3). Zooming in on a subset of the SARS2 consensome (orange box) affords an 
appreciation of the diversity of molecular classes that are transcriptionally regulated in response to SARS2 infec-
tion (Fig. 10b). Transcript size is proportional to rank percentile, and edge weight is proportional to the transcript 
geometric mean fold change (GMFC) value. Selecting a transcript allows the associated consensome data, such 
as rank, GMFC and family, to be examined in detail using the info table (Fig. 10b, right panel). Highlighted to 
exemplify this feature is IL6, an inflammatory ligand that has been previously linked to SARS2 infection-related 

Fig. 8  Hypothesis generation use case 4: efficient SARS2 repression of E2F family HCTs encoding key cell 
cycle regulators. (a) Relative abundance of E2F HCT cell cycle regulators in response to SARS2 infection. (b) 
Comparison of SARS2, SARS1, MERS and IAV consensome percentiles of the E2F HCT cell cycle regulators. 
Indicated are the results of the two-tailed two sample t-test assuming equal variance comparing the percentile 
rankings of the SARS2 EMT HCTs across the four viral consensomes.
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pathology8,115. Consensome GMFCs are signless with respect to direction of regulation10. Researchers can there-
fore follow the SPP link in the info table (Fig. 10b, red arrow 4) to view the individual underlying viral infection 
data points on the SPP site (Fig. 9C shows the example for IFI27).

A network of the top 20 ranked transcripts in the SARS2 consensome (Fig. 10c) includes genes with known 
(OAS1, MX1116) and previously uncharacterized (PDZKIP1, SAT1, TM4SF4) transcriptional responses to SARS2 
infection. Finally, to afford insight into pathway nodes whose gain or loss of function contributes to SARS2 
infection-induced signaling, Fig. 10d shows the top 5% ranked nodes in the SARS2 node HCT ChIP-Seq inter-
section network (see figshare File F112, section 7; see also Figs. 2 and 3 and accompanying discussion above). In 
this, as with all HCT intersection networks, node size is proportional to the q-value, such that the larger the circle, 
the lower the q-value, and the higher the confidence that a particular node or node family is involved in the tran-
scriptional response to viral infection.

The NDEx interface leverages the SPP classification system to provide visual insights into the impact of CoV 
infection on human cell signaling that are not readily appreciated in the current SPP interface. For example, it is 
readily apparent from the NDEx SARS2 consensome network (Fig. 10c; Table 1) that the single largest class of 
SARS2 HCTs encodes immunomodulatory ligands (OR = 4.6, p = 3.8 e-24, hypergeometric test), many of which 
are members of the cytokine and chemokine superfamilies. In contrast, although still overabundant (OR = 1.58, 
p = 6.8e-4, hypergeometric test), inflammatory ligands comprise a considerably smaller proportion of the SARS1 
HCTs (Table 1). These data represent evidence that compared to SARS1, SARS2 infection may be relatively effi-
cient in modulating a transcriptional inflammatory response in host cells.

Fig. 9  Mining of CoV consensomes and underlying data points in the SPP knowledgebase. (A) The Ominer 
query form can be configured as shown to access the CoV infection consensomes. In the example shown, 
the user wishes to view the SARS2 consensome. (B) Consensomes are displayed in a tabular format. Target 
transcript symbols in the consensomes link to SPP transcriptomic Regulation Reports (C) Regulation Reports 
for consensome transcripts are filtered to show only data points that contributed to their consensome ranking. 
Clicking on a data point opens a Fold Change Information window that links to the SPP curated version of the 
original archived dataset (D). Like all SPP datasets, CoV infection datasets are comprehensively aligned with 
FAIR data best practice and feature human-readable names and descriptions, a DOI, one-click addition to 
citation managers, and machine-readable downloadable data files. For a walk-through of CoV consensome data 
mining options in SPP, please refer to the accompanying YouTube video (http://tiny.cc/2i56rz).
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Fig. 10  Visualization of viral consensomes and HCT intersection networks in the NDEx repository. In all 
panels, transcripts (consensome networks; panels a–c) and nodes (HCT intersection network; panel d) are 
color-coded according to their category as follows: receptors (orange), enzymes (blue), transcription factors 
(green), ion channels (mustard) and co-nodes (grey). Additional contextual information is available in the 
description of each network on the NDEx site. Red arrows are explained in the text. (a) Sample view of SARS2 
consensome showing top 5% of transcripts. White rectangles represent classes to which transcripts have been 
mapped in the SPP biocuration pipeline10. Orange inset refers to the zoomed-in view in panel (b). The IL6 
transcript is highlighted to show the contextual information available in the info table to the right. (c) Top 20 
ranked transcripts in the SARS2 consensome. Edge thickness is proportional to the GMFC. (d) Selected classes 
represented in the top 5% of nodes in the SARS2 ChIP-Seq HCT intersection network. Node circle size is 
inversely proportional to the intersection q-value.
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Discussion
An effective research community response to the impact of CoV infection on human health demands systematic 
exploration of the transcriptional interface between CoV infection and human cell signaling systems. It also 
demands routine access to computational analysis of existing datasets that is unhindered either by paywalls or by 
lack of the informatics training required to manipulate archived datasets in their unprocessed state. Moreover, the 
substantial logistical obstacles to high containment laboratory certification emphasize the need for fullest possible 
access to, and re-usability of, existing CoV infection datasets to focus and refine hypotheses prior to carrying out 
in vivo CoV infection experiments. Meta-analysis of existing datasets represents a powerful approach to establish-
ing consensus transcriptional signatures – consensomes – which identify those human genes whose expression is 
most consistently and reproducibly impacted by CoV infection. Moreover, integrating these consensus transcrip-
tional signatures with existing consensomes for cellular signaling pathway nodes can illuminate transcriptional 
convergence between CoV infection and human cell signaling nodes.

