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SUMMARY

Most drugs entering clinical trials fail, often related to an incomplete understanding of the mechanisms gov-
erning drug response. Machine learning techniques hold immense promise for better drug response predic-
tions, but most have not reached clinical practice due to their lack of interpretability and their focus onmono-
therapies. We address these challenges by developing DrugCell, an interpretable deep learning model of
human cancer cells trained on the responses of 1,235 tumor cell lines to 684 drugs. Tumor genotypes induce
states in cellular subsystems that are integrated with drug structure to predict response to therapy and,
simultaneously, learn biological mechanisms underlying the drug response. DrugCell predictions are accu-
rate in cell lines and also stratify clinical outcomes. Analysis of DrugCell mechanisms leads directly to the
design of synergistic drug combinations, which we validate systematically by combinatorial CRISPR,
drug-drug screening in vitro, and patient-derived xenografts. DrugCell provides a blueprint for constructing
interpretable models for predictive medicine.

INTRODUCTION

Each year dozens of new therapies enter clinical trials for the po-

tential treatment of various types of cancer, but fewer than 4%

will ultimately gain approval by the US Food and Drug Adminis-

tration (Wong et al., 2019). Although many factors contribute to

this challenge, a major failure is in understanding how or why a

particular cancer responds to therapy. The problem becomes

particularly acute for cancers that are not associated with strong

targetable genetic drivers (e.g., BCR-ABL fusion, EGFR muta-

tion, or EML4-ALK translocation), since cancers without these

known drivers lack clear biomarkers with which to stratify drug

response. A better basic understanding of the molecular path-

ways governing drug sensitivity would help greatly in deter-

mining which patients should be treated and with which drugs.

There has recently been a great deal of interest in applying ad-

vances in artificial intelligence, including machine learning and

deep learning, to classic problems in biomedicine (Topol,

2019). Whereas popular applications include disease diagnosis

from biomedical images and interpretation of electronic medical

records (Esteva et al., 2019; Rajkomar et al., 2019; Wainberg

et al., 2018), machine learning models are also of high interest

in predicting drug responses (Barretina et al., 2012; Costello

et al., 2014; Garnett et al., 2012; Iorio et al., 2016; Zeng et al.,

2019). In a typical application (reviewed in Table S1), the model

uses the ’omics profile of a cell line or tissue sample as input

to predict the 50% inhibitory concentration (IC50) of a drug. For

example, Iorio et al. (2016) built elastic net models to predict

the drug IC50 of cancer cell lines given their profiles of gene mu-

tations and expression levels; a range of predictive accuracy is

observed, depending on the compound. Using the same data-

set, Cortés-Ciriano et al. (2016) showed that predictive perfor-

mance could in some cases be improved using a random forest

model linked to a measure of statistical confidence in each pre-

diction. Deep neural networks (Baptista et al., 2020; Chiu et al.,

2019; Menden et al., 2013; Sakellaropoulos et al., 2019) and vari-

ational autoencoders (Rampá�sek et al., 2019) have also been

applied to drug response prediction, with significant perfor-

mance gains noted depending on the drug and disease context.

Owing to the significant molecular heterogeneity observed

across tumors, there are often many different molecular features

and feature combinations that can lead amodel to predict a partic-

ular drug response. What these features are, and whether they are

distinct or functionally interrelated, can be very difficult to interpret,

however. The reason is that most machine learning models are

‘‘black boxes,’’ optimized for prediction accuracy without knowl-

edge of or attention to the biological mechanisms underlying pre-

dicted outcomes (Ching et al., 2018). To address these difficulties,
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model interpretation is now a rapidly growing subfield within ma-

chine learning, with a growing arsenal of approaches for achieving

models with not only high predictive accuracy, but also high

descriptive accuracy (Murdoch et al., 2019). One major strategy

has been to use prior knowledge or data to add structure to the

model, which can then be interpreted. Applied to genomics, such

a strategyhasbeenused to recast the thousandsofmeasuredmo-

lecular features of a tumor as states on a much smaller number of

functional modules (Cortés-Ciriano et al., 2016; Yang et al., 2019).

Forexample,a recentstudymappedrawmolecularmeasurements

toasetofpre-definedmetabolicpathwaysdrawn frompriorknowl-

edge bases; the states of these pathways predict antibiotic resis-

tance inEscherichiacoli,withparticularpathway featuresemerging

ascandidatemechanismsof resistance (Yangetal., 2019).Organi-

zation of molecular features into predictive modules can also be

accomplished using prior data as opposed to literature-curated

knowledge. Such an approach was recently exemplified by Deep-

Profile, which analyzed a large collection of leukemia expression

profiles to extract a low-dimensional representation of these data

as a set of functional gene modules; these modules are then

used as interpretable features for drug response prediction (Dincer

et al., 2018). Apart frommodel-basedapproaches, a secondmajor

strategy to increasemodel interpretabilityhasbeen toperformpost

hoc analysis of model features or feature weights to interpret the

underlying drug response mechanisms (Chiu et al., 2019; Iorio

et al., 2016; Murdoch et al., 2019). For example, the weights as-

signed to each input gene by a black-box neural network model

are subjected to gene set enrichment analysis (Subramanian

et al., 2005) to identify pathways regulating the predicted drug

response (Sakellaropouloset al., 2019). Thesepathways, however,

were not used during modeling or validated experimentally.

To more explicitly link the structure of a machine learning

model to cellular functions, we recently developed a visible neu-

ral network (VNN) simulating a simple eukaryotic cell, Saccharo-

myces cerevisiae (Ma et al., 2018; Yu et al., 2018). This model,

called DCell, was made mechanistically interpretable, or

‘‘visible,’’ by directly mapping the neurons of a deep neural

network into a large hierarchy of known and putative molecular

components and pathways. DCell is able to accurately predict

the impact of genetic mutations on cellular growth response

and, simultaneously, identify the most relevant molecular path-

ways driving those predictions. Building from this paradigm,

we now describe DrugCell, a VNN that simulates the response

of human cancer cells to therapeutic chemical compounds.

