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In the past two decades, three deadly human respiratory syn-
dromes associated with coronavirus (CoV) infections have 
emerged: Severe Acute Respiratory Syndrome (SARS) in 
2002, Middle East Respiratory Syndrome (MERS) in 2012, 
and Coronavirus Disease 2019 (COVID-19) in 2019. These 
three diseases are caused by the zoonotic CoVs SARS-CoV-1, 
MERS-CoV, and SARS-CoV-2 (1), respectively. Before their 
emergence, human CoVs were associated with usually mild 
respiratory illness. To date, SARS-CoV-2 has sickened mil-
lions and killed over one million worldwide. This unprece-
dented challenge has prompted widespread efforts to develop 
new vaccine and antiviral strategies, including repurposed 
therapeutics, which offer the potential for treatments with 
known safety profiles and short development timelines. The 
successful repurposing of the antiviral nucleoside analog 
Remdesivir (2), as well as the host-directed anti-inflamma-
tory steroid dexamethasone (3), provide clear proof that ex-
isting compounds can be crucial tools in the fight against 
COVID-19. Despite these promising examples, there is still no 
curative treatment for COVID-19. In addition, as with any vi-
rus, the search for effective antiviral strategies could be com-
plicated over time by the continued evolution of SARS-CoV-2 
and possible resulting drug resistance (4). 

Current endeavors are appropriately focused on SARS-
CoV-2 due to the severity and urgency of the ongoing pan-
demic. However, the frequency with which other highly viru-
lent CoV strains have emerged highlights an additional need 

to identify promising targets for broad CoV inhibitors with 
high barriers to resistance mutations and potential for rapid 
deployment against future emerging strains. While tradi-
tional antivirals target viral enzymes that are often subject to 
mutation and thus the development of drug resistance, tar-
geting the host proteins required for viral replication is a 
strategy that can avoid resistance and lead to therapeutics 
with the potential for broad-spectrum activity as families of 
viruses often exploit common cellular pathways and pro-
cesses. 

Here, we identified shared biology and potential drug tar-
gets among the three highly pathogenic human CoV strains. 
We expanded upon our recently published map of virus-host 
protein interactions for SARS-CoV-2 (5) and mapped the full 
interactome of SARS-CoV-1 and MERS-CoV. We investigated 
the localization of viral proteins across strains, and quantita-
tively compared the virus-human interactions for each virus. 
Using functional genetics and structural analysis of selected 
host-dependency factors, we identified drug targets and also 
performed real-world analysis on clinical data from COVID-
19 patient outcomes. 
 
A cross-coronavirus study of protein function 
A central goal of this study is to understand, from a systems 
level, the conservation of target proteins and cellular pro-
cesses between SARS-CoV-2, SARS-CoV-1 and MERS-CoV, 
and thereby identify shared vulnerabilities that can be 
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The COVID-19 (Coronavirus disease-2019) pandemic, caused by the SARS-CoV-2 coronavirus, is a 
significant threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal 
but less transmissible coronaviruses SARS-CoV-1 and MERS-CoV. Here, we have carried out comparative 
viral-human protein-protein interaction and viral protein localization analysis for all three viruses. 
Subsequent functional genetic screening identified host factors that functionally impinge on coronavirus 
proliferation, including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and 
SARS-CoV-2 Orf9b, an interaction we structurally characterized using cryo-EM. Combining genetically-
validated host factors with both COVID-19 patient genetic data and medical billing records identified 
important molecular mechanisms and potential drug treatments that merit further molecular and clinical 
study. 

on O
ctober 28, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 15 October 2020  www.sciencemag.org  (Page numbers not final at time of first release) 3 
 

targeted with antiviral therapeutics. All three strains encode 
four homologous structural proteins (E, M, N, S) and 16 non-
structural proteins (Nsps). The latter are proteolytically 
cleaved from a polyprotein precursor that is expressed from 
one large open reading frame (Orf), Orf1ab (Fig. 1A). Addi-
tionally, coronaviruses contain a variable number of acces-
sory factors encoded by Orfs. While the genome organization 
and sequence of Orf1ab is mainly conserved between the 
three viruses under study, it diverges significantly in the re-
gion encoding the accessory factors, especially between 
MERS-CoV and the two SARS coronaviruses (Fig. 1, A to D, 
and table S1). These differences in conservation of genes and 
genome organization are linked to differences in host target-
ing systems that we have studied through large scale protein 
localization and interaction profiling (Fig. 1E). Building on 
our earlier work on the interactome of SARS-CoV-2 (5), we 
identified the host factors physically interacting with each 
SARS-CoV-1 and MERS-CoV viral protein. To this end, struc-
tural proteins, mature Nsps and predicted Orf proteins were 
codon optimized, 2xStrep tagged and cloned into a mamma-
lian expression vector (figs. S1 and S2; see below and Methods 
section). Each protein construct was transfected into 
HEK293T cells, affinity purified, and high-confidence in-
teractors were identified by mass spectrometry and scored 
using SAINTexpress and MiST scoring algorithms (6, 7) (table 
S2 and figs. S3 to S6). In addition, we performed mass spec-
trometry analysis on SARS-CoV-2 Nsp16, which was not ana-
lyzed in our earlier work (5) (table S2 and fig. S7). In all, we 
now report 389 high-confidence interactors for SARS-CoV-2, 
366 interactions for SARS-CoV-1, and 296 interactions for 
MERS-CoV (table S2). 
 
Conserved coronavirus proteins often retain the same 
cellular localization 
As protein localization can provide important information re-
garding function, we assessed the cellular localization of in-
dividually expressed coronavirus proteins in addition to 
mapping their interactions (Fig. 2A and Methods). Immuno-
fluorescence localization analysis of all 2xStrep-tagged SARS-
CoV-2, SARS-CoV-1, and MERS-CoV proteins highlights simi-
lar patterns of localization for the vast majority of shared pro-
tein homologs in HeLaM cells (Fig. 2B), supporting the 
hypothesis that conserved proteins share functional similari-
ties. A notable exception is Nsp13, which appears to localize 
to the cytoplasm for SARS-CoV-2 and SARS-CoV-1; but to the 
mitochondria for MERS-CoV (Fig. 2B, figs. S8 to S13, and ta-
ble S3). To assess the localization of SARS-CoV-2 proteins in 
the context of infected cells, we raised antibodies against 20 
of them and validated them with the individually-expressed 
2xStrep-tagged proteins (fig. S14). Using the 14 antibodies 
with confirmed specificity, we observed that localization of 
viral proteins in infected Caco-2 cells sometimes differed 

from their localization when expressed individually (Fig. 2B, 
fig. S15, and table S3). This likely results from recruitment of 
viral proteins and complexes into replication compartments, 
as well as remodeling of the secretory pathway during viral 
infection. Such differences could also be due to miss-localiza-
tion caused by protein tagging. For example, the localization 
of expressed Orf7B does not match the known SARS-CoV-1 
Golgi localization seen in the infection state. For proteins 
such as Nsp1 and Orf3a, which are not known to be involved 
in viral replication, their localization is consistent both when 
expressed individually and in the context of viral infection 
(Fig. 2, C and D). We have compared the localization of the 
expressed viral proteins with the localization of their interac-
tion partners using a cellular compartment Gene Ontology 
enrichment analysis (fig. S16). Several examples exist where 
the localization of the viral protein is in agreement with the 
localization of the interaction partners, including enrichment 
of the Nuclear Pore for Nsp9 interactors and ER enrichment 
for interactions with Orf8. 

Our localization studies suggest that most orthologous 
proteins have the same localization across the viruses (Fig. 
2B). Moreover, small changes in localization, as observed for 
some viral proteins across strains, do not coincide with 
strong changes in viral-host protein interactions (Fig. 2E). 
Overall, these results suggest that changes in protein locali-
zation, as measured by expressed tagged proteins, are not 
common and therefore they are unlikely to be a major source 
of differences in host targeting mechanisms. 
 
Comparison of host targeted processes identifies con-
served mechanisms with divergent implementations 
To study the conservation of targeted host factors and pro-
cesses, we first used a clustering approach (Methods) to com-
pare the overlap in protein interactions for the three viruses 
(Fig. 3A). We defined 7 clusters of viral-host interactions cor-
responding to those that are specific to each or shared among 
the viruses. The largest pairwise overlap was observed be-
tween SARS-CoV-1 and SARS-CoV-2 (Fig. 3A), as expected 
from their closer evolutionary relationship. A functional en-
richment analysis (Fig. 3B and table S4) highlighted host pro-
cesses that are targeted through interactions conserved 
across all three viruses including ribosome biogenesis and 
regulation of RNA metabolism. Conserved interactions be-
tween SARS-CoV-1 and SARS-CoV-2, but not MERS-CoV, were 
enriched in endosomal and Golgi vesicle transport (Fig. 3B). 
Despite the small fraction (7.1%) of interactions conserved be-
tween SARS-CoV-1 and MERS-CoV, but not SARS-CoV-2, 
these were strongly enriched in translation initiation and my-
osin complex proteins (Fig. 3B). 

We next asked if the conserved interactions were specific 
for certain viral proteins (Fig. 3C), and found that some pro-
teins (M, N, Nsp7/8/13) showed a disproportionately high 
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fraction of shared interactions conserved across the three vi-
ruses. This suggests that the processes targeted by these pro-
teins may be more essential and more likely to be required 
for other emerging coronaviruses. Such differences in conser-
vation of interactions should be encoded, to some extent, in 
the degree of sequence differences. Comparing pairs of ho-
mologous proteins shared between SARS-CoV-2 and SARS-
CoV-1 or MERS-CoV, we observed a significant correlation be-
tween sequence conservation and protein-protein interaction 
(PPI) similarity (calculated as Jaccard index) (Fig. 3D, r = 
0.58, p-value = 0.0001). This shows that the evolution of pro-
tein sequences strongly determines the divergence in the host 
interactors. 

While studying the function of host proteins interacting 
with each virus, we noted that some shared cellular processes 
were targeted by different interactions across the viruses. To 
study this in more detail, we identified the cellular processes 
significantly enriched in the interactomes of all three viruses 
(fig. S17A and table S4) and ranked them by the degree of 
overlapping proteins (Fig. 3E). This identified proteins re-
lated to the nuclear envelope, proteasomal catabolism, cellu-
lar response to heat and regulation of intracellular protein 
transport as biological functions that are hijacked by these 
viruses through different human proteins. Additionally, we 
found that up to 51% of protein interactions with a conserved 
human target occurred via a different (non-orthologous) viral 
protein (Fig. 3F) and, in some cases, the overlap of interac-
tions for two non-orthologous virus baits was greater than 
that for the orthologous pair (Fig. 3G and fig. S17, B and C). 
For example, several interacting proteins of SARS-CoV-2 
Nsp8 are also targeted by MERS-CoV Orf4a, and interactions 
of MERS-CoV Orf5 share interactors with SARS-CoV-2 Orf3a 
(Fig. 3G). In the case of Nsp8, we found some degree of struc-
tural homology between the C-terminal region of it and a pre-
dicted structural model of Orf4a (Methods and fig. S17D), 
indicative of a possible common interaction mechanism. 

In summary, we find that sequence differences determine 
the degree of changes in viral-host interactions, and that of-
ten the same cellular process can be targeted by different vi-
ral or host proteins. These results suggest a degree of 
plasticity in the way these viruses can control a given biolog-
ical process in the host cell. 
 
Quantitative differential interaction scoring (DIS) iden-
tifies interactions conserved between coronaviruses 
The identification of virus-host interactions conserved across 
pathogenic coronaviruses provides the opportunity to reveal 
host targets that may remain essential for these and other 
emerging coronaviruses. For a quantitative comparison of 
each virus-human interaction from viral baits shared by all 
three viruses, we developed a differential interaction score 
(DIS). DIS is calculated between any pair of viruses and is 

defined as the difference between the interaction scores (K) 
from each virus (Fig. 4A, table S5, and Methods). This kind of 
comparative analysis is beneficial as it permits the recovery 
of conserved interactions that may fall just below strict cut-
offs. For each comparison, DIS was calculated for interac-
tions residing in certain clusters as defined in the previous 
analysis (see Fig. 3A). For example, for the SARS-CoV-2 to 
MERS-CoV comparison, a DIS was computed for interactions 
residing in all clusters except cluster 3, where interactions are 
either not found or scores were very low for both SARS-CoV-
2 and MERS-CoV. A DIS of 0 indicates that the interaction is 
confidently shared between the two viruses being compared, 
while a DIS of +1 or -1 indicates that the host protein interac-
tion is specific for the virus listed first or second, respectively. 

In agreement with our previous results (Fig. 3A), DIS 
scores for the comparison between SARS-CoV-2 and SARS-
CoV-1 are enriched near zero, indicating a high number of 
shared interactions (Fig. 4B, yellow). On the other hand, com-
paring interactions from either SARS-CoV-1 or SARS-CoV-2 
with MERS-CoV resulted in DIS values closer to ±1, indicating 
a higher divergence (Fig. 4B, blue and green). The breakdown 
of DIS by homologous viral proteins reveals high similarity of 
interactions for proteins N, Nsp8, Nsp7, and Nsp13 (Fig. 4C), 
reinforcing the observations made by overlapping 
thresholded interactions (Fig. 3, C and D). As the greatest dis-
similarity was observed between the SARS coronaviruses and 
MERS-CoV, we computed a fourth DIS (SARS-MERS) by av-
eraging K from SARS-CoV-1 and SARS-CoV-2 prior to calcu-
lating the difference with MERS-CoV (Fig. 4, B and C, purple). 
We next created a network visualization of the SARS-MERS 
comparison (Fig. 4D), permitting an appreciation of SARS-
specific (red; DIS near +1) versus MERS-specific (blue; DIS 
near -1) interactions, as well as those conserved between all 
three coronavirus species (black; DIS near zero). SARS-
specific interactions include: DNA polymerase α interacting 
with Nsp1; stress granule regulators interacting with N pro-
tein; TLE transcription factors interacting with Nsp13; and 
AP2 clathrin interacting with Nsp10. Notable MERS-CoV-
specific interactions include: mTOR and Stat3 interacting 
with Nsp1; DNA damage response components p53 (TP53), 
MRE11, RAD50, and UBR5 interacting with Nsp14; and the 
activating signal cointegrator 1 (ASC-1) complex interacting 
with Nsp2. Interactions shared between all three corona-
viruses include: casein kinase II and RNA processing regula-
tors interacting with N protein; IMP dehydrogenase 2 
(IMPDH2) interacting with Nsp14; centrosome, protein ki-
nase A, and TBK1 interacting with Nsp13; and the signal 
recognition particle, 7SK snRNP, exosome, and ribosome bi-
ogenesis components interacting with Nsp8 (Fig. 4D). 
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Cell-based genetic screens identify SARS-CoV-2 host de-
pendency factors 
To identify host factors that are critical for infection and 
therefore potential targets for host-directed therapies, we 
performed genetic perturbations of 332 human proteins, 331 
previously identified to interact with SARS-CoV-2 proteins (5) 
plus ACE2, and observed their effect on infectivity. To ensure 
a broad coverage of potential hits, we carried out two screens 
in different cell lines, investigating the effects on infection: 
siRNA knockdowns in A549 cells stably expressing ACE2 
(A549-ACE2) (Fig. 5A) and CRISPR-based knockouts in Caco-
2 cells (Fig. 5B). ACE2 was included as positive control in both 
screens as were non-targeting siRNAs or non-targeted Caco-
2 cells as negative controls. After SARS-CoV-2 infection, ef-
fects on virus infectivity were quantified by RT-qPCR on cell 
supernatants (siRNA) or by titrating virus-containing super-
natants on Vero E6 cells (CRISPR) (see Methods for details). 
Cells were monitored for viability and knockdown or editing 
efficiency was determined as described (Methods and fig. 
S18). This revealed that 93% of the genes were knocked down 
at least 50% in the A549-ACE2 screen, and 95% of the knock-
downs exhibited less than a 20% decrease in viability. In the 
Caco-2 assay, we observed an editing efficiency of at least 80% 
for 89% of the genes tested (Methods and fig. S18). Of the 332 
human SARS-CoV-2 interactors, the final A549-ACE2 dataset 
includes 331 gene knockdowns and the Caco-2 dataset in-
cludes 286 gene knockouts, with the difference mainly due to 
removal of essential genes (Methods). The readouts from 
both assays were then separately normalized using robust Z-
scores (Methods), with negative and positive Z-scores indicat-
ing proviral dependency factors (perturbation = decreased in-
fectivity) and antiviral host factors with restrictive activity 
(perturbation = increased infectivity), respectively. As ex-
pected, negative controls resulted in neutral Z-scores (Fig. 5, 
C and D, and tables S6 and S7). Similarly, perturbations of 
the positive control ACE2 resulted in strongly negative Z-
scores in both assays (Fig. 5, C and D). Overall, the Z-scores 
did not exhibit any trends related to viability, knockdown ef-
ficiency, or editing efficiency (fig. S18). With a cutoff of |Z| > 
2 to highlight genes that notably affect SARS-CoV-2 infectiv-
ity when perturbed, 31 and 40 dependency factors (Z < -2) 
and 3 and 4 factors with restrictive activity (Z > 2) were iden-
tified in A549-ACE2 and Caco-2 cells, respectively (Fig. 5E). 
Of particular interest are the host dependency factors for 
SARS-CoV-2 infection, which represent potential targets for 
drug development and repurposing. For example, non-opioid 
receptor sigma 1 (sigma-1, encoded by SIGMAR1) was identi-
fied as a functional host-dependency factor in both cell sys-
tems in agreement with our previous report of antiviral 
activity for sigma receptor ligands (5). To provide a contex-
tual view of the genetics results, we generated a network that 
integrates the hits from both cell lines and the PPIs of their 