To this end, we generated a set of CoV infection consensomes that rank human genes by the reproducibility 
of their differential expression (p < 0.05) in response to infection of human cells by CoVs. Using HCT intersec-
tion analysis, we then computed the CoV consensomes against high confidence transcriptional signatures for a 
broad range of cellular signaling pathway nodes, affording investigators with a broad range of signaling interests 
an entrez into the study of CoV infection of human cells. Although other enrichment based pathway analysis 
tools exist117, HCT intersection analysis differs from these by computing against only genes that have the closest 
predicted regulatory relationships with upstream pathway nodes (i.e. HCTs). The use cases described here repre-
sent illustrative examples of the types of HCT-based analyses that users are empowered to carry out to illuminate 
principles of CoV infection signaling.

Previous network analyses across independent viral infection transcriptomic datasets, although valuable, have 
been limited to stand-alone studies118,119. Here, to enable access to the CoV consensomes and their >3,000,000 
underlying data points by the broadest possible audience, we have integrated them into the SPP knowledgebase 
and NDEx repository to create a unique, federated environment for generating hypotheses around the impact 
of CoV infection on human cell signaling. NDEx provides users with the familiar look and feel of Cytoscape to 
reduce barriers of accessibility, and provides for intuitive click-and-drag data mining strategies. Incorporation of 
the CoV data points into SPP places them in the context of millions more existing SPP data points document-
ing transcriptional regulatory relationships between human pathway nodes and their transcriptional targets. In 
doing so, we provide users with evidence for signaling nodes whose gain or loss of function in response to CoV 
infection gives rise to these transcriptional patterns. The transcriptional impact of viral infection is known to be 
an amalgam of host antiviral responses and co-option by viruses of the host signaling machinery in furtherance 
of its life cycle. It is hoped that dissection of these two distinct modalities in the context of CoV infection will be 
facilitated by the availability of the CoV consensomes in the SPP and NDEx knowledgebases.

The CoV consensomes have a number of limitations. Primarily, since they are predicated specifically on tran-
scriptional regulatory technologies, they will assign low rankings to transcripts that may not be transcriptionally 
responsive to CoV infection, but whose encoded proteins nevertheless play a role in the cellular response. For 
example, MASP2, which encodes an important node in the response to CoV infection120, has either a very low 
consensome ranking (SARS1, MERS and IAV), or is absent entirely (SARS2), indicating that it is transcriptionally 
unresponsive to viral infection and likely activated at the protein level in response to upstream signals. This and 
similar instances therefore represent “false negatives” in the context of the impact of CoV infection on human 
cells. Another limitation of the transcriptional focus of the datasets is the absence of information on specific pro-
tein interactions and post-translational modifications, either viral-human or human-human, that give rise to the 
observed transcriptional responses. Although these can be inferred to some extent, integration of existing34,70,111 
and future proteomic and kinomic datasets will facilitate modeling of the specific signal transduction events giv-
ing rise to the downstream transcriptional responses. Finally, although detailed metadata are readily available on 
the underlying data points, the consensomes do not directly reflect the impact of variables such as tissue context 
or duration of infection on differential gene expression. As additional suitable archived datasets become available, 
we will be better positioned to generate more specific consensomes of this nature.