DrugCell couples the inner workings of the model to the hierar-

chical structure of human cell biology, allowing for response pre-

dictions for any drug in any cancer and intelligent design of effec-

tive combination therapies.

RESULTS

Design and Training of an Interpretable Neural Network
of Drug Response
The cellular drug response is a complex phenomenon that de-

pends on both biological and chemical factors (Turner et al.,

2015). Current black-box models of drug response that use

both these factors have begun to reach the limits of predictive

performance (Table S1). We therefore aimed to design a model

thatmaintains this high level of predictive capability while gaining

mechanistic interpretability of the model predictions. To capture

both determinants of drug response in an interpretable model,

we devised DrugCell as a neural network with two branches (Fig-

ure 1A, STAR Methods). The first branch was a VNN modeling

the hierarchical organization of molecular subsystems in a hu-

man cell, drawn from 2,086 biological processes documented

in theGeneOntology (GO) database (Ashburner et al., 2000) (Fig-

ure S1A). Each of these subsystems, from those involving small

protein complexes (e.g., b-catenin destruction complex) to

larger signaling pathways (e.g., MAPK signaling pathway) to

overarching cellular functions (e.g., glycolysis), was assigned a

bank of artificial neurons to represent the state of that subsystem

(Figure 1B). Connectivity of neurons was set to mirror the biolog-

ical hierarchy, so that neurons accept inputs only from child sub-

systems and send outputs only to parent systems, with connec-

tion weights determined during training. The use of multiple

neurons per subsystem (here six, see STAR Methods) allowed

cellular subsystems to be multifunctional, with distinct states

able to adopt a range of values along multiple dimensions
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Figure 1. DrugCell Design
(A) DrugCell uses a modular neural network design that combines conventional artificial neural networks (ANN) with a visible neural network (VNN) to make drug

response predictions.

(B) Binary encodings of individual genotypes are processed through a VNN with architecture guided by a hierarchy of cell subsystems, with multiple neurons

assigned per subsystem.

(C) Compound chemical structures are processed through an ANN using the Morgan fingerprint as input features.
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(Copley, 2012). The input layer of the hierarchy mapped to the

mutation status of genes. The six neurons at the VNN output,

corresponding to the root of the hierarchy, represented the

embedded state of the whole cell based on its genotype (Fig-

ure 1B). In total, the VNN used 12,516 neurons distributed hier-

archically across six distinct layers (STARMethods, Figure S1B).

The second branch of DrugCell was a conventional artificial neu-

ral network (ANN) embedding the Morgan fingerprint of a drug, a

canonical vector representation of chemical structure (Figure 1C,

STAR Methods) (Rogers and Hahn, 2010). Outputs from the two

branches of the model, the VNN embedding cell genotype and

the ANN embedding drug structure, were combined in a single

layer of neurons, which were then integrated to generate

the response of a given genotype to a particular treatment

(Figure 1A).

To train the model, we harmonized data from two large cancer

drug screening resources: the Cancer Therapeutics Response

Portal (CTRP) v2 and the Genomics of Drug Sensitivity in Cancer

(GDSC) database (Seashore-Ludlow et al., 2015; Yang et al.,

2013). The combined dataset consisted of 509,294 cell line-

drug pairs, covering 684 drugs and 1,235 cell lines (Figure S1C,

STAR Methods). All major tissue types were represented, with

hematopoietic and lung lineages themost prevalent (Figure S1D).

Each cell-line genotype was represented by a binary vector

recording the mutational status (1 = mutated, 0 = non-mutated)

of the top 15% most frequently mutated genes in cancer (n =

3,008; median mutated genes per cell line = 73; Figure S1E).

Each drug’s chemical structure was represented by an average

of 81 activated bits in theMorgan fingerprint vector, with each bit

typically representing fewer than 10 molecular fragments (Fig-

ures S1F and S1G). DrugCell was trained to associate each ge-

notype-drug pair with its corresponding drug response,

measured by the area under the dose-response curve (AUC,

STARMethods). The DrugCell model and its codebase are avail-

able for public download on GitHub (https://github.com/

idekerlab/DrugCell).

Interpretable Modeling of Drug Response Has No
Performance Loss
We first sought to assess the prediction accuracy of DrugCell us-

ing the Spearman correlation (rho) between predicted and

observed AUC values in 5-fold cross validation (STARMethods).

The total accuracy over all cell line-drug pairs was rho = 0.80

(Figure 2A). Further insight was achieved by computing the pre-

diction accuracy for each drug individually, revealing a subpop-

ulation of drugs with very high prediction accuracy (30% of

drugs with rho > 0.5) amid a much wider general distribution

(range �0.29 to +0.83, median 0.37). These accuracies were
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Figure 2. Predictive Performance

(A) Predicted versus actual drug responses across all (cell line, drug) pairs studied. Box plots show the 25th, 50th, and 75th percentiles of values in each bin;

whiskers show maximum and minimum values.

(B–D) Scatterplots of the predictive performance (Spearman rho between actual and predicted drug response across 684 drugs) of DrugCell versus three

alternative models: (B) elastic net, (C) matched black-box neural network, and (D) tissue-only black-box neural network. Points represent individual drugs; points

above the diagonal represent drugs better predicted by DrugCell.

(E) Waterfall plot of predictive performance for each drug in the dataset (y axis), ranked from highest to lowest (x axis). ‘‘High confidence’’ drugs are highlighted in

red (rho > 0.5). The inset shows the performance for the top 10 best predicted drugs.
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significantly higher than those achieved for elastic net (median

rho = 0.35), a state-of-the-art regression technique used in

many previous approaches to drug response prediction (Eskio-

cak et al., 2017; Iorio et al., 2016; Kuenzi et al., 2019; Potts

et al., 2015) (Figure 2B). DrugCell’s drug-by-drug predictive per-

formance was not significantly different from that of a conven-

tional black-box ANNwith matching numbers of neurons, layers,

and connections (Figure 2C). It was also comparable to previous

efforts to incorporate chemical features of drugs into the

response prediction (e.g., structure and physiochemical proper-

ties such as solubility, lipophilicity, and molecular weight), and it

outperformedmodels that predict response using biological fea-

tures alone (e.g., expression of biomarkers, point mutation, copy

number variation, and microsatellites; Table S1). Finally, since

knowledge of tissue type can be predictive of drug response

even in the absence of other information (Iorio et al., 2016), we

considered that some of the performance of these models might

be due to their ability to recognize the tissue type of a cell line

from its input data (i.e., its mutational profile). Accordingly, we

compared DrugCell with an equivalent neural network model

trained on drug structure and a tissue label only (STARMethods).