encoded proteins with SARS-CoV-2, SARS-CoV-1 and MERS-
CoV proteins (Fig. 5F). Interestingly, we observed an enrich-
ment of genetic hits that encode proteins interacting with vi-
ral Nsp7, which has a high degree of interactions shared 
across all the three viruses (Fig. 3C). Prostaglandin E syn-
thase 2 (encoded by PTGES2), for example, is a functional in-
teractor of Nsp7 from SARS-CoV-1, SARS-CoV-2 and MERS-
CoV. Other dependency factors were specific to SARS-CoV-2, 
including interleukin-17 receptor A (IL17RA), which interacts 
with SARS-CoV-2 Orf8. We also identify dependency factors 
that are shared interactors between SARS-CoV-1 and SARS-
CoV-2, such as the aforementioned sigma receptor 1 
(SIGMAR1) which interacts with Nsp6, and the mitochondrial 
import receptor subunit Tom70 (TOMM70) which interacts 
with Orf9b. We will use these interactions to validate virus-
host interactions (Orf8-IL17RA and Orf9b-Tom70), connect 
our systems biology data to evidence for clinical impact of the 
host factors we identified (IL17RA), and analyze outcomes of 
COVID-19 patients treated with putative host-directed drugs 
against PGES-2 and sigma receptor 1. 
 
SARS Orf9b Interacts with Tom70 
Orf9b of SARS-CoV-1 and SARS-CoV-2 was found to be local-
ized to mitochondria upon overexpression as well as in SARS-
CoV-2 infected cells. In line with this, the mitochondrial outer 
membrane protein Tom70 (encoded by TOMM70) is a high-
confidence interactor of Orf9b in both SARS-CoV-1 and SARS-
CoV-2 interaction maps (Fig. 6A) and may act as a host de-
pendency factor for SARS-CoV-2 (Fig. 6B). Tom70 falls below 
the scoring threshold as a putative interactor of MERS-CoV 
Nsp2, a viral protein not associated with mitochondria. (table 
S2). Tom70 is one of the major import receptors in the TOM 
complex that recognizes and mediates the translocation of 
mitochondrial preproteins from the cytosol into the mito-
chondria in a chaperone dependent manner (8). Additionally, 
Tom70 is involved in the activation of the mitochondrial an-
tiviral signaling (MAVS) protein which leads to apoptosis 
upon virus infection (9, 10). 

To validate the interaction between viral proteins and 
Tom70, we performed a co-immunoprecipitation experiment 
in the presence or absence of Strep-tagged Orf9b from SARS-
CoV-1 and SARS-CoV-2 as well as Strep-tagged Nsp2 from all 
three CoVs. Endogenous Tom70, but not other translocase 
proteins of the outer membrane including Tom20, Tom22 
and Tom40, co-precipitated only in the presence of Orf9b but 
not Nsp2 in both HEK293T and A549 cells, confirming our 
AP-MS data and suggesting that Orf9b specifically interacts 
with Tom70 (Fig. 6C and fig. S19A). Further, upon co-expres-
sion in bacterial cells, we were able to co-purify the Orf9b-
Tom70 protein complex, indicating a stable complex (Fig. 
6D). We found SARS-CoV-1 and SARS-CoV-2 Orf9b expressed 
in HeLaM cells co-localized with Tom70 (Fig. 6E) and 
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observed that SARS-CoV-1 or SARS-CoV-2 Orf9b overexpres-
sion led to decreases in Tom70 expression (Fig. 6, E and F). 
Similarly, Orf9b was found to co-localize with Tom70 upon 
SARS-CoV-2 infection (Fig. 6G). This is in agreement with the 
known outer mitochondrial membrane localization of Tom70 
(11) and Orf9b localization to mitochondria upon overexpres-
sion and during SARS-CoV-2 infection (Fig. 2B). We also saw 
decreases in Tom70 expression during SARS-CoV-2 infection 
(Fig. 6G) but did not see dramatic changes in expression lev-
els of the mitochondrial protein Tom20 after individual 
Strep-Orf9b expression or upon SARS-CoV-2 infection (fig. 
S19, B and C). 
 
CryoEM structure of Orf9b-Tom70 complex reveals 
Orf9b interacting at the substrate binding site of Tom70 
Tom70, as part of the Tom complex, is involved in recognition 
of mitochondrial pre-proteins from the cytosol (12). To fur-
ther understand the molecular details of Orf9b-Tom70 inter-
actions, we obtained a 3 Å cryoEM structure of the Orf9b-
Tom70 complex (Fig. 7A and fig. S20). Interestingly, although 
purified proteins failed to interact upon attempted in vitro 
complex reconstitution, they yielded a stable and pure com-
plex when co-expressed in E. coli (Fig. 6D). This may be due 
to the fact that Orf9b alone purifies as a dimer (as inferred 
by the apparent molecular weight on size exclusion chroma-
tography) and would need to dissociate to interact with 
Tom70 based on our structure. Tom70 preferentially binds 
preproteins with internal hydrophobic targeting sequences 
(13). It contains an N-terminal transmembrane domain and 
tetratricopeptide repeat (TPR) motifs in its cytosolic segment. 
The C-terminal TPR motifs recognize the internal mitochon-
drial targeting signals (MTS) of preproteins, and the N-termi-
nal TPR clamp domain serves as a docking site for multi-
chaperone complexes that contain preprotein (14, 15). Ob-
tained cryoEM density allowed us to build atomic models for 
residues 109-600 of human Tom70 and residues 39-76 of 
SARS-CoV-2 Orf9b (Fig. 7A and table S8). Orf9b makes exten-
sive hydrophobic interactions at the pocket on Tom70 that 
has been implicated in its binding to MTS, with the total bur-
ied surface area at the interface being quite extensive, ap-
proximately 2000 A2 (Fig. 7B). In addition to the mostly 
hydrophobic interface, four salt bridges further stabilize the 
interaction (Fig. 7C). Upon interaction with Orf9b, the inter-
acting helices on Tom70 move inward to tightly wrap around 
Orf9b as compared to previously crystallized yeast Tom70 
homologs (movie S1). No structure for human Tom70 without 
a substrate has been reported to date and therefore we can-
not rule out that the conformational differences are due to 
differences between homologs. However, it is possible that 
this conformational change upon substrate binding is con-
served across homologs as many of the Tom70 residues inter-
acting with Orf9b are highly conserved, likely indicating 

residues essential for endogenous MTS substrate recognition. 
Surprisingly, although a previously published crystal 

structure of SARS-CoV-2 Orf9b revealed that it entirely con-
sists of beta sheets (PDB:6Z4U) (16), upon binding Tom70 
residues 52-68, Orf9b forms a helix (Fig. 7D). This is con-
sistent with the fact that MTS sequences recognized by 
Tom70 are usually helical, and analysis with the TargetP MTS 
prediction server revealed a high probability for this region 
of Orf9b to possess an MTS (Fig. 7E). This shows structural 
plasticity in this viral protein where, depending on the bind-
ing partner, Orf9b changes between helical and beta strand 
folds. Furthermore, we had previously identified two infec-
tion-driven phosphorylation sites on Orf9b, S50 and S53 (17), 
which map to the region on Orf9b buried deep in the Tom70 
binding pocket (Fig. 7B, yellow). S53 contributes two hydro-
gen bonds to the interaction with Tom70 in this overall hy-
drophobic region. Therefore, once phosphorylated, it is likely 
that the Orf9b-Tom70 interaction is weakened. These resi-
dues are surface exposed in the dimeric structure of the 
Orf9b, which could potentially allow phosphorylation to par-
tition Orf9b between Tom70-bound and dimeric populations. 

The two binding sites on Tom70—the substrate binding 
site and the TPR domain that recognizes Hsp70/Hsp90—are 
known to be conformationally coupled (17, 18). Tom70’s in-
teraction with a C-terminal EEVD motif of Hsp90 via the TPR 
domain is key for its function in the interferon pathway, and 
induction of apoptosis upon virus infection (10, 19). Whether 
Orf9b, by binding to the substrate recognition site of Tom70, 
allosterically inhibits Tom70’s interaction with Hsp90 at the 
TPR domain remains to be investigated but interestingly, we 
see in our structure that R192, a key residue in the interaction 
with Hsp70/Hsp90, is moved out of position to interact with 
the EEVD sequence, suggesting that Orf9b may modulate in-
terferon and apoptosis signaling via Tom70 (fig. S21). Alter-
natively, Tom70 has been described as an essential import 
receptor for PTEN induced kinase 1 (PINK1) and therefore 
loss of mitochondrial import efficiency as a result of Orf9b 
binding to Tom70 substrate binding pocket may induce mi-
tophagy. 
 
Implications of the Orf8-IL17RA interaction for 
COVID-19 
As described above, we found that IL-17 receptor A (IL17RA) 
physically interacts with Orf8 from SARS-CoV-2, but not 
SARS-CoV-1 or MERS-CoV (Fig. 5D, table S2, and Fig. 8A). In-
terestingly, several recent studies have identified high IL-17 
levels or aberrant IL-17 signaling as a correlate of severe 
COVID-19 (20–23). We demonstrated the physical interaction 
of SARS-CoV-2 Orf8 with IL17RA occurs with or without IL-
17A treatment, suggesting that signaling through the receptor 
does not disrupt the interaction with Orf8 (Fig. 8B). Further-
more, knockdown of IL17RA led to a significant decrease in 
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SARS-CoV-2 viral replication in A549-ACE2 cells (Fig. 8C). 
These data suggest that the Orf8-IL17RA interaction modu-
lates systemic IL-17 signaling. 

One manner in which this signaling is regulated is 
through the release of the extracellular domain of the recep-
tor as soluble IL17RA (sIL17RA), which acts as a decoy in cir-
culation by soaking up IL-17A and inhibiting IL-17 signaling 
(21). Production of sIL17RA has been demonstrated by alter-
native splicing in cultured cells (22), but the mechanism by 
which IL17RA is shed in vivo remains unclear (23). ADAM 
family proteases are known to mediate the release of other 
interleukin receptors into their soluble form (24). We found 
that SARS-CoV-2 Orf8 physically interacted with both 
ADAM9 and ADAMTS1 in our previous study (5). We find that 
knockdown of ADAM9, like that of IL17RA, leads to signifi-
cant decreases in SARS-CoV-2 replication in A549-ACE2 cells 
(Fig. 5D and table S2). 

In order to test the in vivo relevance of sIL17RA in modu-
lating SARS-CoV-2 infection, we leveraged a genome-wide as-
sociation study (GWAS) which identified 14 single nucleotide 
polymorphisms (SNPs) near the IL17RA gene that causally 
regulate sIL17RA plasma levels (25). We then used general-
ized summary-based Mendelian randomization (GSMR) (25, 
26) on the curated GWAS datasets of the COVID-19 Host Ge-
netics Initiative (COVID-HGI) (27) and observed that geno-
types that predicted higher sIL17RA plasma levels were 
associated with lower risk of COVID-19 when compared to 
the population (Fig. 8D and table S9), seemingly consistent 
with our molecular data. Similar results were obtained when 
comparing only hospitalized COVID-19 patients to the popu-
lation. However, there was no evidence of association in hos-
pitalized versus non-hospitalized COVID-19 patients. Though 
the COVID-HGI dataset is underpowered and this observa-
tion needs to be replicated in other cohorts, the clinical ob-
servations, functional genetics and clinical genetics all 
suggest that SARS-CoV-2 benefits from modulating IL-17 sig-
naling. One potentially contradictory caveat is that we find 
high-level IL-17A treatment diminishes SARS-CoV-2 replica-
tion in A549-ACE2 cells (fig. S22), however IL-17 is a plei-
otropic cytokine and it is likely to play multiple roles during 
SARS-CoV-2 infection in the context of a competent immune 
system. 

Interestingly, infectious and transmissible SARS-CoV-2 vi-
ruses with large deletions of Orf8 have arisen during the pan-
demic and have been associated with milder disease and 
lower concentrations of pro-inflammatory cytokines (20). No-
tably, compared to healthy controls, patients infected with 
wildtype, but not Orf8-deleted virus, had three-fold elevated 
plasma levels of IL-17A (20). More work will be needed to un-
derstand if and how Orf8 manipulates the IL-17 signaling 
pathway during the course of SARS-CoV-2 infection. 
 

Investigation of druggable targets identified as interac-
tors of multiple coronaviruses 
The identification of druggable host factors provides a ra-
tionale for drug repurposing efforts. Given the extent of the 
current pandemic, real-world data can now be used to study 
the outcome of COVID-19 patients coincidentally treated with 
host factor-directed, FDA-approved therapeutics. Using med-
ical billing data, we identified 738,933 patients in the United 
States with documented SARS-CoV-2 infection (Methods). In 
this cohort, we probed the use of drugs against targets iden-
tified here that were shared across coronavirus strains and 
found to be functionally relevant in the genetic perturbation 
screens. In particular, we analyzed outcomes for an inhibitor 
of prostaglandin E synthase type 2 (PGES-2, encoded by 
PTGES2) and for potential ligands of sigma non-opioid recep-
tor 1 (sigma-1, encoded by SIGMAR1), and asked whether 
these patients fared better than carefully-matched patients 
treated with clinically-similar drugs that do not act on coro-
navirus host factors. 

PGES-2, an interactor of Nsp7 from all three viruses (Fig. 
4D), is a dependency factor for SARS-CoV-2 (Fig. 5F). It is in-
hibited by the FDA-approved prescription nonsteroidal anti-
inflammatory drug (NSAID) indomethacin. Computational 
docking of Nsp7 and PGES-2 to predict binding configuration 
showed that the dominant cluster of models localizes Nsp7 
adjacent to the PGES-2-indomethacin binding site (fig. S23). 
However, indomethacin did not inhibit SARS-CoV-2 in vitro 
at reasonable antiviral concentrations (fig. S24 and table 
S10). A previous study also found that similarly high levels of 
the drug were needed for inhibition of SARS-CoV-1 in vitro, 
but still showed efficacy for indomethacin against canine 
coronavirus in vivo (24). This motivated us to observe out-
comes in a cohort of outpatients with confirmed SARS-CoV-2 
infection who by happenstance initiated a course of indo-
methacin, as compared to those who initiated the prescrip-
tion NSAID celecoxib, which lacks anti-PGES-2 activity. We 
compared the odds of hospitalization by risk-set sampling 
(RSS) patients treated at the same time and at similar levels 
of disease severity and then further matching on propensity 
score (PS) (25) (Fig. 9A and table S11). RSS and PS, combined 
with a new user, active comparator design that mimics the 
interventional component of parallel group randomized stud-
ies, are established design and analytic techniques that miti-
gate biases that can arise in observational studies. A complete 
list of risk factors used for matching, which include demo-
graphic data, baseline healthcare utilization, comorbidities 
and measures of disease severity, are found in table S11. 