The human CoV and IAV consensomes and their underlying datasets are intended as “living” resources in 
SPP and NDEx that will be updated and versioned with appropriate datasets as resources permit. This will be 
particularly important in the case of SARS2, given the expanded budget that worldwide funding agencies are 
likely to allocate to research into the impact of this virus on human health. Incorporation of future datasets 
will allow for clarification of observations that are intriguing, but whose significance is currently unclear, such 
as the intersection between the CoV HCTs and those of the telomerase catalytic subunit (figshare File F212), as 
well as the enrichment of EMT genes among those with elevated rankings in the SARS2 consensome (Fig. 7). 
Although they are currently available on the SPP website, distribution of the CoV consensome data points via 
the SPP RESTful API10 will be essential for the research community to fully capitalize on this work. For example, 
several co-morbidities of SARS2 infection, including renal and gastrointestinal disorders, are within the mis-
sion of the National Institute of Diabetes, Digestive and Kidney Diseases. In an ongoing collaboration with the 
NIDDK Information Network (DKNET)121, the SPP API will make the CoV consensome data points available in 
a hypothesis generation environment that will enable users to model intersections of CoV infection-modulated 
host signaling with their own research areas of interest. We welcome feedback and suggestions from the research 
community for the future development of the CoV infection consensomes and HCT node intersection networks.

Methods
Consistent with emerging NIH mandates on rigor and reproducibility, we have used the Research Resource 
Identifier (RRID) standard122 to identify key research resources of relevance to our study.
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Dataset biocuration.  Datasets from Gene Expression Omnibus (RRID: SCR_005012) and Array Express 
(RRID: SCR_002964) were biocurated as previously described, with the incorporation of an additional clas-
sification of peptide ligands123 to supplement the existing mappings derived from the International Union of 
Pharmacology Guide To Pharmacology (RRID: SCR_013077).

Dataset processing and consensome analysis.  Array data processing. To process microarray expression 
data, we utilized the log2 summarized and normalized array feature expression intensities provided by the inves-
tigator and housed in GEO. These data are available in the corresponding “Series Matrix Files(s)”. The full set of 
summarized and normalized sample expression values were extracted and processed in the statistical program 
R. To calculate differential gene expression for investigator-defined experimental contrasts, we used the linear 
modeling functions from the Bioconductor limma analysis package124. Initially, a linear model was fitted to a 
group-means parameterization design matrix defining each experimental variable. Subsequently, we fitted a con-
trast matrix that recapitulated the sample contrasts of interest, in this case viral infection vs mock infection, pro-
ducing fold-change and significance values for each array feature present on the array. The current BioConductor 
array annotation library was used for annotation of array identifiers. P values obtained from limma analysis were 
not corrected for multiple comparisons. RNA-Seq data processing. To process RNA-Seq expression data, we uti-
lized the aligned, un-normalized, gene summarized read count data provided by the investigator and housed in 
GEO. These data are available in the corresponding “Supplementary file” section of the GEO record. The full set of 
raw aligned gene read count values were extracted and processed in the statistical program R using the limma124 
and edgeR analysis125 packages. Read count values were initially filtered to remove genes with low read counts. 
Gene read count values were passed to downstream analysis if all replicate samples from at least one experimental 
condition had cpm >1. Sequence library normalization factors were calculated to apply scale normalization to 
the raw aligned read counts using the TMM normalization method implemented in the edgeR package followed 
by the voom function126 to convert the gene read count values to log2-cpm. The log2-cpm values were initially fit 
to a group-means parameterization design matrix defining each experimental variable. This was subsequently fit 
to a contrast design matrix that recapitulates the sample contrasts of interest, in this case viral infection vs mock 
infection, producing fold-change and significance values for each aligned sequenced gene. If necessary, the cur-
rent BioConductor human organism annotation library was used for annotation of investigator-provided gene 
identifiers. P values obtained from limma analysis were not corrected for multiple comparisons.

Differential expression values were committed to the consensome analysis pipeline as previously described10. 
Briefly, the consensome algorithm surveys each experiment across all datasets and ranks genes according to the 
frequency with which they are significantly differentially expressed. For each transcript, we counted the number 
of experiments where the significance for differential expression was ≤0.05, and then generated the binomial 
probability, referred to as the consensome p-value (CPV), of observing that many or more nominally significant 
experiments out of the number of experiments in which the transcript was assayed, given a true probability of 
0.05. Genes were ranked firstly by CPV, then by geometric mean fold change (GMFC). A more detailed descrip-
tion of the transcriptomic consensome algorithm is available in a previous publication10. The consensomes and 
underlying datasets were loaded into an Oracle 15c database and made available on the SPP user interface as 
previously described10.