DrugCell vastly outperformed this tissue-only model (median

rho = 0.18; Figure 2D), indicating that the model had learned in-

formation from somatic mutations beyond the tissue of origin.

Compounds for which DrugCell predictions were most accu-

rate came from diverse target classes, including chemothera-

peutics (e.g., vincristine, teniposide) and targeted therapies

(e.g., GSK461364 targeting PLK1, KX2-391 targeting Src; Fig-

ure 2E). DrugCell maintained the specificity of the training data

in that its predictions were specific to individual classes of drugs

(e.g., MEK inhibitor predictions were highly specific) and did not

simply reflect general drug toxicity (Figure S2A). Predictive per-

formance for a drug did not strongly correlate with the number

of cell line-drug pairs used for training, nor with the structural

complexity of a compound (number of activated bits; Figures

S2B and S2C). We did find that compounds eliciting a larger

range of cell-line responses tended to be more predictable (Fig-

ure S2D). Similarly, individual cell lines (Figure S2E) and tissue

types (Figure S2F), which elicit a large range of responses,

were in general highly predictable.

DrugCell Learns Mechanisms that Mediate Specific
Drug Responses
Having evaluated predictive ability, we next turned to mecha-

nistic interpretation. This task was aided by the two model

branches, which dissect the effects of genotype on the configu-

ration of cell systems (genotype embedding) from the effects of

chemical structure on drug activity within the cell (drug embed-

ding, Figure 1A). We visually inspected these embeddings by

plotting the top two principal components (Figures 3A–3E). The

genotype embedding from the VNN revealed a separation of ge-

notypes according to mutations known to confer specific drug

sensitivities, such as activating mutations in BRAF (Figure 3A)

that promote sensitivity to the MEK inhibitor selumetinib (Fig-

ure 3B). The genotype embedding also distinguished mutations

leading to drug resistance, such as mutations in EGFR (Yin et al.,

2019), LKB1 (Shimamura et al., 2013), or BRAF (Ma et al., 2017)

(Figure 3C) that confer resistance to the BET-family inhibitor JQ-

1 (Figure 3D).We similarly inspected theDrugCell embeddings of

individual subsystems within the VNN and found that many were

in agreement with subsystem activitiesmeasured experimentally

by an independent analysis of protein abundances and phos-

phorylation states using reverse-phase protein arrays (RPPAs;

Figure S3A; STAR Methods). For example, DrugCell accurately

captured MAPK pathway activity within the subsystem embed-

ding of Regulation of MAPK cascade (Figure S3B), which signif-

icantly correlated with ERK1/2 phosphorylation (Figure S3C).

Overall, the majority of DrugCell subsystems were well corre-

lated with the RPPA measurements of those subsystems (note

bimodal distribution of correlation in Figure S3A). Other accu-

rately captured subsystems included Proteolysis (Figure S3D),

Regulation of PI3K signaling (Figure S3E), and Cell-cycle arrest

(Figure S3F).

Inspection of the drug embedding from the ANN revealed a

stratification of drugs based on their mechanisms of action

within major drug target classes (Figure 3E). The distance be-

tween each pair of drugs in the chemical structure embedding

did not correlate with their overall chemical similarity (Fig-

ure S4A), consistent with previous studies of drug activity and

chemical structure (Breinig et al., 2015). Since the training data

consisted solely of drugs and drug-like molecules, the chemical

structural embedding did not stratify drugs on chemical features

such as membrane permeability (Figure S4B), solubility (Fig-

ure S4C), or pharmacodynamic properties (Lipinski; Figure S4D).

Together these results suggest that DrugCell is able to learn key

features of the genotype that govern drug sensitivity and resis-

tance, as well as features of chemical structure that govern

drug biological activity.

Since DrugCell’s VNN is structured according to the hierarchy

of biological subsystems comprising a human cell, its output (ge-

notype embedding) is the result of state changes in particular

subsystems within that hierarchy. To identify the most important

of these subsystems, we scored subsystems by the degree to

which their states were significantly more predictive of a drug

response than the states of their child subsystems using the rela-

tive local improvement in predictive power metric (RLIPP, STAR

Methods) (Ma et al., 2018). As an initial proof of concept, we used

RLIPP scoring to identify subsystems important for the cellular

response to taxol (paclitaxel), an agent that stabilizes microtu-

bules (Figures 2E and 3F, Table S2). Among the top scores for

paclitaxel, many subsystems were metabolic processes (hyper-

geometric p < 0.05; Figures 3G and 3H), including Response to

cAMP (top score) along with Insulin secretion in response to

glucose and Response to glucose. We confirmed by inspection

that the states of these subsystems had the ability to stratify

paclitaxel sensitive versus resistant cell lines (e.g., Response to

cAMP subsystem, Figure 3I). Given these underlying metabolic

pathways, we hypothesized that paclitaxel efficacy might be

modulated by metabolic perturbation. We therefore exposed

A427 cells to three different treatments – paclitaxel, the glycol-

ysis inhibitor 2-deoxyglucose (2-DG), or a combination of the

two – and found that the combination was substantially more

effective than either individual compound (Figure 3J).