Among SARS-CoV-2-positive patients, new users of indo-
methacin in the outpatient setting were less likely than 
matched new users of celecoxib to require hospitalization or 
inpatient services (Fig. 9B; Odds Ratio (OR) = 0.33, 95% Con-
fidence Interval (CI) 0.03-3.19). The confidence interval of our 
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primary analysis included the null value. In sensitivity anal-
yses, neither using the larger, risk-set-sampled cohort nor re-
laxing our outcome definition to include any hospital visit 
appreciably changed the interpretation of our findings, but it 
did narrow the confidence intervals, particularly when both 
approaches were combined (OR = 0.25, 95% CI 0.08-0.76). 
While it is important to acknowledge that this is a small, non-
interventional study, it is nonetheless a powerful example of 
how molecular insight can rapidly generate testable clinical 
hypotheses and help prioritize candidates for prospective 
clinical trials or future drug development. 

To create larger patient cohorts, we next grouped drugs 
that shared activity against the same target, sigma receptors. 
We previously identified sigma-1 and sigma-2 as drug targets 
in our SARS-CoV-2-human protein-protein interaction map 
and multiple potent, non-selective sigma ligands were among 
the most promising inhibitors of SARS-CoV-2 replication in 
Vero E6 cells (5). As shown above, knockout and knockdown 
of SIGMAR1, but not SIGMAR2 (also known as TMEM97), led 
to robust decreases in SARS-CoV-2 replication (fig. S24 and 
Fig. 5F), suggesting that sigma-1 may be a key therapeutic tar-
get. We analyzed SIGMAR1 sequences across 359 mammals 
and observed positive selection of several residues within 
beaked whale, mouse, and ruminant lineages, which may in-
dicate a role in host-pathogen competition (fig. S25). Addi-
tionally, the sigma ligand drug amiodarone inhibited 
replication of SARS-CoV-1 as well as SARS-CoV-2, consistent 
with the conservation of the Nsp6-sigma-1 interaction across 
the SARS viruses (fig. S24 and Fig. 4D). We then looked for 
other FDA-approved drugs with reported nanomolar affinity 
for sigma receptors or that fit the sigma ligand chemotype (5, 
26–33) and selected 13 such therapeutics. We find that all are 
potent inhibitors of SARS-CoV-2 with IC50 values under 10 
μM, though it is important to note there is a wide range in 
sigma receptor affinity with no clear correlation between 
sigma receptor binding affinity and antiviral activity (fig. 
S24D). Several clinical drug classes were represented by more 
than one candidate, including typical antipsychotics and an-
tihistamines. Over-the-counter antihistamines are not well 
represented in medical billing data and are therefore poor 
candidates for real-world analysis, but users of typical anti-
psychotics can be easily identified in our patient cohort. By 
grouping these individual drug candidates by clinical indica-
tion, we were able to build a better-powered comparison. 

We constructed a cohort for retrospective analysis on new, 
inpatient users of antipsychotics. In inpatient settings, typi-
cal and atypical antipsychotics are used similarly, most com-
monly for delirium. We compared the effectiveness of typical 
antipsychotics, which have sigma activity and antiviral effects 
(fig. S24E), versus atypical antipsychotics, which are not pre-
dicted to bind sigma receptors and do not have antiviral ac-
tivity (fig. S24F), for treatment of COVID-19 (Fig. 9C). 

Observing mechanical ventilation outcomes in inpatient co-
horts is a proxy for worsening of severe illness, rather than 
the progression from mild disease signified by the hospitali-
zation of indomethacin-exposed outpatients above. We again 
employed RSS plus PS to build a robust, directly comparable 
cohort of inpatients (table S11). In our primary analysis, half 
as many new users of the sigma-ligand typical antipsychotics 
compared to new users of atypical antipsychotics progressed 
to the point of requiring mechanical ventilation, demonstrat-
ing significantly lower use with an odds ratio (OR) of 0.46 
(95% CI = 0.23-0.93, p = 0.03, Fig. 9D). As above, we con-
ducted a sensitivity analysis in the RSS-only cohort and ob-
served the same trend (OR = 0.56, 95% CI = 0.31-1.02, p = 
0.06), emphasizing the primary result of a beneficial effect 
for typical versus atypical antipsychotics observed in the RSS-
plus-PS-matched cohort. Although a careful analysis of the 
relative benefits and risks of typical antipsychotics should be 
undertaken before considering prospective studies or inter-
ventions, these data and analysis demonstrate how molecular 
information can be translated into real-world implications 
for the treatment of COVID-19, an approach that can ulti-
mately be applied to other diseases in the future. 
 
Discussion 
In this study, we generated and compared three different 
coronavirus-human protein-protein interaction maps in an 
attempt to identify and understand pan-coronavirus molecu-
lar mechanisms. The use of a quantitative differential inter-
action scoring (DIS) approach permitted the identification of 
virus-specific as well as shared interactions among distinct 
coronaviruses. We also systematically carried out subcellular 
localization analysis using tagged viral proteins as well as an-
tibodies targeting specific SARS-CoV-2 proteins. Our results 
suggest that protein localization can often differ when com-
paring individually-expressed viral proteins with the localiza-
tion of the same protein in the context of infection. This can 
be due to factors such as miss-location driven by tagging, 
changes in localization due to interaction partners, or cellular 
compartments that are specific to the infection state. These 
differences are important caveats of viral-host interaction 
studies performed by tagged expressed proteins. However, 
previous studies and the work performed here shows how 
these data can be very powerful for the identification of host 
targeted processes and relevant drug targets. 

These data were integrated with genetic data where the 
interactions uncovered with SARS-CoV-2 were perturbed us-
ing RNAi and CRISPR in different cellular systems and viral 
assays, an effort that functionally connected many host fac-
tors to infection. One of these, Tom70, which we have shown 
binds to Orf9b from both SARS-CoV-1 and SARS-CoV-2, is a 
mitochondrial outer membrane translocase that has been 
previously shown to be important for mounting an interferon 
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response (34). Our functional data, however, shows that 
Tom70 has at least some role in promoting infection rather 
than inhibiting it. Using cryoEM, we obtained a 3 Å structure 
of a region of Orf9b binding to the active site of Tom70. Re-
markably, we find that Orf9b is in a drastically different con-
formation than previously visualized. This offers the 
possibility that Orf9b may partition between two distinct 
structural states in the cells, with each possessing a different 
function and possibly explaining its potential functional plei-
otropy. The exact details of functional significance and regu-
lation of the Orf9b-Tom70 interaction await further 
experimental elucidation. This interaction, however, which is 
conserved between SARS-CoV-1 and SARS-CoV-2, could have 
value as a pan-coronavirus therapeutic target. 

Finally, we attempted to connect our in vitro molecular 
data to clinical information available for COVID-19 patients 
to understand the pathophysiology of COVID-19 and explore 
new therapeutic avenues. To this end, using GWAS datasets 
of the COVID-19 Host Genetics Initiative (35), we observed 
that increased predicted sIL17RA plasma levels were associ-
ated with lower risk of COVID-19. Interestingly, we find that 
IL17RA physically binds to SARS-CoV-2 Orf8 and genetic dis-
ruption results in decreased infection. These collective data 
suggest that future studies should be focused on this pathway 
as both an indicator and therapeutic target for COVID-19. 
Furthermore, using medical billing data, we also observed 
trends in COVID-19 patients on specific drugs indicated by 
our molecular studies. For example, inpatients prescribed 
sigma-ligand typical antipsychotics seemingly have better 
COVID-19 outcomes when compared to users of atypical an-
tipsychotics, which do not bind to sigma-1. We cannot be cer-
tain that sigma receptor interaction is the mechanism 
underpinning this effect, as typical antipsychotics are known 
to bind to a multitude of cellular targets. Replication in other 
patient cohorts and further work will be needed to see if there 
is therapeutic value in these connections, but at the very least 
we have demonstrated a strategy wherein protein network 
analyses can be used to make testable predictions from real-
world, clinical information. 

Overall, we have described an integrative and collabora-
tive approach to study and understand pathogenic corona-
virus infection, identifying conserved targeted mechanisms 
that are likely to be of high relevance for other viruses of this 
family, some of which have yet to infect humans. We used 
proteomics, cell biology, virology, genetics, structural biology, 
biochemistry and clinical and genomic information in an at-
tempt to provide a holistic view of SARS-CoV-2 and other 
coronaviruses’ interactions with infected host cells. We pro-
pose that such an integrative and collaborative approach 
could and should be used to study other infectious agents as 
well as other disease areas. 
 

Materials and Methods 
Cells 
HEK293T/17 (HEK293T) cells were procured from the UCSF 
Cell Culture Facility, and are available through UCSF's Cell 
and Genome Engineering Core (https://cgec.ucsf.edu/cell-
culture-and-banking-services). HEK293T cells were cultured 
in Dulbecco’s Modified Eagle’s Medium (DMEM) (Corning) 
supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, 
Life Technologies) and 1% Penicillin-Streptomycin (Corning) 
and maintained at 37°C in a humidified atmosphere of 5% 
CO2. STR analysis by the Berkeley Cell Culture Facility on Au-
gust 8, 2017 authenticates these as HEK293T cells with 94% 
probability. 

HeLaM cells (RRID: CVCL_R965) were originally ob-
tained from the laboratory of M. S. Robinson (CIMR, Univer-
sity of Cambridge, UK) and routinely tested for mycoplasma 
contamination. HeLaM cells were grown in DMEM supple-
mented with 10% FBS, 100 U/ml penicillin, 100 μg/ml strep-
tomycin and 2 mM glutamine at 37°C in a 5% CO2 humidified 
incubator. 

A549 cells stably expressing ACE2 (A549-ACE2) were a 
kind gift from Dr. Olivier Schwartz. A549-ACE2 cells were 
cultured in DMEM supplemented with 10% FBS, blasticidin 
(20 μg/ml, Sigma) and maintained at 37°C with 5% CO2. STR 
analysis by the Berkeley Cell Culture Facility on July 17, 2020 
authenticates these as A549 cells with 100% probability. 

Caco-2 cells (ATTC, HTB-37, RRID:CVCL_0025) were cul-
tured in DMEM with GlutaMAX and pyruvate (Gibco, 
10569010) and supplemented with 20% FBS (Gibco, 
26140079). For Caco-2 cells utilized in Cas9-RNP knockouts, 
STR analysis by the Berkeley Cell Culture Facility on April 23, 
2020 authenticates these as Caco-2 cells with 100% probabil-
ity. 

Vero E6 cells were purchased from ATCC and thus au-
thenticated (VERO C1008 [Vero 76, clone E6, Vero E6] (ATCC, 
CRL-1586). Vero E6 cells tested negative for mycoplasma con-
tamination. Vero E6 cells were cultured in DMEM (Corning) 
supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, 
Life Technologies) and 1% Penicillin-Streptomycin (Corning) 
and maintained at 37°C in a humidified atmosphere of 5% 
CO2. 
 
Microbes 
LOBSTER E. coli Expression Strain: LOBSTR-(BL21(DE3)) 
Kerafast # EC1002 
 
Antibodies 
Commercially available primary antibodies used in this 
study: 
rabbit anti-beta-Actin (Cell Signaling Technology #4967, 
RRID:AB_330288); mouse anti-beta Tubulin (Sigma-Aldrich 
#T8328, RRID:AB_1844090); rabbit anti-BiP (Cell Signaling 
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Technology #3177S, RRID:AB_2119845); mouse anti-EEA1 
(BD Biosciences #610457, RRID:AB_397830, used at 1:200); 
mouse anti-ERGIC53 (Enzo Life Sciences #ALX-804-602-
C100, RRID:AB_2051363, used at 1:200); anti-GM130; rabbit 
anti-GRP78 BiP (Abcam #Ab21685, RRID:AB_2119834); rab-
bit anti-SARS-CoV-Nucleocapsid Protein (Rockland #200-
401-A50, RRID:AB_828403); rabbit anti-PDI (Cell Signaling 
Technology #3501, RRID:AB_2156433); mouse anti-Strep tag 
(QIAGEN #34850, RRID:AB_2810987, used at 1:5000); Mouse 
anti-strepMAB (IBA Lifesciences #2-1507-001, used at 1:1000); 
rabbit anti-Strep-tag II (Abcam #ab232586); rabbit anti-
Tom20 (Proteintech #11802-1-AP, RRID:AB_2207530, used at 
1:1000); rabbit anti-Tom20 (Cell Signaling Technology 
#42406, RRID:AB_2687663); mouse anti-Tom22 (Santa Cruz 
Biotechnology #sc-101286, RRID:AB_1130526); rabbit anti-
Tom40 (Santa Cruz Biotechnology #sc-11414, 
RRID:AB_793274); mouse anti-Tom70 (Santa Cruz #sc-
390545, RRID:AB_2714192, used at 1:500); Rabbit anti-STX5 
(Synaptic Systems 110 053, used at 1:500); ActinStaining Kit 
647-Phalloidin (Hypernol #8817-01, used at 1:400) 
 
Commercially available secondary antibodies used in this 
study: 
Alexa Fluor 488 chicken anti-mouse IgG (Invitrogen #A21200, 
RRID_AB_2535786, used at 1:400); Alexa Fluor 488 chicken 
anti-rabbit IgG (Invitrogen #A21441, RRID_AB_10563745, 
used at 1:400); Alexa Fluor 568 donkey anti-sheep IgG (Invi-
trogen #A21099, RRID_AB_10055702, used at 1:400); Alexa 
Fluor Plus 488 goat anti-rabbit (ThermoFisher A32731, used 
at 1:500); Alexa Fluor Plus 594 goat anti-mouse (Ther-
moFisher A32742, used at 1:500); goat anti-mouse IgG-HRP 
(BioRad #170-6516, RRID:AB_11125547, used at 1:20000) 
 
Non-commercial antisera 
Rabbit anti-SARS-CoV-2-NP antiserum was produced by the 
Garcia-Sastre lab and used at 1:10000; for information on pol-
yclonal sheep antibodies targeting SARS-CoV-2 proteins, see 
below, table S3 and https://mrcppu-covid.bio/. 
 
Coronavirus annotation and plasmid cloning 
SARS-CoV-1 isolate Tor2 (NC_004718) and MERS-CoV 
(NC_019843) were downloaded from GenBank and utilized 
to design 2x-Strep tagged expression constructs of open read-
ing frames (Orfs) and proteolytically mature nonstructural 
proteins (Nsps) derived from Orf1ab (with N-terminal methi-
onines and stop codons added as necessary). Protein termini 
were analyzed for predicted acylation motifs, signal peptides, 
and transmembrane regions, and either the N- or C terminus 
was chosen for tagging as appropriate. Finally, reading 
frames were codon optimized and cloned into pLVX-
EF1alpha-IRES-Puro (Takara/Clontech) including a 5′ Kozak 
motif. 

Immunofluorescence Microscopy of Viral Protein Con-
structs 
Approximately 60,000 HeLaM cells were seeded onto glass 
coverslips in a 12-well dish and grown overnight. The cells 
were transfected using 0.5 μg of plasmid DNA and either pol-
yethylenimine (Polysciences) or Fugene HD (Promega; 1 part 
DNA to 3 parts transfection reagent) and grown for a further 
16 hours. 

Transfected cells were fixed with 4% paraformaldehyde 
(Polysciences) in PBS at room temperature for 15 min. The 
fixative was removed and quenched using 0.1 M glycine in 
PBS. The cells were permeabilized using 0.1% saponin in PBS 
containing 10% FBS. The cells were stained with the indi-
cated primary and secondary antibodies for 1 hour at room 
temperature. The coverslips were mounted onto microscope 
slides using ProLong Gold antifade reagent (ThermoFisher) 
and imaged using a UplanApo 60x oil (NA 1.4) immersion ob-
jective on a Olympus BX61 motorized wide-field epifluores-
cence microscope. Images were captured using a Hamamatsu 
Orca monochrome camera and processed using ImageJ. 

To gain insight into the intracellular distribution of each 
Strep-tagged construct, approximately 100 cells per transfec-
tion were manually scored. Each construct was assigned an 
intracellular distribution in relation to the plasma mem-
brane, endoplasmic reticulum, Golgi, cytoplasm and mito-
chondria (scored out of 7). In several instances the viral 
proteins were observed on membranes which did not fit any 
of the basic categories so were defined as being localized on 
undefined membranes. Many of the constructs had several 
localizations so this was also reflected in the scoring. The 
scoring also took into account the impact of expression level 
on the localization of the constructs. 
 