Statistical analysis.  High confidence transcriptional target intersection analysis was performed using the 
Bioconductor GeneOverlap analysis package18 (RRID: SCR_018419) implemented in R. Briefly, given a whole set 
I of IDs and two sets A ∈ I and B ∈ I, and S = A ∩ B, GeneOverlap calculates the significance of obtaining S. The 
problem is formulated as a hypergeometric distribution or contingency table, which is solved by Fisher’s exact 
test. p-values were adjusted for multiple testing by using the method of Benjamini & Hochberg to control the false 
discovery rate as implemented with the p.adjust function in R, to generate q-values. The universe for the intersec-
tion was set at a conservative estimate of the total number of transcribed (protein and non protein-coding) genes 
in the human genome (25,000)127. R code for analyzing the intersection between an investigator gene set and 
CoV consensome HCTs has been deposited in the SPP Github account. A two tailed two sample t-test assuming 
equal variance was used to compare the mean percentile ranking of the EMT (12 degrees of freedom) and E2F 
(14 degrees of freedom) signatures in the MERS, SARS1, SARS2 and IAV consensomes using the PRISM software 
package v 7.0 (RRID: SCR_005375).

Consensome generation.  The procedure for generating transcriptomic consensomes has been previously 
described10. To generate the ChIP-Seq consensomes, we first retrieved processed gene lists from ChIP-Atlas128 
(RRID: SCR_015511), in which human genes are ranked based upon their average MACS2 occupancy across 
all publically archived datasets in which a given pathway node is the IP antigen. Of the three stringency levels 
available (10, 5 and 1 kb from the transcription start site), we selected the most stringent (1 kb). According to SPP 
convention10, we then mapped the IP antigen to its pathway node category, class and family, and the experimental 
cell line to its appropriate biosample physiological system and organ. We then organized the ranked lists into 
percentiles to generate the node ChIP-Seq consensomes. The 95th percentiles of all consensomes (HCTs, high 
confidence transcriptional targets) was used as the input for the HCT intersection analysis.

SPP web application.  The SPP knowledgebase (RRID: SCR_018412) is a gene-centric Java Enterprise 
Edition 6, web-based application around which other gene, mRNA, protein and BSM data from external data-
bases such as NCBI are collected. After undergoing semiautomated processing and biocuration as described 
above, the data and annotations are stored in SPP’s Oracle 15c database. RESTful web services exposing SPP data, 
which are served to responsively designed views in the user interface, were created using a Flat UI Toolkit with 
a combination of JavaScript, D3.JS, AJAX, HTML5, and CSS3. JavaServer Faces and PrimeFaces are the primary 
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technologies behind the user interface. SPP has been optimized for Firefox 24+, Chrome 30+, Safari 5.1.9+, and 
Internet Explorer 9+, with validations performed in BrowserStack and load testing in LoadUIWeb. XML describ-
ing each dataset and experiment is generated and submitted to CrossRef (RRID: SCR_003217) to mint DOIs10.

Data availability
Important note on data availability: this paper refers to the first versions of the consensomes and HCT intersection 
networks based on the datasets available at the time of publication. As additional CoV infection datasets are 
archived over time, we will make updated versions of the consensomes and HCT intersection analyses accessible 
in future releases. The entire set of experimental metadata is available in figshare File F112, section 1. Consensome 
data points are in figshare File F112, sections 2–5.

SPP SPP MERS129, SARS1130, SARS2131 and IAV132 consensomes, their underlying data points and metadata, 
as well as original datasets, are freely accessible at https://ww.signalingpathways.org. Programmatic access to 
all underlying data points and their associated metadata are supported by a RESTful API at https://www.signa-
lingpathways.org/docs/. All SPP datasets are biocurated versions of publically archived datasets, are formatted 
according to the recommendations of the FORCE11 Joint Declaration on Data Citation Principles, and are made 
available under a Creative Commons CC BY 4.0 license. The original datasets are available are linked to from 
the corresponding SPP datasets using the original repository accession identifiers. These identifiers are for tran-
scriptomic datasets, the Gene Expression Omnibus (GEO) Series (GSE); and for cistromic/ChIP-Seq datasets, 
the NCBI Sequence Read Archive (SRA) study identifier (SRP). SPP consensomes are assigned DOIs as shown 
in Table 1.

NDEx NDEx versions of consensomes (MERS133, SARS1134, SARS2135 and IAV136) and node family (MERS137, 
SARS1138, SARS2139 and IAV140) and node (MERS141, SARS1142, SARS2143 and IAV144) HCT intersection networks 
are freely available in the NDEx repository and assigned DOIs as shown in Table 1. NDEx is a recommended 
repository for Scientific Data, Springer Nature and the PLOS family of journals and is registered on FAIRsharing.
org; for additional info and documentation, please visit http://ndexbio.org. The official SPP account in NDEx is 
available at: https://bit.ly/30nN129.

Code availability
SPP source code is available in the SPP GitHub account under a Creative Commons CC BY 4.0 license at https://
github.com/signaling-pathways-project.
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