A similar analysis was performed for the next (second-most)

important subsystem, Regulation of ubiquitin-protein trans-

ferase activity (Figure 3G, Table S2). We combined paclitaxel

with perturbation of ubiquitin-dependent protein degradation

via the proteasome inhibitor bortezomib (Figure S5A). We found
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that these treatments were antagonistic, consistent with recent

findings showing that glycolysis is subject to negative physical

regulation by ubiquitin ligases at the cytoskeleton (Park et al.,

2020). Ubiquitin and subsystems were also identified for doce-

taxel, a sister compound (Table S3). Notably, these DrugCell

pathways were not identified by earlier analyses of genetic

mutations (Table S4) and were distinct from those identified

by differential mRNA expression analysis of paclitaxel sensitive

versus resistant lines (Figures S5B and S5C). Unlike the

glycolytic perturbations emerging from DrugCell analysis,
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Figure 3. Characterization of Cancer Cell States Learned by DrugCell

(A–D) Genotype embeddings of each cell line, showing the first two principal components (PC). Points are cell lines, with colors indicating specific drug responses

or geneticmarkers according to the panel. (A and C) Green denotes cell lines harboringmutations inBRAF or in EGFR,BRAF, or LKB1, respectively. Gray denotes

cell lines without mutations in these genes. (B and D) Blue-to-red gradient represents the response to selumetinib or JQ-1, respectively. Gray denotes cell lines

not tested against that drug.

(E) Drug structure embedding. Points are drugs, with colors indicating drug target classes.

(F) Genotype embeddings of each cell line as in (A–D), but with blue-to-red gradient representing response to paclitaxel.

(G) Waterfall plot of top 5% of subsystems (x axis) important for paclitaxel response by RLIPP score (y axis). Subsystems capturing metabolic pathways are

highlighted in red.

(H) Visualization of select subsystems highlighted in (G), comprising a sub-hierarchy of the full DrugCell model. Red is used to trace the branches of the hierarchy

related specifically to regulation of glycolysis.

(I) Response to cAMP subsystem embedding. Points are cell lines, blue-to-red gradient represents response to paclitaxel.

(J) Boxplot of the relative cell viability of treatment with DMSO, paclitaxel, 2-deoxyglucose (2-DG), or the combination at the indicated concentrations in A427

cells. Data are representative of drug treatments performed in biological and technical triplicates. The boxes represent the interquartile range (IQR) bisected by

the median, whiskers represent the maximum and minimum range of the data that do not exceed 1.5 times the IQR. ***p < 0.0001 from a t test.
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combination treatments suggested by differentially expressed

pathways were not successful at enhancing paclitaxel efficacy

(Figure S5D).

Moving beyond paclitaxel to examine the important subsys-

tems identified for other drugs, we found that some of these sub-

systems corresponded to previously identified mechanisms of

drug sensitivity, while many others were novel pathways war-

ranting further investigation. In particular, we examined 60 drugs

for which pan-cancer diagnostic gene mutations had been re-

ported by an earlier analysis of the GDSC dataset using type II

error ANOVAmodeling (Iorio et al., 2016). For a number of drugs,

DrugCell recovered the previously reported diagnostic gene(s)

within the top subsystem (4 drugs) or top 10 subsystems (14

drugs, upper 0.4th percentile of subsystems). For the vast major-

ity, however (56 drugs), DrugCell achieved better predictive per-

formance by consulting additional, or different, markers than had

been previously reported (Table S4).

Given the extent of novel drug response pathways, we sought

to systematically investigate the indicated mechanisms (Fig-

ure 4A; STAR Methods), focusing on trametinib, a MEK1 inhibi-

tor; olaparib, a PARP1 inhibitor; and nutlin-3, an MDM2 antago-

nist that stabilizes and activates p53. CRISPR knockouts of each

of the three drug targets (MEK1, PARP1, TP53) were combined

with knockouts of each gene in a custom CRISPR/Cas9 library,

which had broad representation of cancer signaling pathways

(MCF7 cells; Figure 4B). The top five important subsystems in

the response to each drug were identified (RLIPP analysis; Fig-

ures 4C–4E), along with the genes in those subsystems covered

by the CRISPR library. Combinatorial disruption of MAPK1 with

genes in trametinib subsystems (Figure 4C) resulted in signifi-

cantly more cell killing than observed for genes from random un-

important subsystems (Figure 4F). A similar cell killing effect (Fig-

ure 4G) was observed for combinatorial disruption ofPARP1with

genes in olaparib subsystems (Figure 4D). In contrast, combina-

torial disruption of TP53 with genes in nutlin-3 subsystems (Fig-

ure 4E) had effects on cell growth that were not significantly

different from random (Figure 4H). This result was expected, as

TP53 knockout has the opposite effect compared with nutlin-3,

which leads to p53 activation. These results, together with the

preliminary results from paclitaxel, provide systematic support

for the importance of top response pathways identified by

DrugCell.

Identified Subsystems Represent Synergistic Drug
Combination Opportunities
The parallel pathway inhibition theory of drug synergy (Yeh et al.,

2009) holds that two drugs will be synergistic if they inhibit sepa-

rate pathways that regulate a common essential function
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Figure 4. Systematic Validation of Identified Mechanisms of Sensitivity Using CRISPR/Cas9

(A) Workflow of systematic analysis using CRISPR/Cas9.

(B) Heatmap of the area under the fitness curves for 176 cancer genes in combination with MAP2K1, PARP1, and TP53.

(C–E) Bar plots of the RLIPP scores of the top five subsystems for (C) trametinib, (D) olaparib, and (E) nutlin-3.

(F–H) Boxplots of the area under the fitness curve following CRISPR/Cas9-mediated knockout of (F)MAP2K1, (G)PARP1, and (H) TP53 in combination with highly

weighted genes within the top five subsystems identified by DrugCell for each parent drug compared with random. Select genes are labeled. The boxes represent

the IQR bisected by themedian, andwhiskers represent themaximum andminimum range of the data that do not exceed 1.5 times the IQR. *p < 0.05 from a t test,

NS denotes not significant.
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(Figure 5A). The branched architecture of the DrugCell model

(Figure 1A) mirrors this parallel pathway structure, in that the bio-

logical activity of a drug is learned by the drug embedding

branch, and the parallel pathways are learned by the genotype

embedding branch (Figure 5B). Subsystems important for pre-

dicting a drug response may therefore represent synergistic

drug combination opportunities. Exactly such parallelism was

used to nominate the combination treatments in the above anal-

ysis (i.e., 2-DG as synergistic with paclitaxel).