Meta Analysis of immunofluorescence data 
We first sorted the data concerning viral protein location for 
all Strep-tagged viral proteins expressed individually in three 
heatmaps (one per virus) using a custom R script 
(“pheatmap” package). The information concerning protein 
localization during SARS-CoV-2 infection was added as a 
square border color code in the first heatmap, to compare the 
two different localization patterns. In order to compare the 
predicted versus the experimentally determined locations, for 
each protein we took the top scoring sequence based locali-
zation prediction from DeepLoc (36) if the score was bigger 
than 1. When more than one localization can be assigned to 
the same protein, we took as many top scoring ones as exper-
imentally assigned localizations we had for the same protein. 
Finally, for each cell compartment, we count the number of 
experimentally assigned viral proteins and the subset of them 
predicted to that same compartment as “correct predictions”. 
To compare changes in protein interactions with changes in 
protein localization (Strep-tagged experiment versus 
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sequence-based prediction), we calculated the Jaccard index 
of prey overlap for each viral protein (SARS-CoV-2 vs. SARS-
CoV-1 and SARS-CoV-2 vs. MERS-CoV) and plotted them to-
gether, for proteins with the same localization and for pro-
teins with different localization. 
 
Generation of polyclonal sheep antibodies targeting 
SARS-CoV-2 proteins 
Sheep were immunized with individual N-terminal GST-
tagged SARS-CoV-2 recombinant proteins or N-terminal 
MBP-tagged proteins (for SARS-CoV-2 S, S-RBD and Orf7a), 
followed by up to 5 booster injections four weeks apart from 
each other. Sheep were subsequently bled and IgGs were af-
finity purified using the specific recombinant N-terminal 
maltose binding protein (MBP)-tagged viral proteins. Each 
antiserum specifically recognized the appropriate native viral 
protein. Characterisation of each antibody can be found at 
https://mrcppu-covid.bio/. All antibodies generated can be 
requested at https://mrcppu-covid.bio/. Also see table S3. 
 
Immunofluorescence Microscopy of Infected Caco-2 
cells 
For infection experiments in human colon epithelial Caco-2 
cells (ATCC, HTB-37), SARS-CoV-2 isolate Muc-IMB-1, kindly 
provided by the Bundeswehr Institute of Microbiology, Mu-
nich, Germany, was used. SARS-CoV-2 was propagated in 
Vero E6 cells in DMEM supplemented with 2% FBS. All work 
involving live SARS-CoV-2 was performed in the BSL3 facility 
of the Institute of Virology, University Hospital Freiburg, and 
was approved according to the German Act of Genetic Engi-
neering by the local authority (Regierungspraesidium 
Tuebingen, permit UNI.FRK.05.16/05). 

Caco-2 human colon epithelial cells seeded on glass co-
verslips were infected with SARS-CoV-2 (Strain Muc-IMB-
1/2020, second passage on Vero E6 cells (2x106 PFU/ml)) at 
an MOI of 0.1. At 24 hours post-infection, cells were washed 
with PBS and fixed in 4% paraformaldehyde in PBS for 20 
min at room temperature, followed by 5 min of quenching in 
0.1 M glycine in PBS at room temperature. Cells were perme-
abilized and blocked in 0.1% saponin in PBS supplemented 
with 10% fetal calf serum for 45 min at room temperature and 
incubated with primary antibodies for 1 hour at room tem-
perature. After washing 15 min with blocking solution, 
AF568-labeled donkey-anti-sheep (Invitrogen, #A21099; 
1:400) secondary antibody as well as AF4647-labeled Phal-
loidin (Hypermol, #8817-01, 1:400) were applied for 1 hour at 
room temperature. Subsequent washing was followed by em-
bedding in Diamond Antifade Mountant with DAPI (Ther-
moFisher, #P36971). Fluorescence images were generated 
using a LSM800 confocal laser-scanning microscope (Zeiss) 
equipped with a 63X, 1.4 NA oil objective and Airyscan detec-
tor and the Zen blue software (Zeiss) and processed with Zen 

blue software and ImageJ/Fiji. 
 
Transfection and cell harvest for immunoprecipitation 
experiments 
For each affinity purification (SARS-CoV-1 baits, MERS-CoV 
baits, GFP-2xStrep or empty vector controls), ten million 
HEK293T cells were transfected with up to 15 μg of individual 
expression constructs using PolyJet transfection reagent 
(SignaGen Laboratories) at a 1:3 μg:μl ratio of plasmid to 
transfection reagent based on manufacturer’s protocol. After 
more than 38 hours, cells were dissociated at room tempera-
ture using 10 ml PBS without calcium and magnesium (D-
PBS) with 10 mM EDTA for at least 5 min, pelleted by centrif-
ugation at 200xg, at 4°C for 5 min, washed with 10 ml D-PBS, 
pelleted once more and frozen on dry ice before storage at -
80°C for later immunoprecipitation analysis. For each bait, 
three independent biological replicates were prepared. 

Whole cell lysates were resolved on 4%–20% Criterion 
SDS-PAGE gels (Bio-Rad Laboratories) to assess Strep-tagged 
protein expression by immunoblotting using mouse anti-
Strep tag antibody 34850 (QIAGEN) and anti-mouse HRP 
secondary antibody (BioRad). 
 
Anti-Strep-Tag affinity purification 
Frozen cell pellets were thawed on ice for 15-20 min and sus-
pended in 1 ml Lysis Buffer [IP Buffer (50 mM Tris-HCl, pH 
7.4 at 4°C, 150 mM NaCl, 1 mM EDTA) supplemented with 
0.5% Nonidet P 40 Substitute (NP-40; Fluka Analytical) and 
cOmplete mini EDTA-free protease and PhosSTOP phospha-
tase inhibitor cocktails (Roche)]. Samples were then freeze-
fractured by refreezing on dry ice for 10-20 min, then re-
thawed and incubated on a tube rotator for 30 min at 4°C. 
Debris was pelleted by centrifugation at 13,000xg, at 4°C for 
15 min. Up to 56 samples were arrayed into a 96-well 
Deepwell plate for affinity purification on the KingFisher 
Flex Purification System (Thermo Scientific) as follows: Mag-
Strep “type3” beads (30 μl; IBA Lifesciences) were equili-
brated twice with 1 ml Wash Buffer (IP Buffer supplemented 
with 0.05% NP-40) and incubated with 0.95 ml lysate for 2 
hours. Beads were washed three times with 1 ml Wash Buffer 
and then once with 1 ml IP Buffer. Beads were released into 
75 μl Denaturation-Reduction Buffer (2 M urea, 50 mM Tris-
HCl pH 8.0, 1 mM DTT) in advance of on-bead digestion. All 
automated protocol steps were performed at 4°C using the 
slow mix speed and the following mix times: 30 s for equili-
bration/wash steps, 2 hours for binding, and 1 min for final 
bead release. Three 10 s bead collection times were used be-
tween all steps. 
 
On-bead digestion for affinity purification 
Bead-bound proteins were denatured and reduced at 37°C for 
30 min, alkylated in the dark with 3 mM iodoacetamide for 
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45 min at room temperature, and quenched with 3 mM DTT 
for 10 min. To offset evaporation, 22.5 μl 50 mM Tris-HCl, pH 
8.0 were added prior to trypsin digestion. Proteins were then 
incubated at 37°C, initially for 4 hours with 1.5 μl trypsin (0.5 
μg/μl; Promega) and then another 1-2 hours with 0.5 μl addi-
tional trypsin. All steps were performed with constant shak-
ing at 1,100 rpm on a ThermoMixer C incubator. Resulting 
peptides were combined with 50 μl 50 mM Tris-HCl, pH 8.0 
used to rinse beads and acidified with trifluoroacetic acid 
(0.5% final, pH < 2.0). Acidified peptides were desalted for 
MS analysis using a BioPureSPE Mini 96-Well Plate (20 mg 
PROTO 300 C18; The Nest Group, Inc.) according to standard 
protocols. 
 
Mass spectrometry operation and peptide search 
Samples were re-suspended in 4% formic acid, 2% acetoni-
trile solution, and separated by a reversed-phase gradient 
over a nanoflow C18 column (Dr. Maisch). HPLC buffer A was 
comprised of 0.1% formic acid, and HPLC buffer B was com-
prised of 80% acetonitrile in 0.1% formic acid. Peptides were 
eluted by a linear gradient from 7 to 36% B over the course of 
52 min, after which the column was washed with 95% B, and 
re-equilibrated at 2% B. Each sample was directly injected via 
a Easy-nLC 1200 (Thermo Fisher Scientific) into a Q-Exactive 
Plus mass spectrometer (Thermo Fisher Scientific) and ana-
lyzed with a 75 min acquisition, with all MS1 and MS2 spectra 
collected in the orbitrap; data were acquired using the 
Thermo software Xcalibur (4.2.47) and Tune (2.11 QF1 Build 
3006). For all acquisitions, QCloud was used to control in-
strument longitudinal performance during the project (37). 
All proteomic data was searched against the human prote-
ome (uniprot reviewed sequences downloaded February 
28th, 2020), EGFP sequence, and the SARS-CoV or MERS pro-
tein sequences using the default settings for MaxQuant (ver-
sion 1.6.12.0) (38). Detected peptides and proteins were 
filtered to 1% false discovery rate in MaxQuant. All MS raw 
data and search results files have been deposited to the Pro-
teomeXchange Consortium via the PRIDE partner repository 
with the dataset (identifier PXD PXD021588, Username: re-
viewer_pxd021588@ebi.ac.uk, password: B5Ho3HES). 
 
High-confidence protein interaction scoring 
Identified proteins were then subjected to protein-protein in-
teraction scoring with both SAINTexpress (version 3.6.3) and 
MiST (https://github.com/kroganlab/mist) (6, 7). We applied 
a two-step filtering strategy to determine the final list of re-
ported interactors, which relied on two different scoring 
stringency cut-offs. In the first step, we chose all protein in-
teractions that had a MiST score ≥ 0.7, a SAINTexpress Bayes-
ian false-discovery rate (BFDR) ≤ 0.05 and an average 
spectral count ≥ 2. For all proteins that fulfilled these criteria, 
we extracted information about the stable protein complexes 

that they participated in from the CORUM (39) database of 
known protein complexes. In the second step, we then re-
laxed the stringency and recovered additional interactors 
that (1) formed complexes with interactors determined in fil-
tering step 1 and (2) fulfilled the following criteria: MiST 
score ≥ 0.6, SAINTexpress BFDR ≤ 0.05 and average spectral 
counts ≥ 2. Proteins that fulfilled filtering criteria in either 
step 1 or step 2 were considered to be high-confidence pro-
tein–protein interactions (HC-PPIs). 

Using this filtering criteria, nearly all of our baits recov-
ered a number of HC-PPIs in close alignment with previous 
datasets reporting an average of around 6 PPIs per bait (40). 
However, for a subset of baits, we observed a much higher 
number of PPIs that passed these filtering criteria. For these 
baits, the MiST scoring was instead performed using a larger 
in-house database of 87 baits that were prepared and pro-
cessed in an analogous manner to this SARS-CoV-2 dataset. 
This was done to provide a more comprehensive collection of 
baits for comparison, to minimize the classification of non-
specifically binding background proteins as HC-PPIs. This 
was performed for SARS-CoV-1 baits (M, Nsp12, Nsp13, Nsp8, 
and Orf7b), MERS-CoV baits (Nsp13, Nsp2, and Orf4a), and 
SARS-CoV-2 Nsp16. SARS-CoV-2 Nsp16 MiST was scored us-
ing the in-house database as well as all previous SARS-CoV-2 
data (5). 
 
Hierarchical clustering of virus-human protein inter-
actions 
Hierarchical clustering was performed on interactions for (1) 
viral bait proteins shared across all three viruses (LIST) and 
(2) passed the high-confidence scoring criteria (MiST score ≥ 
0.6, SAINTexpress BFDR ≤ 0.05 and average spectral counts 
≥ 2) in at least one virus. We clustered using a new Interac-
tion Score (K), which we defined as the average between the 
MiST and Saint score for each virus-human interaction. This 
was done to provide a single score that captured the benefits 
from each scoring method. Clustering was performed using 
the ComplexHeatmap package in R, using the “average” clus-
tering method and “euclidean” distance metric. K-means 
clustering (k=7) was applied to capture all possible combina-
tions of interaction patterns between viruses. 
 
Gene ontology enrichment analysis on clusters 
Sets of genes found in 7 clusters were tested for enrichment 
of Gene Ontology (GO) terms, which was performed using the 
enricher function of clusterProfiler package in R (41). The GO 
terms were obtained from the C5 collection of Molecular Sig-
nature Database (MSigDBv7.1) and include Biological Pro-
cess, Cellular Component, and Molecular Function 
ontologies. Significant GO terms were identified (adjusted p-
value < 0.05) and further refined to select non-redundant 
terms. To select non-redundant gene sets, we first 
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constructed a GO term tree based on distances (1 - Jaccard 
Similarity Coefficients of shared genes) between the signifi-
cant terms. The GO term tree was cut at a specific level (h = 
0.99) to identify clusters of non-redundant gene sets. For re-
sults with multiple significant terms belonging to the same 
cluster, we selected the term with the lowest adjusted p-value. 
 
Sequence similarity analysis 
Protein sequence similarity was assessed by comparing the 
protein sequences from SARS-CoV-1 and MERS-CoV to SARS-
CoV-2 for orthologous viral bait proteins. The corresponding 
protein-protein interaction similarity was represented by a 
Jaccard index, using the high-confidence interactomes for 
each virus. 
 
Gene ontology enrichment and PPI similarity analysis 
The high-confidence interactors of the three viruses were 
tested for enrichment of GO terms as described above. We 
then identified GO terms that are significantly enriched (ad-
justed p-value < 0.05) in all 3 viruses. For each enriched term, 
we generated the list of its associated genes and computed 
the Jaccard Index of pairwise comparisons of 3 viruses. 
 
Orthologous versus non-orthologous interactions anal-
ysis 
For a given pair of viruses, we identified all pairs of baits that 
share interactors and categorized these into “orthologous” 
and “non-orthologous” groups based on whether the two 
baits were orthologs or not. We then summed up the total 
number of shared interactors in each group to calculate the 
corresponding fractions. This was performed for all pairwise 
combinations of the three viruses. 
 
Structural modeling and comparison of MERS-CoV 
Orf4a and SARS-CoV-2 Nsp8 
To obtain a sensitive sequence comparison between MERS-
CoV Orf4a and SARS-CoV-2 Nsp8, we took into consideration 
their homologs. We first searched for homologs of these pro-
teins in the UniRef30 database using hhblits (1 iteration, E-
value cutoff 1e-3) (42). Subsequently, the resulting alignments 
were filtered to include only sequences with at least 80% cov-
erage to the corresponding query sequence, and hidden Mar-
kov models (HMMs) were created using hhmake. Finally, the 
HMMs of Orf4a andNsp8 homologs were locally aligned us-
ing hhalign. The structure of Orf4a was predicted de novo 
using trRosetta (43). To provide greater coverage than that 
provided by experimental structures, SARS-CoV-2 Nsp8 was 
modeled using the structure of its SARS-CoV homolog as tem-
plate (PDB: 2AHM) (44) using SWISS-MODEL (45). To search 
for local structural similarities between Orf4a and Nsp8, we 
used Geometricus, a structure embedding tool based on 3D 
rotation invariant moments (46). This generates so-called 

shape-mers, analogous to sequence k-mers. The structures 
were fragmented into overlapping k-mers based on the se-
quence (k=20) and into overlapping spheres surrounding 
each residue (radius=15 Å). To ensure that the similarities 
found between these distinct structures were significant, we 
used a high resolution of 7 to define the shape-mers. This re-
sulted in the identification of 4 different shape-mers common 
to Orf4a and Nsp8. We aligned the entire Orf4a structure 
with residues 96 to 191 of the Nsp8 structure (i.e., after re-
moval of the long N-terminal helix) using the Caretta struc-
tural alignment algorithm detailed by (47), using 3D rotation 
invariant moments (Durairaj et al. 2020) for initial superpo-
sition. We optimized parameters to maximize the Caretta 
score. The resulting alignment used k = 30, radius = 16 Å, gap 
open penalty = 0.05, gap extend penalty = 0.005, and had an 
root-mean-square deviation (RMSD) of 7.6 Å across 66 align-
ing residues. 
 
Differential interaction score (DIS) analysis 
We computed a differential interaction score (DIS) for inter-
actions that (1) originated from viral bait proteins shared 
across all three viruses and (2) passed the high-confidence 
scoring criteria (MiST score ≥ 0.6, SAINTexpress BFDR ≤ 0.05 
and average spectral counts ≥ 2) in at least one virus. We de-
fined the DIS to be the difference between the interaction 
scores (K) from each virus. DIS near 0 indicates that the in-
teraction is confidently shared between the two viruses being 
compared, while a DIS near -1 or +1 indicates that the host 
protein interaction is specific for one virus or the other. We 
computed a fourth DIS (SARS-MERS) by averaging K from 
SARS-CoV-1 and SARS-CoV-2 prior to calculating the differ-
ence with MERS-CoV. Here, a DIS near +1 indicates SARS-
specific interactions (shared between SARS-CoV-1 and SARS-
CoV-2 but absent in MERS-CoV), a DIS near -1 indicates 
MERS-specific interactions (present in MERS-CoV and ab-
sent or lowly confident in both SARS-CoVs), and a DIS near 
0 indicates interactions shared between all three viruses. 

For each pairwise virus comparison, as well as the SARS-
MERS comparison, DIS was defined based on cluster mem-
bership of interactions (Fig. 3A). For the SARS2-SARS1 com-
parison, interactions from every cluster except 5 were used, 
as those interactions are considered absent from both SARS-
CoV-2 and SARS-CoV-1. For the SARS2-MERS comparison, in-
teractions from all clusters except 3 were used. For the 
SARS1-MERS comparison, interactions from all clusters ex-
cept 6 were used. For the SARS-MERS comparison, only in-
teractions from clusters 2, 4, and 5 were used. 
 
Network generation and visualization 
Protein-protein interaction networks were generated in Cyto-
scape (48) and subsequently annotated using Adobe Illustra-
tor. Host-host physical interactions, protein complex 
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definitions, and biological process groupings were derived 
from CORUM (39), Gene Ontology (biological process), and 
manually curated from literature sources. All networks were 
deposited in NDEx (49). 
 
siRNA library and transfection in A549-ACE2 cells 
An OnTargetPlus siRNA SMARTpool library (Horizon Dis-
covery) was purchased targeting 331 of the 332 human pro-
teins previously identified to bind SARS-CoV-2 (5) (PDE4DIP 
was not available for purchase and excluded from the assay). 
This library was arrayed in 96-well format, with each plate 
also including two non-targeting siRNAs and one siRNA pool 
targeting ACE2 (table S12). The siRNA library was transfected 
into A549 cells stably expressing ACE2 (A549-ACE2, kindly 
provided by Dr. Olivier Schwartz), using Lipofectamine 
RNAiMAX reagent (Thermo Fisher). Briefly, 6 pmoles of each 
siRNA pool were mixed with 0.25 μl RNAiMAX transfection 
reagent and OptiMEM (Thermo Fisher) in a total volume of 
20 μl. After a 5 min incubation period, the transfection mix 
was added to cells seeded in a 96-well format. 24 hours post-
transfection, the cells were subjected to SARS-CoV-2 infection 
as described in ‘Viral infection and quantification assay in 
A549-ACE2 cells’, or incubated for 72 hours to assess cell via-
bility using the CellTiter-Glo luminescent viability assay ac-
cording to the manufacturer’s protocol (Promega). 
Luminescence was measured in a Tecan Infinity 2000 plate 
reader, and percentage viability calculated relative to un-
treated cells (100% viability) and cells lysed with 20% ethanol 
or 4% formalin (0% viability), included in each experiment. 
 
Viral infection and quantification assay in A549-ACE2 
cells 
Cells seeded in a 96-well format were inoculated with a SARS-
CoV-2 stock (BetaCoV/France/IDF0372/2020 strain, gener-
ated and propagated once in Vero E6 cells and a kind gift 
from the National Reference Centre for Respiratory Viruses 
at Institut Pasteur, Paris, originally supplied through the Eu-
ropean Virus Archive goes Global platform) at a MOI of 0.1 
PFU per cell. Following a one hour incubation period at 37°C, 
the virus inoculum was removed, and replaced by DMEM 
containing 2% FBS (Gibco, Thermo Fisher). 72 hours post-in-
fection the cell culture supernatant was collected, heat inac-
tivated at 95°C for 5 min and used for RT-qPCR analysis to 
quantify viral genomes present in the supernatant. Briefly, 
SARS-CoV-2 specific primers targeting the N gene region: 5′-
TAATCAGACAAGGAACTGATTA-3′ (Forward) and 5′-
CGAAGGTGTGACTTCCATG-3′ (Reverse) (50) were used 
with the Luna® Universal One-Step RT-qPCR Kit (New Eng-
land Biolabs) in an Applied Biosystems QuantStudio 6 ther-
mocycler, with the following cycling conditions: 55°C for 10 
min, 95°C for 1 min, and 40 cycles of 95°C for 10 s, followed 
by 60°C for 1 min. The number of viral genomes is expressed 

as PFU equivalents/ml, and was calculated by performing a 
standard curve with RNA derived from a viral stock with a 
known viral titer. 
 
Knockdown validation with qRT-PCR in A549-ACE2 
cells 
Gene-specific quantitative PCR primers targeting all genes 
represented in the OnTargetPlus library were purchased and 
arrayed in a 96-well format identical to that of the siRNA li-
brary (IDT; table S13). A549-ACE2 cells treated with siRNA 
were lysed using the Luna® Cell Ready Lysis Module (New 
England Biolabs) following the manufacturer’s protocol. The 
lysate was used directly for gene quantification by RT-qPCR 
with the Luna® Universal One-Step RT-qPCR Kit (New Eng-
land Biolabs), using the gene-specific PCR primers and 
GAPDH as a housekeeping gene. The following cycling con-
ditions were used in an Applied Biosystems QuantStudio 6 
thermocycler: 55°C for 10 min, 95°C for 1 min, and 40 cycles 
of 95°C for 10 s, followed by 60°C for 1 min. The fold change 
in gene expression for each gene was derived using the 2−ΔΔCT, 
2 (Delta Delta CT) method (51), normalized to the constitu-
tively expressed housekeeping gene GAPDH. Relative 
changes were generated comparing the control siRNA knock-
down transfected cells to the cells transfected with each 
siRNA. 
 
sgRNA Selection for Cas9 knockout screen 
sgRNAs were designed according to Synthego’s multi-guide 
gene knockout (52). Briefly, two or three sgRNAs are bioin-
formatically designed to work in a cooperative manner to 
generate small, knockout-causing, fragment deletions in early 
exons (fig. S18). These fragment deletions are larger than 
standard indels generated from single guides. The genomic 
repair patterns from a multi-guide approach are highly pre-
dictable based on the guide-spacing and design constraints 
to limit off-targets, resulting in a higher probability protein 
knockout phenotype (table S14). 
 
sgRNA Synthesis for Cas9 knockout screen 
RNA oligonucleotides were chemically synthesized on 
Synthego solid-phase synthesis platform, using CPG solid 
support containing a universal linker. 5-Benzylthio-1H-te-
trazole (BTT, 0.25 M solution in acetonitrile) was used for 
coupling, (3-((Dimethylamino-methylidene)amino)-3H-1,2,4-
dithiazole-3-thione (DDTT, 0.1 M solution in pyridine)) was 
used for thiolation, dichloroacetic acid (DCA, 3% solution in 
toluene) was used for detritylation. Modified sgRNA were 
chemically synthesized to contain 2’-O-methyl analogs and 3′ 
phosphorothioate nucleotide interlinkages in the terminal 
three nucleotides at both 5′ and 3′ ends of the RNA mole-
cule. After synthesis, oligonucleotides were subject to a series 
of deprotection steps, followed by purification by solid phase 
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extraction (SPE). Purified oligonucleotides were analyzed by 
ESI-MS. 
 
Arrayed Knockout Generation with Cas9-RNPs 
For Caco-2 transfection, 10 pmol Streptococcus Pyogenes 
NLS-Sp.Cas9-NLS (SpCas9) nuclease (Aldevron; 9212) was 
combined with 30 pmol total synthetic sgRNA (10 pmol each 
sgRNA, Synthego) to form ribonucleoproteins (RNPs) in 20 
μl total volume with SF Buffer (Lonza V5SC-2002) and al-
lowed to complex at room temperature for 10 min. 

All cells were dissociated into single cells using TrypLE 
Express (Gibco), resuspended in culture media and counted. 
100,000 cells per nucleofection reaction were pelleted by cen-
trifugation at 200xg for 5 min. Following centrifugation, cells 
were resuspended in transfection buffer according to cell 
type and diluted to 2x104 cells/μl. 5 μl of cell solution was 
added to preformed RNP solution and gently mixed. Nu-
cleofections were performed on a Lonza HT 384-well nu-
cleofector system (Lonza, #AAU-1001) using program CM-150 
for Caco-2. Immediately following nucleofection, each reac-
tion was transferred to a tissue-culture treated 96-well plate 
containing 100 μl normal culture media and seeded at a den-
sity of 50,000 cells/well. Transfected cells were incubated fol-
lowing standard protocols. 
 
Quantification of arrayed knockout efficiency 
Two days post-nucleofection, genomic DNA was extracted 
from cells using DNA QuickExtract (Lucigen, #QE09050). 
Briefly, cells were lysed by removal of the spent media fol-
lowed by addition of 40 μl of QuickExtract solution to each 
well. Once the QuickExtract DNA Extraction Solution was 
added, the cells were scraped off the plate into the buffer. 
Following transfer to compatible plates, DNA extract was 
then incubated at 68°C for 15 min followed by 95°C for 10 
min in a thermocycler before being stored for downstream 
analysis. 

Amplicons for indel analysis were generated by PCR am-
plification with NEBNext polymerase (NEB, #M0541) or Am-
pliTaq Gold 360 polymerase (Thermo Fisher Scientific, 
#4398881) according to the manufacturer’s protocol. The pri-
mers were designed to create amplicons between 400 - 800 
bp, with both primers at least 100 bp distance from any of the 
sgRNA target sites (table S15). PCR products were cleaned-up 
and analyzed by Sanger sequencing (Genewiz). Sanger data 
files and sgRNA target sequences were input into Inference 
of CRISPR Edits (ICE) analysis (ice.synthego.com) to deter-
mine editing efficiency and to quantify generated indels (53). 
Percentage of alleles edited is expressed as an ice-d score. 
This score is a measure of how discordant the sanger trace is 
before vs. after the edit. It is a simple and robust estimate of 
editing efficiency in a pool, especially suited to highly disrup-
tive editing techniques like multi-guide. 

Identification of essential genes for siRNA and Cas9 
knockout screen 
Here, we used longitudinal imaging in A549 cells to assess 
cell viability (fig. S18). For benchmarking, relative cell viabil-
ity was measured by CellTiter-Glo Luminescent Cell Viability 
Assay (Promega; G7571) as per manufacturer’s instructions. 
Briefly, two passages post-nucleofection A549 siRNA pools 
cultured in 96-well tissue-culture treated plates (Corning, 
#3595) were lysed in the CellTIter-Glo reagent, by removing 
spent media and adding 100 μl of the CellTiter-Glo reagent 
containing the CellTiter-Glo buffer and CellTiter-Glo Sub-
strate. Cells were placed on an orbital shaker for 2 min on a 
SpectraMax iD5 (Molecular Devices) and then incubated in 
the dark at room temperature for 10 min. Completely lysed 
cells were pipette mixed and 25 μl were transferred to a 384-
well assay plate (Corning, #3542). The luminescence was rec-
orded on a SpectraMax iD5 (Molecular Devices) with an inte-
gration time of 0.25 s per well. Luminescence readings were 
all normalized to the without-sgRNA control condition. 

To determine cell viability in Caco-2 knockouts we used 
longitudinal imaging (fig. S18). All gene knockout pools were 
maintained for a minimum of six passages to determine the 
effect of loss of protein function on cell fitness prior to viral 
infection. Viability was determined through longitudinal im-
aging and automated image analysis using a Celigo Imaging 
Cytometer (Celigo). Each gene knockout pool was split in 
triplicate wells on separate plates. Every day, except the day 
of seeding, each well was scanned and analyzed using built 
in ‘Confluence’ imaging parameters using auto-exposure and 
autofocus with an offset of -45 μm. Analysis was performed 
with standard settings except for an intensity threshold set-
ting of 8. Confluency was averaged across 3 wells and plotted 
over time. Viability genes were determined as pools that were 
less than 20% confluent 5 days post seeding following 6 pas-
sages. Genes deemed essential were excluded from the knock-
out screen. 
 
Cells, virus, and infections for Caco-2 Cas9 knockout 
screen 
Wild-type and CRISPR edited Caco-2 cells were grown at 
37°C, 5% CO2 in DMEM, 10% FBS. SARS-CoV-2 stocks were 
grown and titered on Vero E6 cells as described previously 
(54). Wild-type and CRISPR edited Caco-2 cell lines were in-
fected with SARS-CoV-2 at an MOI of 0.01 in DMEM supple-
mented with 2% FBS. 72 hours post-infection, supernatants 
were harvested and stored at -80°C and the Caco-2 
WT/CRISPR KO cells were fixed with 10% neutral buffered 
formalin (NBF) for 1 hour at room temperature to enable fur-
ther analysis. 
 
Focus forming assay for Caco-2 Cas9 knockout screen 
Vero E6 cells were plated into 96 well plates at confluence 
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(50,000 cells/well) in DMEM supplemented with 10% heat-
inactivated FBS (Gibco). Prior to infection, supernatants from 
infected Caco-2 WT/CRISPR KO cells were thawed and seri-
ally diluted from 10−1 to 10−8. Growth media was removed 
from the Vero E6 cells and 40 μl of each virus dilution was 
plated. After 1 hour adsorption at 37°C, 5% CO2, 40 μl of 2.4% 
microcrystalline cellulose (MCC) overlay supplemented with 
DMEM powdered media (Gibco) to a concentration of 1x was 
added to each well of the 96 well plate to achieve a final MCC 
overlay concentration of 1.2%. Plates were then incubated at 
37°C, 5% CO2 for 24 hours. The MCC overlay was gently re-
moved and cells were fixed with 10% NBF for 1 hour at room-
temperature. After removal of NBF, monolayers were washed 
with ultrapure water and ice-cold 100% methanol/0.3% H2O2 
was added for 30 min to permeabilize the cells and quench 
endogenous peroxidase activity. Monolayers were then 
blocked for 1 hour in PBS with 5% non-fat dry milk (NFDM). 
After blocking, monolayers were incubated with SARS-CoV N 
primary antibody (Novus Biologicals; NB100-56576 – 1:2000) 
for 1 hour at room temperature in PBS, 5% NFDM. Monolay-
ers were washed with PBS and incubated with an HRP-
Conjugated secondary antibody for 1 hour at room tempera-
ture in PBS with 5% NFDM. Secondary was removed, mono-
layers were washed with PBS, and then developed using 
TrueBlue substrate (KPL) for 30 min. Plates were imaged on 
a Bio-Rad Chemidoc utilizing a phosphorscreen and foci were 
counted by eye to calculate focus forming units per ml 
(FFU/ml) for each knockout. The original formalin-fixed 
Caco-2 WT/CRISPR KO cells were stained with Dapi (Thermo 
Scientific) and imaged on a Cytation 5 plate reader to deter-
mine cell viability. Wells containing no cells were excluded 
from further analyses. 
 
Quantitative analysis and scoring of knockdown and 
knockout library screens 
Virus readout by qPCR (A549-ACE2, expressed as PFU/ml) 
and focus forming assay readouts (Caco-2, FFU/ml) were pro-
cessed using the RNAither package 
(https://www.bioconductor.org/packages/release/bioc/html/
RNAither.html) in the statistical computing environment R. 
The two datasets were normalized separately, using the fol-
lowing method. The readouts were first log transformed (nat-
ural logarithm), and robust Z-scores (using median and MAD 
“median absolute deviation” instead of mean and standard 
deviation) were then calculated for each 96-well plate sepa-
rately. Z-scores of multiple replicates of the same perturba-
tion were averaged into a final Z-score for presentation in Fig. 
5. No filtering was done based on differences in replicate Z-
scores, but all replicate scores are individually listed in tables 
S6 and S7. We suggest consulting the replicate Z-scores for all 
genes/perturbations of interest. The A549-ACE2 siRNA 
screen includes 3 replicates (or more) of each perturbation, 

and the Caco-2 CRISPR screen includes 2 replicates (or more) 
of each perturbation. The results from the A549-ACE2 screen 
cover all 332 screened genes (331 SARS-CoV-2 interactors 
plus ACE2). The results from the Caco-2 screen cover 286 of 
the screened genes plus ACE2. The remaining Caco-2 genes 
were either deemed essential, failed editing, or failed in the 
focus forming assay. 
 