To further explore this concept, we used RLIPP scores to rank

subsystems regulating sensitivity to 25drugs in theDeepSynergy

database (Preuer et al., 2018), in which all pairs of 25 drugs had

been tested across a panel of 39 cell lines (Figure 5C). We then

analyzed the top 5 and bottom 5 DrugCell subsystems for each

of these compounds to nominate synergistic and non-synergistic

drug combinations.We found that drug combinations nominated

byDrugCell were strongly and significantly enriched for synergis-

tic cell killing outcomes, in contrast to combinations predicted to

be non-synergistic or random combinations (Figure 5D).

One such example was etoposide, a topoisomerase inhibitor

that leads to DNA damage (Table S5). Among the top etoposide

subsystems were the major kinase signaling pathways PI3K-

AKT (Regulation of PI3K activity, PI3K; Figure 5E) and RAF-

MEK-ERK (Negative regulation of ERK1/ERK2 cascade, ERK;
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Figure 5. Discovery and Validation of Synergistic Mechanisms

(A) Parallel pathway theory of drug synergy, in which a pathway 2 is targeted by the mechanism of action (MoA) of drug A, and synergy is achieved by simul-

taneously targeting parallel pathway 1 with drug B.

(B) Logic learned by DrugCell for drug A, in which pathway 1 arises as a predicted mechanism of the VNN.

(C) Workflow demonstrating systematic design and assessment of pairwise combinations of drugs.

(D) Boxplots of DeepSynergy synergy scores for predicted drug combinations, predicted non-synergistic combinations, and random combinations. The boxes

represent the IQR bisected by the median, and whiskers represent the maximum and minimum range of the data that do not exceed 1.5 times the IQR.

***p < 0.0001.

(E) Representative subsystems used by DrugCell to simulate etoposide sensitivity (red nodes), along with a negative control branch (white node). RLIPP scores

are displayed inside each node. Subsystem names are abbreviated.

(F) Bee swarm plot of the Loewe synergy scores observed upon combination of etoposide with MK2206, PD325901, or bortezomib. Drug combinations were

chosen based on subsystems identified in (E). Red dotted line indicates the mean of all Loewe synergy scores in the dataset (Figure S6). ***p <0.0001. *** without

bars represent t test against the synergy score distribution of the full dataset (Figure S6), or bortezomib negative control, as indicated. Red points are cell lines for

which synergy is observed. Blue points are cell lines for which antagonism is observed.

(G) Boxplots of the relative cell growth of A549 cells following CRISPR/Cas9-mediated knockout ofMAP2K1, PIK3CA, or APC (negative control) in combination

with TOP2 or a non-targeting control (NT). Data are reflective of two independent transductions. ***p <0.0001, *p <0.1, **p <0.01.

(H) Boolean logic circuit approximating how the mutational status of genes in the PI3K and ERK subsystems is translated to an etoposide response by DrugCell.

(I) Truth table showing translation of PI3K and ERK states to a binary drug response output. The percentage of observed sensitive versus resistant cells for each

state is shown. Dotted line indicates baseline percentage of etoposide-resistant samples among all cell lines.

(J) Odds ratios of etoposide response prediction for DrugCell, the ERK and PI3K logic functions from (H), and individual genes from (H). Percentages of cell lines

with an alteration to that biomarker are also shown. Odds ratios are against a background of cell lines that are wild type with respect to this circuit.
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Figure 5E). Indeed, etoposide synergized strongly with AKT and

MEK inhibition across the majority of cell lines tested in DeepSy-

nergy (Figure 5F). We further validated the observed synergy by

deleting the target of etoposide, TOP2, using CRISPR/Cas9

gene editing in A549 cells, either alone or in combination with

core genes in PI3K-AKT signaling (PIK3CA) or RAF-MEK-ERK

signaling (MAP2K1). We observed that deletion of TOP2 with

either PIK3CA or MAP2K1 demonstrated significant loss of cell

viability compared with single-gene knockout (Figure 5G).

APC, whose subsystem (b-catenin destruction complex) was

not identified by RLIPP (Table S5), did not show this same

pattern (Figure 5G). Similarly, etoposide did not synergize with

the proteasome inhibitor bortezomib (Figure 5F), consistent

with the proteasome subsystem not being identified by DrugCell

(Figure 5E).

Further inspection suggested that the relationship between

PI3K signaling, ERK signaling, and etoposide sensitivity

captured by DrugCell could be roughly approximated by a logic

function integrating the mutational status of six genes (Figures

5H and 5I; STAR Methods). Among these, FLT1 (Das et al.,

2005) and PIN1 (Mathur et al., 2011) had previously been shown

to regulate etoposide response, whereas DUSP1, PIK3R4, SRC,

andRPS6KA6 had not. Considered individually, any one of these

genes was mutated rarely in cancer cell lines, with limited power

to predict etoposide sensitivity versus resistance (mutation fre-

quencies 0.9%–8.9%; odds ratios <2; Figure 5J). Considered

as an integrated circuit, however, these gene mutations

converge on PI3K or ERK subsystems to create a powerful

network-based biomarker of drug response (odds ratio 7.8; Fig-

ure 5J). We also noted that these two pathways represent only a

portion of the full DrugCell model, which predicts etoposide

sensitivity with an odds ratio of 14.3.