Antiviral drug and cytotoxicity assays (A549-ACE2 
cells) 
2,500 A549-ACE2 cells were seeded into 96- or 384-well plates 
in DMEM (10% FBS) and incubated for 24 hours at 37°C, 5% 
CO2. Two hours prior to infection, the media was replaced 
with 120 μl (96 well format) or 50 μl (384 well format) of 
DMEM (2% FBS) containing the compound of interest at the 
indicated concentration. At the time of infection, the media 
was replaced with virus inoculum (MOI 0.1 PFU/cell) and in-
cubated for 1 hour at 37°C, 5% CO2. Following the adsorption 
period, the inoculum was removed, replaced with 120 μl (96 
well format) or 50 μl (384 well format) of drug-containing 
media, and cells incubated for an additional 72 hours at 37°C, 
5% CO2. At this point, the cell culture supernatant was har-
vested, and viral load assessed by RT-qPCR (as described in 
‘Viral infection and quantification assay in A549-ACE2 cells’). 
Viability was assayed using the CellTiter-Glo assay following 
the manufacturer’s protocol (Promega). Luminescence was 
measured in a Tecan Infinity 2000 plate reader, and percent-
age viability calculated relative to untreated cells (100% via-
bility) and cells lysed with 20% ethanol or 4% formalin (0% 
viability), included in each experiment. 
 
Antiviral drug and cytotoxicity assays (Vero E6 cells) 
Viral growth and cytotoxicity assays in the presence of inhib-
itors were performed as previously described (5). 2,000 Vero 
E6 cells were seeded into 96-well plates in DMEM (10% FBS) 
and incubated for 24 hours at 37°C, 5% CO2. Two hours before 
infection, the medium was replaced with 100 μl of DMEM 
(2% FBS) containing the compound of interest at concentra-
tions 50% greater than those indicated, including a DMSO 
control. SARS-CoV-2 virus (100 PFU; MOI 0.025) was added 
in 50 μl of DMEM (2% FBS), bringing the final compound 
concentration to those indicated. Plates were then incubated 
for 48 hours at 37°C. After infection, supernatants were re-
moved and cells were fixed with 4% formaldehyde for 24 
hours prior to being removed from the BSL3 facility. The cells 
were then immunostained for the viral NP protein (rabbit 
anti-sera produced in the Garcia-Sastre lab; 1:10,000) with a 
DAPI counterstain. Infected cells (488 nm) and total cells 
(DAPI) were quantified using a Celigo (Nexcelcom) imaging 
cytometer. Infectivity is measured by the accumulation of vi-
ral NP protein in the nucleus of the cells (fluorescence accu-
mulation). Percent infection was quantified as (Infected cells 
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/ Total cells) - Background) * 100 and the DMSO control was 
then set to 100% infection for analysis. The IC50 and IC90 for 
each experiment was determined using the Prism (GraphPad 
Software) software. Cytotoxicity measurements were per-
formed using the MTT assay (Roche), according to the man-
ufacturer’s instructions. Cytotoxicity was performed in 
uninfected Vero E6 cells with same compound dilutions and 
concurrent with viral replication assay. All assays were per-
formed in biologically independent triplicates. Sourcing in-
formation for all drugs tested may be found in table S10. 
 
Co-immunoprecipitation assays for Orf9b and Tom70 
HEK293T and A549 cells were transfected with the indicated 
mammalian expression plasmids using Lipofectamine 2000 
(Invitrogen) and TransIT-X2 (Mirus Bio) respectively. 24 
hours post-transfection, cells were harvested and lysed in NP-
40 lysis buffer (0.5% Nonidet P 40 Substitute (NP-40; Fluka 
Analytical), 50 mM Tris-HCl, pH 7.4 at 4°C, 150 mM NaCl, 1 
mM EDTA) supplemented with cOmplete mini EDTA-free 
protease and PhosSTOP phosphatase inhibitor cocktails 
(Roche). Clarified cell lysates were incubated with Streptactin 
Sepharose beads (IBA) for 2 hours at 4°C, followed by five 
washes with NP-40 lysis buffer. Protein complexes were 
eluted in the SDS loading buffer and were analyzed by West-
ern blotting with the indicated antibodies. 
 
Quantification of Tom70 down-regulation in HeLaM 
cells overexpressing Orf9b 
HeLaM cells were transiently transfected with plasmids en-
coding GFP-Strep, SARS-CoV-1 Orf9b-Strep or SARS-CoV-2 
Orf9b-Strep. The next day, the cells were fixed using 4% par-
aformaldehyde and immunostained with antibodies against 
Strep tag, and Tom20 or Tom70. Representative images for 
each construct were captured by acquiring a single optical 
section using a Nikon A1 confocal fitted with a CFI Plan Ap-
ochromat VC 60x oil objective (NA 1.4). For image quantifi-
cation multiple fields of view were captured for each 
construct using a CFI Super Plan Fluor ELWD 40x objective 
(NA 0.6). The mean fluorescent intensity for Tom20 and 
Tom70 was measured by manually drawing a region of inter-
est around each cell using ImageJ. Between 30 and 60 cells 
were quantified for each construct. 
 
Quantification of Tom70 down-regulation in infected 
Caco-2 cells 
Caco-2 cells were seeded on glass coverslips in triplicate and 
infected with SARS-CoV-2 at an MOI of 0.1 as described 
above. At 24 hours post-infection, cells were fixed with 4% 
paraformaldehyde and immunostained with antibodies 
against Tom70, Tom20 and Orf9b. For signal quantification 
images of non-infected and neighboring infected cells were 
acquired using a LSM800 confocal laser-scanning microscope 

(Zeiss) equipped with a 63X, 1.4 NA oil objective and the Zen 
blue software (Zeiss). The mean fluorescence intensity of 
each cell was measured by ImageJ software. 43 cells were 
quantified for each condition, infected or non-infected, from 
three independent experiments. 
 
Co-expression and Purification of Orf9b-Tom70 (109-
end) complexes 
SARS-CoV-2 Orf9b and Tom70 (residues 109-end) were coex-
pressed using a pET29-b(+) vector backbone where Orf9b 
was tag-less and Tom70 had an N-terminal 10XHis-tag and 
SUMO-tag. LOBSTR E. coli cells transformed with the above 
construct were grown at 37°C till O.D. (600 nm)=0.8 and the 
expression was induced at 37°C with 1 mM IPTG for 4 hours. 
Frozen cell pellets were resuspended in 25 ml lysis buffer 
(200 mM NaCl, 50 mM Tris-HCl pH 8.0, 10% v/v glycerol, 2 
mM MgCl2) per liter cell culture, supplemented with cOm-
plete protease inhibitor tablets (Roche), 1 mM PMSF (Sigma), 
100 μg/ml lysozyme (Sigma), 5 μg/ml DNaseI (Sigma), and 
then homogenized with an immersion blender (Cuisinart). 
Cells were lysed by 3x passage through an Emulsiflex C3 cell 
disruptor (Avestin) at ~15,000psi, and the lysate clarified by 
ultracentrifugation at 100,000xg for 30 min at 4°C. The su-
pernatant was collected, supplemented with 20 mM imidaz-
ole, loaded into a gravity flow column containing Ni-NTA 
superflow resin (Qiagen), and rocked with the resin at 4°C for 
1 hour. After allowing the column to drain, resin was rinsed 
twice with 5 column volumes (cv) of wash buffer (150 mM 
KCl, 30 mM Tris-HCl pH 8.0, 10% v/v glycerol, 20 mM imid-
azole, 0.5 mM tris(hydroxypropyl)phosphine (THP, VWR)) 
supplemented with 2 mM ATP (Sigma) and 4 mM MgCl2, then 
washed with 5 cv wash buffer with 40 mM imidazole. Resin 
was then rinsed with 5 cv Buffer A (50 mM KCl, 30 mM Tris-
HCl pH 8.0, 5% glycerol, 0.5 mM THP) and protein was eluted 
with 2 × 2.5 cv Buffer A + 300 mM imidazole. Elution frac-
tions were combined, supplemented with Ulp1 protease, and 
rocked at 4°C for 2 hours. Ulp1-digested Ni-NTA eluate was 
diluted 1:1 with additional Buffer A, loaded into a 50 ml Su-
perloop, and applied to a MonoQ 10/100 column on an Äkta 
pure system (GE Healthcare) using 100% Buffer A, 0% Buffer 
B (1000 mM KCl, 30 mM Tris-HCl pH 8.0, 5% glycerol, 0.5 
mM THP). The MonoQ column was washed with 0%-40% 
Buffer B gradient over 15 cv, peak fractions were analyzed by 
SDS-PAGE and the identity of tagless Tom70(109-end) and 
Orf9b proteins confirmed by intact protein mass spectrome-
try (Xevo G2-XS Mass Spectrometer, Waters). Peak fractions 
eluting at ~15% B contained relatively pure Tom70(109-end) 
and Orf9b, and these were concentrated using 10kDa Amicon 
centrifugal filter (Millipore) and further purified by size ex-
clusion chromatography using a Superdex 200 increase 
10/300 GL column (GE healthcare) in buffer containing 150 
mM KCl, 20 mM HEPES-NaOH pH 7.5, 0.5 mM THP. The sole 
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size-exclusion peak contained both Tom70(109-end) and 
Orf9b, and the center fraction was used directly for cryo-EM 
grid preparation. 
 
Expression and Purification of SARS-CoV-2 Orf9b 
Orf9b with N-terminal 10XHis-tag and SUMO-tag was ex-
pressed using a pET-29b(+) vector backbone. LOBSTR E. coli 
cells transformed with the above construct were grown at 
37°C until reaching O.D. (600 nm)=0.8 and the expression 
was induced at 37°C with 1 mM IPTG for 6 hours. Frozen cell 
pellets were lysed, homogenized, clarified, and subject to Ni 
affinity purification as described above for Orf9b-Tom70 
complexes, with several small changes. Lysis buffers and Ni-
NTA wash buffers contained 500 mM NaCl, and an additional 
wash step using 10 cv wash buffer + 0.2% TWEEN20 + 500 
mM NaCl was carried out prior to the ATP wash. Orf9b was 
eluted from Ni-NTA resin in Buffer A (50 mM NaCl, 25 mM 
Tris pH 8.5, 5% glycerol, 0.5 mM THP) supplemented with 
300 mM imidazole. This eluate was diluted 1:1 with addi-
tional Buffer A, loaded into a 50 ml Superloop, and applied 
to a MonoQ 10/100 column on an Äkta pure system (GE 
Healthcare) using 100% Buffer A, 0% Buffer B (1000 mM 
NaCl, 25mM Tris-HCl pH 8.5, 5% glycerol, 0.5 mM THP). The 
MonoQ column was washed with 0%-40% Buffer B gradient 
over 15 cv, and relatively pure Orf9b eluted at 20-25% Buffer 
B, whereas Orf9b and contaminating proteins eluted at 30-
35% buffer B. Fractions from these two peaks were combined 
and incubated with Ulp1 and HRV3C proteases at 4°C for 2 
hours, supplemented with 10 mM imidazole, then thrice 
flowed back through 1 ml of Ni-NTA resin equilibrated with 
size-exclusion buffer (as above) + 10 mM imidazole. The re-
verse-Ni purified sample was concentrated using 10kDa 
Amicon centrifugal filter and then further purified by size ex-
clusion chromatography using a Superdex 200 increase 
10/300 GL column. 
 
Expression and Purification of Tom70(109-end) 
Tom70 (109-end) with N-terminal 10XHis-tag and SUMO-tag 
and C terminus Spy-tag, HRV-3C protease cleavage site, and 
eGFP-tag was expressed using a pET-21(+) vector backbone. 
LOBSTR E. coli cells transformed with the above construct 
were grown at 37°C till O.D. (600 nm)=0.8 and the expression 
was induced at 16°C with 0.5 mM IPTG overnight. The solu-
ble domain of Tom70 (Tom70 (109-end)) was purified as de-
scribed in (55) with some modifications. Frozen cell pellets of 
LOBSTR E. coli transformed with the above construct were 
resuspended in 50 ml lysis buffer (500 mM NaCl, 20 mM 
KH2PO4 pH 7.5) per liter cell culture, supplemented with 1 
mM PMSF (Sigma) and 100 μg/ml, and homogenized. Cells 
were lysed by 3x passage through an Emulsiflex C3 cell dis-
ruptor (Avestin) at ~15,000psi, and the lysate clarified by ul-
tracentrifugation at 100,000xg for 30 min at 4°C. The 

supernatant was collected, supplemented with 20 mM imid-
azole, loaded into a gravity flow column containing Ni-NTA 
superflow resin (Qiagen), and rocked with the resin at 4°C for 
1 hour. After allowing the column to drain, resin was rinsed 
with twice with 5 column volumes (cv) of wash buffer (500 
mM KCl, 20 mM KH2PO4 pH 8.0, 20 mM imidazole, 0.5 mM 
THP) supplemented with 2 mM ATP - 4 mM MgCl2, then 
washed with 5 cv wash buffer with 40 mM imidazole. Bound 
Tom70(109-end) was then cleaved from the resin by 2 hour 
incubation with Ulp1 protease in 4 cv elution buffer (150 mM 
KCl, 20 mM KH2PO4 pH 8.0, 5 mM imidazole, 0.5 mM THP). 
After cleavage with Ulp1, the flow through was collected 
along with a 2 cv rinse of the resin with additional elution 
buffer. These fractions were combined and HRV3C protease 
was added to remove the C-terminal EGFP tag (1:20 HRV3C 
to Tom70). After 2 hour HRV3C digestion at 4°C, the double-
digested Tom70(109-end) was concentrated using a 30kDa 
Amicon centrifugal filter (Millipore) and further purified by 
size exclusion chromatography using a Superdex 200 in-
crease 10/300 GL column (GE healthcare) in buffer contain-
ing 150 mM KCl, 20 mM HEPES-NaOH pH 7.5, 0.5 mM THP. 
 
Prediction of SARS-CoV-2 Orf9b internal mitochon-
drial targeting sequence 
Orf9b was analyzed for the presence of an internal mitochon-
drial targeting sequence (i-MTS) as described in (56) using 
the TargetP-2.0 server (57). Sequences corresponding to 
Orf9b N-terminal truncations of 0 to 62 residues were sub-
mitted to the TargetP-2.0 server, and the probability of the 
peptides containing an MTS plotted against the numbers of 
residues truncated. A similar analysis using the MitoFates 
server (58) predicted that Orf9b residues 54-63 were the most 
likely to comprise a presequence MTS based on propensity to 
form a positively charged amphipathic helix. Notably this 
analysis was consistent with the secondary structure predic-
tion from JPRED (59). 
 
CryoEM sample preparation and data collection 
3 μL of Orf9b-Tom70 complex (12.5μM) was added to a 400 
mesh 1.2/1.3R Au Quantifoil grid previously glow discharged 
at 15 mA for 30 s. Blotting was performed with a blot force of 
0 for 5 s at 4°C and 100% humidity in a FEI Vitrobot Mark IV 
(ThermoFisher) prior to plunge freezing into liquid ethane. 
1534 118-frame super-resolution movies were collected with a 
3x3 image shift collection strategy at a nominal magnification 
of 105,000x (physical pixel size: 0.834 Å/pix) on a Titan Krios 
(ThermoFisher) equipped with a K3 camera and a Bioquan-
tum energy filter (Gatan) set to a slit width of 20 eV. Collec-
tion dose rate was 8 e-/pixel/second for a total dose of 66 e-
/Å2. Defocus range was -0.7um to -2.4um. Each collection was 
performed with semi-automated scripts in SerialEM (60). 
 

on O
ctober 28, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 15 October 2020  www.sciencemag.org  (Page numbers not final at time of first release) 19 
 

CryoEM Image Processing and Model Building 
1534 movies were motion corrected using Motioncor2 (61) 
and dose-weighted summed micrographs were imported in 
cryosparc (v2.15.0). 1427 micrographs were curated based on 
CTF fit (better than 5 Å) from a patch CTF job. Template-
based particle picking resulted in 2,805,121 particles and 
1,616,691 particles were selected after 2D-classification. Five 
rounds of 3D-classification using multi-class ab-initio recon-
struction and heterogeneous refinement yielded 178,373 par-
ticles. Homogenous refinement of these final particles led to 
a 3.1 Å electron density map which was used for model build-
ing. The reconstruction was filtered by the masked FSC and 
sharpened with a b-factor of -145. 

To build the model of Tom70(109-end), the crystal struc-
ture of Saccharomyces cerevisiae Tom71 (PDB ID: 3fp3; se-
quence identity 25.7%) was first fit into the cryoEM density 
as a rigid body in UCSF ChimeraX and then relaxed into the 
final density using Rosetta FastRelax mover in torsion space. 
This model, along with a BLAST alignment of the two se-
quences (62), was used as a starting point for manual build-
ing using COOT (63). After initial building by hand the 
regions with poor density fit/geometry were iteratively re-
built using Rosetta (64). Orf9b was built de novo into the final 
density using COOT, informed and facilitated by the predic-
tions of the TargetP-2.0, MitoFates, and JPRED servers. The 
Orf9b-Tom70 complex model was submitted to the Namdina-
tor web server (65) and further refined in ISOLDE 1.0 (66) 
using the plugin for UCSF ChimeraX (67). Final model B-fac-
tors were estimated using Rosetta. The model was validated 
using phenix.validation_cryoem (68). The final model con-
tains residues 109-272, 298-600 of human Tom70, and 39-76 
of SARS-CoV-2 Orf9b. Molecular interface between Orf9b and 
Tom70 was analyzed using the PISA web server (69). Figures 
were prepared using UCSF ChimeraX. 
 
Computational human genetics analysis 
To look for genetic variants associated with our list of pro-
teins that had a significant impact on SARS-CoV-2 replica-
tion, we used the largest proteomic GWAS study to date (70). 
We identified IL17RA as one of the proteins assayed in Sun et 
al.’s proteomic GWAS and observed that it had multiple cis-
acting protein quantitative trait loci (pQTLs) at a corrected 
p-value 1 × 10−5, where cis-acting is defined as within 1MB of 
the transcription start site of IL17RA. 

We used the GSMR method (71) to perform MR using 
near-independent (linkage disequilibrium or LD r2 = 0.05) 
cis-pQTLs for IL17RA. The advantage of GSMR method over 
conventional MR methods is two-fold; first, GSMR performs 
MR adjusting for any residual correlation between selected 
genetic variants by default. Second, GSMR has a built-in 
method called HEIDI (heterogeneity in dependent instru-
ments)-outlier that performs heterogeneity tests in the near-

independent genetic instruments and remove potentially 
pleiotropic instruments (i.e., where there is evidence of het-
erogeneity at p < 0.01). Details of the GSMR and HEIDI 
method have been published previously (71). 

Summary statistics generated by COVID-19 Human Ge-
netics Initiative (COVID-HGI) (round 3; 
https://www.covid19hg.org/results/) for COVID-19 vs. popu-
lation, hospitalized COVID-19 vs. population and hospitalized 
COVID-19 vs. non-hospitalized COVID-19 were used for 
IL17RA MR analysis. We used the 1000 genomes phase 3 Eu-
ropean population genotype data to derive the LD correlation 
matrix for this analysis. The phenotype definitions as pro-
vided by COVID-HGI are as follows. COVID-19 vs. population: 
Case, individuals with laboratory confirmation of SARS-CoV-
2 infection, EHR/ICD coding/Physician-confirmed COVID-19, 
or self-reported COVID-19 positive; control, everybody that is 
not a case. Hospitalized COVID-19 vs. population: case, hos-
pitalized, laboratory confirmed SARS-CoV-2 infection or hos-
pitalization due to COVID-19-related symptoms; control, 
everybody that is not a case, e.g., population. Hospitalized 
COVID-19 vs. non-hospitalized COVID-19: case, hospitalized, 
laboratory confirmed SARS-CoV-2 infection or hospitaliza-
tion due to COVID-19-related symptoms; control, laboratory 
confirmed SARS-CoV-2 infection and not hospitalized 21 days 
after the test. 
 
Infections and treatments for IL17A treatment studies 
The WA-1 strain (BEI resources) of SARS-CoV-2 was used for 
all experiments. All live virus experiments were performed in 
a BSL3 lab. SARS-CoV-2 stocks were passaged in Vero E6 cells 
(ATCC) and titer was determined via plaque assay on Vero E6 
cells as previously described (72). Briefly, virus was diluted 
1:102-1:106 and incubated for 1 hour on Vero E6 cells before 
an overlay of Avicel and complete DMEM (Sigma Aldrich, 
SLM-241) was added. After incubation at 37°C for 72 hours, 
the overlay was removed and cells were fixed with 10% for-
malin, stained with crystal violet, and counted for plaque for-
mation. SARS-CoV-2 infections of A549-ACE2 cells were done 
at a MOI of 0.05 for 24 hours. Inhibitors and cytokines were 
added concurrently with virus. All infections were done in 
technical triplicate. Cells were treated with the following 
compounds: Remdesivir (SELLECK CHEMICALS LLC, 
S8932) and IL-17A (Millipore-Sigma, SRP0675). 
 
RNA extraction, RT, and quantitative RT-PCR for IL17A 
treatment studies 
Total RNA from samples was extracted using the Direct-zol 
RNA kit (Zymogen, R2060) and quantified using the 
NanoDrop 2000c (ThermoFisher). cDNA was generated using 
500 ng of RNA from infected A549-ACE2 cells with Super-
script III reverse transcription (ThermoFisher, 18080-044) 
and oligo(dT)12-18 (ThermoFisher, 18418-012) and random 
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hexamer primers (ThermoFisher, S0142). Quantitative RT-
PCR reactions were performed on a CFX384 (BioRad) and 
delta cycle threshold (ΔCt) was determined relative to 
RPL13A levels. Viral detection levels and target host genes in 
treated samples were normalized to water-treated controls. 
The SYBR green qPCR reactions contained 5 μl of 2x Maxima 
SYBR green/Rox qPCR Master Mix (ThermoFisher; K0221), 2 
μl of diluted cDNA, and 1 nmol of both forward and reverse 
primers, in a total volume of 10 μl. The reactions were run as 
follows: 50°C for 2 min and 95°C for 10 min, followed by 40 
cycles of 95°C for 5 s and 62°C for 30 s. Primer efficiencies 
were around 100%. Dissociation curve analysis after the end 
of the PCR confirmed the presence of a single and specific 
product. qRT-PCR primers were used against the SARS-CoV-
2 E gene (PF_042_nCoV_E_F: 
ACAGGTACGTTAATAGTTAATAGCGT; PF_042_nCoV_E_R: 
ATATTGCAGCAGTACGCACACA), the CXCL8 gene (CXCL8 
For: ACTGAGAGTGATTGAGAGTGGAC; CXCL8 Rev: 
AACCCTCTGCACCCAGTTTTC), and the RPL13A gene 
(RPL13A For: CCTGGAGGAGAAGAGGAAAGAGA; RPL13A 
Rev: TTGAGGACCTCTGTGTATTTGTCAA). 
 
Transfections for IL17A treatment studies 
HEK293T cells were seeded 5x105cells/well (in 6 well plate) 
or 3x106 cell/10cm2 plates. Next day, 2 μg or 10 μg of plasmids 
was transfected using X-tremeGENE 9 DNA Transfection Re-
agent (Roche) in 6 well plate or 10cm2 plates respectively. For 
IL-17A (Millipore-Sigma, SRP0675) incubation in cells, 0.5 μg 
of IL-17A was treated either pre- or post-transfection and in-
cubated at 37°C. After 48 hours, cells were collected by tryp-
sinization. For IL-17A incubation with cell lysates, transfected 
cell lysates were incubated with presence of 0.5 and 5 μg/ml 
IL-17A at 4°C on rotation overnight. Plasmids pLVX-
EF1alpha-SARS-CoV-2-orf8-2xStrep-IRES-Puro (Orf8) and 
pLVX-EF1alpha-eGFP-2xStrep-IRES-Puro (EGFP-Strep) were 
a gift from Nevan Krogan. (Addgene plasmid #141390, 141395) 
(5). pLVX-EF1alpha- IRES-Puro (Vector) was obtained from 
Takara/Clontech. 
 
SARS-CoV-2 Orf8 and IL17RA Co-immunoprecipitation 
Transfected and treated HEK293T cells were pelleted and 
washed in cold D-PBS and later resuspended in Flag-IP Buffer 
(50 mM Tris HCl, pH 7.4, with 150 mM NaCl, 1 mM EDTA, 
and 1% NP-40) with 1x HALT (ThermoFisher Scientific, 
78429), incubated with buffer for 15 min on ice then centri-
fuged at 13,000 rpm for 5 min. The supernatant was collected 
and 1 mg of protein was used for Immunoprecipitation (IP) 
with 100 μl Streptactin Sepharose (IBA, 2-1201-010) on a rotor 
overnight at 4°C. Immunoprecipitates were washed 5 times 
with Flag-IP buffer and eluted with 1x Buffer E (100 mM Tris-
Cl, 150 mM NaCl, 1 mM EDTA, 2.5 mM Desthiobiotin). Eluate 
was diluted with 1x-NuPAGE (ThermoFisher Scientific, 

#NP0008) LDS Sample Buffer with 2.5% β-Mercaptoethanol 
and blotted for targeted antibodies. Antibodies used were 
Strep Tag II (Qiagen, #34850), B-Actin (Sigma, #A5316), and 
IL17RA (Cell Signaling, #12661S). 
 
Computational docking of mPGES-2 and Nsp7 
A model for human mPGES-2 dimer was constructed by ho-
mology using MODELER (73) from the crystal structure of 
Macaca fascularis mPGES-2 (PDB 1Z9H (74), 98% sequence 
identity) bound to indomethacin. Indomethacin was re-
moved from the structure utilized for docking. The structure 
of SARS-CoV-2 Nsp7 was extracted from PDB 7BV2 (75). 
Docking models were produced using ClusPro (76), ZDock 
(77), HDock (78), Gramm-X (79), SwarmDock (80) and Patch-
Dock (81) with SOAP-PP score (82). For each protocol, up to 
100 top scoring models were extracted (fewer for those that 
do not report > 100 models); for PatchDock, models with 
SOAP-PP Z-scores greater than 3.0 were used (fig. S23A). The 
420 models were clustered at 4.0 Å RMSD, resulting in 127 
clusters. The two largest clusters, comprising 192 models, are 
related by the dimer symmetry. All other clusters contain 
fewer than 15 models. 
 
Assessment of positive selection signatures in 
SIGMAR1 
SIGMAR1 protein alignments were generated from whole ge-
nome sequences of 359 mammals curated by the Zoonomia 
consortium. Protein alignments were generated with TOGA 
(https://github.com/hillerlab/TOGA), and missing sequence 
gaps were refined with CACTUS (83, 84). Branches undergo-
ing positive selection were detected with the branch-site test 
aBSREL (85) implemented in the HyPhy package (85, 86). 
PhyloP was used to detect codons undergoing accelerated 
evolution along branches detected as undergoing positive se-
lection by aBSREL relative to the neutral evolution rate in 
mammals, determined using phyloFit on third nucleotide po-
sitions of codons which are assumed to evolve neutrally. P-
values from phyloP were corrected for multiple tests using 
the Benjamini-Hochberg method (87). PhyloFit and phyloP 
are both part of the PHAST package v1.4 (88, 89). 
 
Comparative SARS-CoV-1 inhibition by amiodarone 
SARS-CoV-1 (Urbani) drug screens were performed with Vero 
E6 cells (ATCC# 1568, Manassas, VA) cultured in DMEM 
(Quality Biological), supplemented with 10% (v/v) heat inac-
tivated fetal bovine serum (Sigma), 1% (v/v) penicillin/strep-
tomycin (Gemini Bio-products), and 1% (v/v) L-glutamine (2 
mM final concentration, Gibco). Cells were plated in opaque 
96 well plates one day prior to infection. Drugs were diluted 
from stock to 50 μM and an 8-point 1:2 dilution series pre-
pared in duplicate in Vero Media. Every compound dilution 
and control was normalized to contain the same 
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concentration of drug vehicle (e.g., DMSO). Cells were pre-
treated with drug for 2 hours (h) at 37°C (5% CO2) prior to 
infection with SARS-CoV-1 at MOI 0.01. In addition to plates 
that were infected, parallel plates were left uninfected to 
monitor cytotoxicity of drug alone. All plates were incubated 
at 37°C (5% CO2) for 3 days before performing CellTiter-Glo 
(CTG) assays as per the manufacturer’s instruction (Promega, 
Madison, WI). Luminescence was read on a BioTek Synergy 
HTX plate reader (BioTek Instruments Inc., Winooski, VT) 
using the Gen5 software (v7.07, Biotek Instruments Inc., 
Winooski, VT). 
 
Real-world data source and analysis 
This study used de-identified patient-level records from 
HealthVerity’s Marketplace dataset, a nationally representa-
tive dataset covering >300 million unique patients with med-
ical and pharmacy records from over 60 healthcare data 
sources in the US. The current study used data from 738,933 
patients with documented COVID-19 infection between 
March 1, 2020 to August 17, 2020, defined as a positive or 
presumptive positive viral lab test result or an International 
Classification of Diseases, 10th Revision, Clinical Modification 
(ICD-10-CM) diagnosis code of U07.1 (COVID-19). 

For this population, we analyzed medical claims, phar-
macy claims, laboratory data, and hospital chargemaster data 
containing diagnoses, procedures, medications and COVID-
19 laboratory results from both inpatient and outpatient set-
tings. Claims data included open (unadjudicated) claims 
sourced in near-real time from practice management and bill-
ing systems, claims clearinghouses and laboratory chains, as 
well as closed (adjudicated) claims encompassing all major 
US payer types (commercial, Medicare, Medicaid). For inpa-
tient treatment evaluations, we used linked hospital charge-
master data containing records of all billable procedures, 
medical services and treatments administered in hospital set-
tings. Linkage of patient-level records across these data types 
provides a longitudinal view of baseline health status, medi-
cation use, and COVID-19 progression for each patient under 
study. Data for this study covered the period of December 1, 
2018 through August 17th, 2020. All analyses were conducted 
with the Aetion Evidence Platform version r4.6. 

This study was approved by the New England IRB (#1-
9757-1). Medical records constitute protected health infor-
mation and can be made available to qualified individuals 
upon reasonable request. 
 
Observation of hospitalization outcomes in outpatient 
new users of indomethacin (treatment arm) vs. 
celecoxib (active comparator) using real-world data 
We used an incident (new) user, active comparator design 
(90, 91) to assess the risk of hospitalization among newly di-
agnosed COVID-19 patients who were subsequently treated 

with indomethacin or the comparator agent, celecoxib. Pa-
tients were required to have COVID-19 infection recorded in 
an outpatient setting during the study period of March 1, 
2020 to August 17, 2020 and occurring in the 21 days prior to 
(and including) the date of indomethacin or celecoxib treat-
ment initiation. Prevalent users of prescription-only NSAIDs 
(any prescription fill for indomethacin, celecoxib, ketoprofen, 
meloxicam, sulindac, or piroxicam 60 days prior) and pa-
tients hospitalized in the 21 days prior to and including the 
date of treatment initiation were excluded from this analysis. 

Using RSS, patients treated with indomethacin were 
matched at a 1:1 ratio to controls randomly selected among 
patients treated with celecoxib, with direct matching on cal-
endar date of treatment (±7 days), age (±5 years), sex, Charl-
son comorbidity index (exact) (92), time since confirmed 
COVID-19 (±5 days), and disease severity based on the high-
est-intensity COVID-19-related health service in the 7 days 
prior to and including the date of treatment initiation (lab 
service only vs. outpatient medical visit vs. emergency depart-
ment visit) and symptom profile in the 21 days prior to and 
including the date of treatment initiation (recorded symp-
toms vs. none). This risk set sampled population was further 
matched on a propensity score (PS) (25) estimated using lo-
gistic regression with 24 demographic and clinical risk fac-
tors, including covariates related to baseline medical history 
and COVID-19 severity in the 21 days prior to treatment (table 
S11). Balance between indomethacin and celecoxib treatment 
groups was evaluated by comparison of absolute standard-
ized differences in covariates, with an absolute standardized 
difference of less than 0.2 indicating good balance between 
the treatment groups (93). 