DrugCell Improves Progression-Free Survival of
Patient-Derived Xenograft Models
We next wished to move beyond cell lines to predict and inter-

pret drug responses in the in vivo setting of patient-derived xeno-

graft models (PDX; Figure 6A, STAR Methods). To do so, we ac-

cessed the PDX Encyclopedia (Gao et al., 2015), in which 399

PDX tumors of varying tissue types had been screened against

a total of 40 different monotherapies and 27 combination thera-

pies. The genotypes of each PDX had also been established

(Gao et al., 2015), which were provided to DrugCell to make

response predictions to each monotherapy. We considered a

PDX tumor to be sensitive to a therapy (DrugCell (+)) if its pre-

dicted AUC was beneath the median predicted for all PDX-

drug pairs; otherwise this tumor was labeled as insensitive

(DrugCell (�)). DrugCell (+) tumors demonstrated significantly

longer progression-free survival (PFS) than DrugCell (�) tumors

(2.19 versus 1.58 months, p = 9.4 3 10�10, log rank test). How-

ever, given the overall insensitivity of these PDX tumors tomono-

therapy, corresponding to the short observed PFS observed for

both DrugCell classes, we wished to evaluate how well DrugCell

is able to suggest effective drug combinations. We used RLIPP

scoring to rank subsystems by importance in mediating drug re-

sponses to six primary drugs, filtering this list to those that con-

tained secondary drug targets. The observed PFS of each of

these (primary, secondary) combinations was used to estimate

the prediction sensitivity and specificity along a receiver oper-

ating characteristic curve (ROC; Figure 6A, STAR Methods).

We found that DrugCell was able to accurately identify subsys-

tems that correspond to effective drug combinations in PDX tu-

mors (auROC = 0.75; Figure 6B) with relatively few false positives

and negatives (Figure 6C).

For example, DrugCell analysis of BKM-120, a PI3K inhibitor,

identified Negative regulation of ERK1 + ERK2 cascade as an

important subsystem for BKM-120 response, suggesting a com-

bination of PI3K + MAPK pathway inhibitors (BKM-120 + encor-

afenib). This combination significantly increased PFS across the

PDX panel compared with monotherapy (Figure 6D). Similarly,

DrugCell identified DNA damage response, signal transduction

by p53 class mediator resulting in cell-cycle arrest as an impor-

tant subsystem for abraxane response, suggesting combination

chemotherapy with an agent inducing DNA damage and cell-cy-

cle arrest (abraxane + gemcitabine). This combination similarly

significantly improved PFS (Figure 6D). For the combinations

that were not prioritized by DrugCell (not in top 20% of subsys-

tems by RLIPP), these combinations indeed failed to significantly

improve PFS (Figures 6C and 6E). These results suggested that

DrugCell has utility in guiding design of combination therapies in

patient tumors.

DrugCell Predicts the Response of Estrogen Receptor-
PositiveMetastatic Breast Cancer Patients tomTORand
CDK4/6 Inhibitors
Last, we sought to evaluate whether DrugCell could be used

clinically to stratify cancer patients into responsive and non-

responsive patient populations. We obtained and analyzed

aggregated clinical trial data (Smyth et al., 2020) from 221 es-

trogen receptor (ER)-positive metastatic breast cancer patients

who had undergone multiple rounds of therapy, including an ER

antagonist (fulvestrant) in addition to treatment with an mTOR

inhibitor (everolimus) or CDK4/6 inhibitor (ribociclib). For this

analysis (STAR Methods), we predicted patient response to

either mTOR or CDK4/6 inhibition using our pre-trained Drug-

Cell model. We considered a patient to be DrugCell (+) if they

were predicted to be sensitive to either therapy and DrugCell

(�) if they were predicted to be insensitive to both therapies.

DrugCell (+) patients had significantly longer overall survival

than DrugCell (�) patients (48.2 versus 33.6 months, p =

0.018; Figure 7A).

We next interrogated the mechanisms underlying the differ-

ential sensitivity between DrugCell (+) and DrugCell (�) patients

by performing an RLIPP analysis for both the mTOR and the

CDK4/6 inhibitors. Notably, we found that both drug responses

were modulated by ER-related subsystems (Figures 7B and

7C), consistent with their use in ER-positive breast cancer

(Hare and Harvey, 2017; Pernas et al., 2018). We also found

that the major mechanisms of action of both drugs were among

the top pathways, with PI3K signaling being especially impor-

tant for response to mTOR inhibitors and CDK activity being

important for CDK4/6 inhibitor activity (Figures 7B and 7C).

Interestingly, TOR signaling was also identified for CDK4/6 in-

hibitors (Figure 7B), and CDK activity was identified for mTOR

inhibitors (Figure 7C), suggesting that these drugs could be

an effective combination therapy, a finding supported by recent

preclinical studies (Michaloglou et al., 2018; Occhipinti

et al., 2020).
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With respect to specific genetic alterations, we found that

DrugCell (+) patients were much more likely to harbor AKT1

mutations than DrugCell (�) patients (Figure 7D). In contrast,

DrugCell (�) patients had mutations in genes previously associ-

ated with drug resistance, including ESR1 (Reinert et al., 2017),

RB1 (Condorelli et al., 2018), and PTEN (Costa et al., 2020) (Fig-

ure 7D), suggesting that we had stratified patients based on a

complex pattern of mutations leading to therapy resistance.

Strikingly, AKT1 mutation status alone was not predictive of

therapeutic response, with AKT1-mutant patients actually

trending toward shorter overall survival (35.8 versus

43.1 months), although this difference was not statistically sig-

nificant (Figure 7E). This analysis illustrates how DrugCell can

be used to effectively guide clinical treatment decisions with

significantly greater precision and insight than single-gene

marker studies.

DISCUSSION

Here we have explored an interpretable deep learning model of

the structure and function of a human cancer cell in response

to treatment. This work advances predictive modeling toward a

systematic representation of the biological mechanisms underly-

ing a drug response, a critical direction for precision medicine.

Following a model prediction, access to a mechanistic interpre-

tation engages the experimentalist or clinician in reasoning about

biological function. For example, analysis of DrugCell’s model of

etoposide identified a small set of subsystems important for the

cellular response and for which targeted drugs were available

(Figure 5). This analysis motivated us to perform subsequent ex-

periments to target both genetically and pharmacologically

topoisomerase II with either MAPK or PI3K pathways; both of

these combinations showed significant synergistic effects.
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Figure 6. Guiding Combination Therapy in Patient-Derived Xenograft Tumors

(A) Flowchart of analysis procedure.

(B) ROC curve of DrugCell performance in distinguishing effective from ineffective drug combinations.

(C) Error matrix for point indicated in (B) demonstrating best performance of DrugCell against the PDX dataset.

(D) Survival curves for drug combinations predicted to be effective by DrugCell (true positives) showing a significant improvement in progression-free survival.

(E) Survival curves for drug combinations predicted to be ineffective by DrugCell (true negatives) showing a lack of improvement in progression-free survival. p

values indicate significance by log rank test. ***p <0.0001, NS indicates not significant.
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Such engagement of human reasoning and follow-up experi-

mentation helps greatly to increase accountability and trust in

the predictions of amachine learningmodel. In contrast, conven-

tional black-box predictive modeling yields only a model

output—the drug response—without further information by

which to build trust in the process.

DrugCell is a flexible model that is amenable to both auto-

mated and semi-automated combinatorial drug design. First,

the importance of each cellular subsystem is scored by DrugCell

during a response tomonotherapy. These important subsystems

are then annotated with second points of intervention, such as

the PI3K or ERK pathway in the response to etoposide (Figures

5E–5G). To follow up on this analysis, drug combinations can

be selected automatically based on the druggable targets pre-

sent in top DrugCell subsystems. Alternatively, if DrugCell is be-

ing used in a clinical context, its recommendations can be pro-

vided to physician-scientists (e.g., a molecular tumor board)

who consider the recommended combinations in light of other

biological knowledge not explicitly used inmodeling, such as po-

tential toxicities and specific information about the case. After

careful consideration of all relevant information, the ultimate

treatment decision remains in the hands of the physician and

the patient. Such need for human accountability is not unique

to drug response prediction but is a central tenet of high-stakes

applications of machine learning (Rudin, 2019).

Notably, previous models trained on monotherapy responses

(Ammad-ud-din et al., 2017; Cortés-Ciriano et al., 2016; Iorio

et al., 2016; Zhang et al., 2015) have not attempted to suggest

combination therapies. Rather, drug combinations have been

predicted using models of synergy trained directly on data

from pairwise drug treatments (Preuer et al., 2018). This brute

force approach faces the challenge of scalability, given the

combinatorial number of pairwise and higher order drug combi-

nations necessary for training.

If the favorable performance observed in PDX samples (Fig-

ure 6) and ER-positive breast cancer patients (Figure 7) con-

tinues in further clinical studies, DrugCell and its successors

have the potential to substantially expand the set of clinically

meaningful mutations. DrugCell translates the mutational status

of approximately 3,000 genes into treatment recommendations.

Although we have not fully studied which of these genes are

absolutely required for DrugCell prediction accuracy, RLIPP

analysis suggests that many of them are—1,467 of the 2,086

subsystems are assigned relatively high importance (RLIPP

>10) for at least one drug, collectively covering 2,855 genes.

This breadth of information contrasts with the fewer genes

included in current cancer mutation panels such as MSK-

IMPACT or FoundationOne CDx (468 and 324 genes, respec-

tively), which were designed to be queried manually by a physi-

cian (Cheng et al., 2015; Harris, 2017). Moreover, since we

currently do not understand the clinical implications of themajor-

ity of cancer mutations, there is little consensus on what genes

should be included in these pan-cancer mutation panels

(Nguyen and Gocke, 2017) or on how physicians should act on

the results. An increase in the number of clinically meaningful

cancer mutations, facilitated by interpretable machine learning

models such as DrugCell, could further motivate the case for

complete genomic sequencing of cancer patients (Katsanis

and Katsanis, 2013; Kuenzi and Ideker, 2020).

Future work may also elect to integrate mutations with addi-

tional levels of molecular information such as epigenetic states,

gene expression, or microenvironmental influences. This inte-

gration could be accomplished by pre-processing multiple

layers of information to derive a profile of gene scores for each
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Figure 7. Guiding CDK4/6 and mTOR Inhibi-

tor Therapy in ER-Positive Breast Cancer Pa-

tients

(A–C) (A) Survival curves for DrugCell (+) and Drug-

Cell (�) patients treated with CDK4/6 or mTOR in-

hibitors in any line of therapy. The p value indicates

significance by log rank test. (B, C) Important sub-

systems used by DrugCell to simulate (B) mTOR or

(C) CDK4/6 inhibitor sensitivity. Dotted line abbre-

viates parent subsystems at subsequent layers of

the hierarchy. RLIPP scores are displayed inside

each node.

(D) Scatterplot of the absolute (x axis) and per-

centage (y axis) difference in mutation frequencies

of genes between DrugCell (+) and DrugCell (�)

patients. Red points represent genes mutated more

frequently in DrugCell (+) patients. Blue points

represent genes mutated more frequently in Drug-

Cell (�) patients. Point size is proportional to overall

mutation frequency in the patient population.

(E) Survival curves for AKT1-mutant and wild-type

patients treated with CDK4/6 or mTOR inhibitors in

any line of therapy. The p value indicates signifi-

cance by log rank test.
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cell line or tumor, which would then be input to DrugCell. Extra

levels of information could also be integrated by adding new

visible or conventional neural network branches alongside exist-

ing ones. Alternatively, the effects of specific mutations on gene

functions could be incorporated by a metric such as the Com-

bined Annotation-Dependent Depletion score (Rentzsch et al.,

2019) or by including gene structural domains as an additional

layer of the hierarchy.

Another opportunity is to structure the DrugCell system hierar-

chy from ’omics data rather than literature curation (GO), as has

previously been done in budding yeast (Kramer et al., 2014; Ma

et al., 2018). A data-driven, rather than literature-curated, hierar-

chy has the potential to incorporate new gene-subsystem asso-

ciations aswell as entirely new subsystems into themodel. It also

has the potential to revise and tailor subsystem definitions in GO,

which are generic, to their particular contexts relevant to cancer.