The primary analysis was an intention-to-treat design, 
with follow-up beginning 1 day after indomethacin or 
celecoxib initiation and ending on the earliest occurrence of 
30 days of follow-up reached or end of patient data. Odds ra-
tios for the primary outcome of all-cause inpatient hospitali-
zation were estimated for the RSS+PS matched population as 
well as for the RSS matched population. Our primary out-
come definition required a record of inpatient hospital ad-
mission with a resulting inpatient stay; as a sensitivity, a 
broader outcome definition captured any hospital visit (de-
fined with revenue and place of service codes). 
 
Observation of mechanical ventilation outcomes in in-
patient new users of typical antipsychotics (treatment 
arm) vs. atypical antipsychotics (active comparator) 
using real-world data 
We used an incident user, active comparator design (90, 91) 
to assess the risk of mechanical ventilation among hospital-
ized COVID-19 patients treated with typical or atypical anti-
psychotics in an inpatient setting. See table S11 for a list of 
drugs included in each category. To permit assessment of 
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day-level in-hospital confounders and outcomes, this analysis 
was restricted to hospitalized patients observable in hospital 
chargemaster data. Prevalent users of typical or atypical an-
tipsychotics (any prescription fill or chargemaster-docu-
mented use in 60 days prior) and patients with evidence of 
mechanical ventilation in the 21 days prior to and including 
the date of treatment initiation were excluded from this anal-
ysis. 

Using RSS, hospitalized patients treated with typical anti-
psychotics were matched at a 1:1 ratio to controls randomly 
selected among patients treated with atypical antipsychotics, 
with direct matching (1:1 fixed ratio) on calendar date of 
treatment (±7 days), age (±5 years), sex, Charlson comorbidity 
index (exact) (92), time since hospital admission, and disease 
severity as defined with a simplified version of the World 
Health Organization’s ordinal scale for clinical improvement 
(94). This risk set sampled population was further matched 
on a PS estimated using logistic regression with 36 demo-
graphic and clinical risk factors, including covariates related 
to baseline medical history, admitting status, and disease se-
verity at treatment (table S11). Balance between typical and 
atypical treatment groups was evaluated by comparison of 
absolute standardized differences in covariates, with an ab-
solute standardized difference of less than 0.2 indicating 
good balance between the treatment groups (93). 

The primary analysis was an intention-to-treat design, 
with follow-up beginning 1 day after the date of typical or 
atypical antipsychotic treatment initiation, and ending on the 
earliest occurrence of 30 days of follow-up reached, discharge 
from hospital, or end of patient data. Odds ratios for the pri-
mary outcome of inpatient mechanical ventilation were esti-
mated for the RSS+PS matched population as well as for the 
RSS matched population. 
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rest of team members are listed alphabetically. Bacterial expression team: A. D., 
M. G., E. W. T., J. C., L. D., S. F., M. J., H. T. K., V. L. L., Y. L., M. L., G. E. M., J. P., A. 
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freezing/collection team: C. M. A., A. F. B., G. E. M., C. P., A. N. R., M. S., J. R. B., 
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Fig. 1. Coronavirus genome annotations and integrative analysis overview. (A) Genome annotation of 
SARS-CoV-2, SARS-CoV-1 and MERS-CoV with putative protein coding genes highlighted. Intensity of filled 
color indicates the lowest sequence identity between SARS-CoV-2 and SARS-CoV-1 or SARS-CoV-2 and 
MERS. (B to D) Genome annotation of structural protein genes for SARS-CoV-2 (B), SARS-CoV-1 (C), and 
MERS-CoV (D). Color intensity indicates sequence identity to specified virus. (E) Overview of comparative 
coronavirus analysis. Proteins from SARS-CoV-2, SARS-CoV-1 and MERS-CoV were analyzed for their 
protein interactions and subcellular localization, and these data were integrated for comparative host 
interaction network analysis, followed by functional, structural and clinical data analysis for exemplary virus-
specific and pan-viral interactions. *The SARS-CoV-2 interactome was previously published in a separate 
study (5). SARS = both SARS-CoV-1 and SARS-CoV-2; MERS = MERS-CoV; Nsp = non-structural protein; 
Orf = open reading frame. 
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Fig. 2. Coronavirus protein localization analysis. (A) Overview of experimental design to 
determine localization of Strep-tagged SARS-CoV-2, SARS-CoV-1, and MERS-CoV proteins 
in HeLaM cells (left) or of viral proteins upon SARS-CoV-2 infection in Caco-2 cells (right). 
(B) Relative localization for all coronavirus proteins across viruses expressed individually 
(blue color bar; * indicates viral proteins of high sequence divergence) or in SARS-CoV-2 
infected cells (colored box outlines). (C and D) Localization of Nsp1 and Orf3a expressed 
individually (C) or during infection (D); for representative images of all tagged constructs and 
viral proteins imaged during infection see figs. S8 to S14 and fig. S15 respectively. (E) Prey 
overlap per bait measured as Jaccard index comparing SARS-CoV-2 vs. SARS-CoV-1 (red 
dots) and SARS-CoV-2 vs. MERS-CoV (blue dots) for all viral baits (All), viral baits found in 
the same cellular compartment (Yes) and viral baits found in different compartments (No). 
C-D, Scale bars = 10 μm. 
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Fig. 3. Comparative analysis of coronavirus-host interactomes. (A) Clustering analysis (k-means) of interactors from 
SARS-CoV-2, SARS-CoV-1, and MERS-CoV weighted according to the average between their MIST and Saint scores 
(interaction score K) and percentages of total interactions. Included are only viral protein baits represented amongst all three 
viruses and interactions that pass the high-confidence scoring threshold for at least one virus. Seven clusters highlight all 
possible scenarios of shared versus unique interactions. (B) GO enrichment analysis of each cluster from A, with the top six 
most significant terms per cluster. Color indicates -log10(q) and number of genes with significant (q<0.05; white) or non-
significant enrichment (q>0.05; grey) is shown. (C) Percentage of interactions for each viral protein belonging to each cluster 
identified in A. (D) Correlation between protein sequence identity and PPI overlap (Jaccard index) comparing SARS-CoV-2 
and SARS-CoV-1 (blue) or MERS-CoV (red). Interactions for PPI overlap are derived from the final thresholded list of 
interactions per virus. (E) GO biological process terms significantly enriched (q<0.05) for all three virus PPIs with Jaccard 
index indicating overlap of genes from each term for pairwise comparisons between SARS-CoV-1 and SARS-CoV-2 (purple), 
SARS-CoV-1 and MERS-CoV (green) and SARS-CoV-2 and MERS-CoV (orange). (F) Fraction of shared preys between 
orthologous (blue) versus non-orthologous (red) viral protein baits. (G) Heatmap depicting overlap in PPIs (Jaccard index) 
between each bait from SARS-CoV-2 and MERS-CoV. Baits in grey were not assessed, do not exist, or do not have high-
confidence interactors in the compared virus. Non-orthologous bait interactions are highlighted with a red square. GO = Gene 
Ontology; PPI = protein-protein interaction; SARS2 = SARS-CoV-2; SARS1 = SARS-CoV-1; MERS = MERS-CoV. 
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Fig. 4. Comparative differential interaction analysis reveals shared virus-host interactions. (A) Flowchart 
depicting calculation of differential interactions scores (DIS) using the average between the Saint and MIST 
scores between every bait (i) and prey (j) to derive interaction score (K). The DIS is the difference between 
the interaction scores from each virus. The modified DIS (SARS-MERS) compares the average K from SARS-
CoV-1 and SARS-CoV-2 to that of MERS-CoV (see Methods). Only viral bait proteins shared between all three 
viruses are included. (B) Density histogram of the DIS for all comparisons. (C) Dot plot depicting the DIS of 
interactions from viral bait proteins shared between all three viruses, ordered left-to-right by the mean DIS 
per viral bait. (D) Virus-human protein-protein interaction map depicting the SARS-MERS comparison 
(purple in Fig. 4, B and C). The network depicts interactions derived from cluster 2 (all 3 viruses), cluster 4 
(SARS-CoV-1 and SARS-CoV-2), and cluster 5 (MERS-CoV only). Edge color denotes DIS: red, interactions 
specific to SARS-CoV-1 and SARS-CoV-2 but absent in MERS-CoV; blue, interactions specific to MERS-CoV 
but absent from both SARS-CoV-1 and SARS-CoV-2; black, interactions shared between all three viruses. 
Human-human interactions (thin dark grey line), proteins sharing the same protein complexes or biological 
processes (light yellow or light blue highlighting, respectively) are shown. Host-host physical interactions, 
protein complex definitions, and biological process groupings are derived from CORUM (39), Gene Ontology 
(biological process), and manually curated from literature sources. Thin dashed grey lines are used to 
indicate the placement of node labels when adjacent node labels would have otherwise been obscured. DIS 
= differential interactions score; SARS2 = SARS-CoV-2; SARS1 = SARS-CoV-1; MERS = MERS-CoV; SARS = 
both SARS-CoV-1 and SARS-CoV-2. 
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Fig. 5. Functional interrogation of SARS-CoV-2 interactors using genetic perturbations. (A) A549-ACE2 cells 
were transfected with siRNA pools targeting each of the human genes from the SARS-CoV-2 interactome, followed 
by infection with SARS-CoV-2 and virus quantification using RT-qPCR. Cell viability and knockdown efficiency in 
uninfected cells was determined in parallel. (B) Caco-2 cells with CRISPR knockouts of each human gene from the 
SARS-CoV-2 interactome were infected with SARS-CoV-2, and supernatants were serially diluted and plated onto 
Vero E6 cells for quantification. Viabilities of the uninfected CRISPR knockout cells after infection were determined 
in parallel by DAPI staining. (C and D) Plot of results from the infectivity screens in A549-ACE2 knockdown cells 
(C) and Caco-2 knockout cells (D) sorted by Z-score (Z <0, decreased infectivity; Z >0 increased infectivity). 
Negative controls (non-targeting control for siRNA, non-targeted cells for CRISPR) and positive controls (ACE2 
knockdown/knockout) are highlighted. (E) Results from both assays with potential hits (|Z| > 2) highlighted in red 
(A549-ACE2), yellow (Caco-2) and orange (both). (F) Pan-coronavirus This work is licensed under a Creative 
Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other 
content included in the article that is credited to a third party; obtain authorization from the rights holder before 
using such material.interactome reduced to human preys with significant increase (red nodes) or decrease (blue 
nodes) in SARS-CoV2 replication upon knockdown/knockout. Viral proteins baits from SARS-CoV-2 (red), SARS-
CoV-1 (orange) and MERS-CoV (yellow) are represented as diamonds. The thickness of the edge indicates the 
strength of the PPI in spectral counts. KD = Knockdown; KO = Knockout; PPI = protein-protein interaction. 
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Fig. 6. Interaction between Orf9b and human Tom70. (A) Orf9b-Tom70 interaction is conserved between SARS-
CoV-1 and SARS-CoV-2. (B) Viral titers in Caco-2 cells after CRISPR knockout of TOMM70 or controls. (C) Co-
immunoprecipitation of endogenous Tom70 with Strep-tagged Orf9b from SARS-CoV-1 and SARS-CoV-2, Nsp2 
from SARS-CoV-1, SARS-CoV-2 and MERS-CoV, or vector control in HEK293T cells. Representative blots of whole 
cell lysates and eluates after IP are shown. (D) Size exclusion chromatography traces (10/300 S200 Increase) of 
Orf9b alone, Tom70 alone and co-expressed Orf9b-Tom70 complex purified from recombinant expression in E. coli. 
Insert shows SDS-PAGE of the complex peak indicating presence of both proteins. (E) Immunostainings for Tom70 
in HeLaM cells transfected with GFP-Strep and Orf9b from SARS-CoV-1 and SARS-CoV-2 (left) and mean 
fluorescence intensity ± SD values of Tom70 in GFP-Strep and Orf9b expressing cells (normalized to non-
transfected cells; right). (F) Flag-Tom70 expression levels in total cell lysates of HEK293T cells upon titration of co-
transfected Strep-Orf9b from SARS-CoV-1 and SARS-CoV-2. (G) Immunostaining for Orf9b and Tom70 in Caco-2 
cells infected with SARS-CoV-2 (left) and mean fluorescence intensity ± SD values of Tom70 in uninfected and 
SARS-CoV-2 infected cells (right). SARS2 = SARS-CoV-2; SARS1 = SARS-CoV-1; MERS = MERS-CoV; IP = 
immunoprecipitation. **p < 0.05. B, E, G, Student’s t test. E, scale bar = 10 μm. 
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Fig. 7. CryoEM structure of Orf9b-Tom70 complex reveals Orf9b adopting a helical fold and binding at 
the substrate recognition site of Tom70. (A) Surface representation of the Orf9b-Tom70 structure. Tom70 
is depicted as molecular surface in green, Orf9b is depicted as ribbon in orange. Region in charcoal indicates 
Hsp70/Hsp90 binding site on Tom70. (B) Magnified view of Orf9b-Tom70 interactions with interacting 
hydrophobic residues on Tom70 indicated and shown in spheres. The two phosphorylation sites on Orf9b, 
S50 and S53, are shown in yellow. (C) Ionic interactions between Tom70 and Orf9b are depicted as sticks. 
Highly conserved residues on Tom70 making hydrophobic interactions with Orf9b are depicted as spheres. 
(D) Diagram depicting secondary structure comparison of Orf9b as predicted by JPred server, as visualized 
in our structure, or as visualized in the previously-crystallized dimer structure (PDB:6Z4U) (16). Pink tubes 
indicate helices, charcoal arrows indicate beta strands, amino acid sequence for the region visualized in the 
cryoEM structure is shown on top. (E) Predicted probability of possessing an internal MTS as output by 
TargetP server by serially running N-terminally truncated regions of SARS-CoV-2 Orf9b. Region visualized in 
the cryoEM structure (amino acids 39-76) overlaps with the highest internal MTS probability region (amino 
acids 40-50). MTS = mitochondrial targeting signal. 
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Fig. 8. SARS-CoV-2 Orf8 and functional interactor IL17RA are linked to 
viral outcomes. (A) IL17RA and ADAM9 are functional interactors of 
SARS-CoV-2 Orf8. Only interactors identified in the genetic screening are 
shown. (B) Co-immunoprecipitation of endogenous IL17RA with Strep-
tagged Orf8 or EGFP with or without IL-17A treatment at different times. 
Overexpression was done in HEK293T cells. (C) Viral titer after IL17RA or 
control knockdown in A549-ACE2 cells. (D) Odds ratio of membership in 
indicated cohorts by genetically-predicted sIL17RA levels. SARS2 = 
SARS-CoV-2; IP = immunoprecipitation; SD = standard deviation; OR = 
odds ratio; CI = confidence interval; sIL17RA = soluble IL17RA. * = p <0.05. 
C, unpaired t test. Error bars in C indicate SD; in D they indicate 95% CI. 
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Fig. 9. Real-world data analysis of drugs identified through molecular investigation support their antiviral 
activity. (A) Schematic of retrospective real-world clinical data analysis of indomethacin use for outpatients 
with SARS-CoV-2. Plots show distribution of propensity scores for all included patients (red, indomethacin 
users; blue, celecoxib users). For a full list of inclusion, exclusion, and matching criteria see Methods and 
table S11. (B) Effectiveness of indomethacin vs. celecoxib in patients with confirmed SARS-CoV-2 infection 
treated in an outpatient setting. Average standardized absolute mean difference (ASAMD) is a measure of 
balance between indomethacin and celecoxib groups calculated as the mean of the absolute standardized 
difference for each propensity score factor (table S11); p-value and odds ratios with 95% CI are estimated 
using the Aetion Evidence Platform r4.6. No ASAMD was greater than 0.1. (C) Schematic of retrospective 
real-world clinical data analysis of typical antipsychotic use for inpatients with SARS-CoV-2. Plots show 
distribution of propensity scores for all included patients (red, typical users; blue, atypical users). For a full 
list of inclusion, exclusion, and matching criteria see Methods and table S11. (D) Effectiveness of typical vs. 
atypical antipsychotics among hospitalized patients with confirmed SARS-CoV-2 infection treated in-
hospital. Average standardized absolute mean difference (ASAMD) is a measure of balance between typical 
and atypical groups calculated as the mean of the absolute standardized difference for each propensity 
score factor (table S11); p-value and odds ratios with 95% CI are estimated using the Aetion Evidence 
Platform r4.6. No ASAMD was greater than 0.1. 
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