For instance, we found that in its current form DrugCell contains

a number of subsystems that have misleading labels based on

GO naming conventions. For example, Labyrinthine develop-

ment was among the top subsystems for trametinib, which

was initially puzzling, but upon further inspection corresponds

to MAPK cascade genes with well-known involvement in cancer

proliferation (e.g., MAP2K1, MAPK1, GRB2, FGFR2). Incorpo-

rating data-driven hierarchies into DrugCell provides a route to

relabel such subsystems and revise their specific gene contents.

Finally, given that DrugCell inputs a full drug structure, it can

potentially be used to design compounds de novo. Leveraging

advancements in reinforcement learning for drug design (Zha-

voronkov et al., 2019), it may then be possible to design com-

pounds for maximal efficacy against any given genomic

background.
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M., Aben, N., Gonçalves, E., Barthorpe, S., Lightfoot, H., et al. (2016). A land-

scape of pharmacogenomic interactions in cancer. Cell 166, 740–754.

Kang, H.C., Kim, I.-J., Park, J.-H., Shin, Y., Ku, J.-L., Jung, M.S., Yoo, B.C.,

Kim, H.K., and Park, J.-G. (2004). Identification of genes with differential

expression in acquired drug-resistant Gastric cancer cells using high-

Density Oligonucleotide microarrays. Clin. Cancer Res. 10, 272–284.

Karnaugh, M. (1953). Themapmethod for synthesis of combinational logic cir-

cuits. Trans. Am. Inst. Electr. Eng. Part Commun. Electron. 72, 593–599.

Katsanis, S.H., and Katsanis, N. (2013). Molecular genetic testing and the

future of clinical genomics. Nat. Rev. Genet. 14, 415–426.

Kramer, M., Dutkowski, J., Yu, M., Bafna, V., and Ideker, T. (2014). Inferring

gene ontologies from pairwise similarity data. Bioinformatics 30, i34–i42.

Kuenzi, B.M., and Ideker, T. (2020). A census of pathway maps in cancer sys-

tems biology. Nat. Rev. Cancer 20, 1–14.

Kuenzi, B.M., Rix, L.L.R., Kinose, F., Kroeger, J.L., Lancet, J.E., Padron, E.,

and Rix, U. (2019). Off-target based drug repurposing opportunities for tivan-

tinib in acute myeloid leukemia. Sci. Rep. 9, 606.

Li, J., Zhao, W., Akbani, R., Liu, W., Ju, Z., Ling, S., Vellano, C.P., Roebuck, P.,

Yu, Q., Eterovic, A.K., et al. (2017). Characterization of human cancer cell lines

by reverse-phase protein arrays. Cancer Cell 31, 225–239.

Liu, T., Sun, H., Zhu, D., Dong, X., Liu, F., Liang, X., Chen, C., Shao, B., Wang,

M., Wang, Y., et al. (2017). TRA2A promoted paclitaxel resistance and tumor

progression in triple-negative breast cancers via regulating alternative

splicing. Mol. Cancer Ther. 16, 1377–1388.

Loewe, S. (1953). The problem of synergism and antagonism of combined

drugs. Arzneimittelforschung 3, 285–290.

Ma, J., Yu, M.K., Fong, S., Ono, K., Sage, E., Demchak, B., Sharan, R., and

Ideker, T. (2018). Using deep learning to model the hierarchical structure

and function of a cell. Nat. Methods. 15, 290–298.

Ma, Y., Wang, L., Neitzel, L.R., Loganathan, S.N., Tang, N., Qin, L., Crispi, E.E.,

Guo, Y., Knapp, S., Beauchamp, R.D., et al. (2017). The MAPK pathway regu-

lates intrinsic resistance to BET inhibitors in colorectal cancer. Clin. Cancer

Res. 23, 2027–2037.

Mathur, R., Chandna, S., N Kapoor, P., and S Dwarakanath, B. (2011). Peptidyl

prolyl isomerase, Pin1 is a potential target for enhancing the therapeutic effi-

cacy of etoposide. Curr. Cancer Drug Targets 11, 380–392.

Menden, M.P., Iorio, F., Garnett, M., McDermott, U., Benes, C.H., Ballester,

P.J., and Saez-Rodriguez, J. (2013). Machine learning prediction of cancer

cell sensitivity to drugs based on genomic and chemical properties. PLoS

One 8, https://doi.org/10.1371/journal.pone.0061318.

Michaloglou, C., Crafter, C., Siersbaek, R., Delpuech, O., Curwen, J.O.,

Carnevalli, L.S., Staniszewska, A.D., Polanska, U.M., Cheraghchi-Bashi, A.,

Lawson, M., et al. (2018). Combined inhibition of mTOR and CDK4/6 is

required for optimal blockade of E2F function and long-term growth inhibition

in estrogen receptor–positive breast cancer. Mol. Cancer Ther. 17, 908–920.

Moos, P.J., and Fitzpatrick, F.A. (1998). Taxane-mediated gene induction is in-

dependent of microtubule stabilization: induction of transcription regulators

and enzymes that modulate inflammation and apoptosis. Proc. Natl. Acad.

Sci. U S A 95, 3896–3901.

ll
Article

12 Cancer Cell 38, 1–13, November 9, 2020

Please cite this article in press as: Kuenzi et al., Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells, Cancer
Cell (2020), https://doi.org/10.1016/j.ccell.2020.09.014

http://refhub.elsevier.com/S1535-6108(20)30488-8/sref6
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref6
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref6
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref6
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref7
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref7
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref7
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref8
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref8
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref8
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref8
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref9
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref9
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref9
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref9
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref10
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref10
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref10
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref11
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref11
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref11
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref11
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref11
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref12
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref12
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref13
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref13
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref13
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref13
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref14
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref14
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref14
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref14
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref15
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref15
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref15
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref15
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref16
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref16
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref17
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref17
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref17
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref17
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref17
https://doi.org/10.1101/278739
https://doi.org/10.1101/278739
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref19
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref19
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref19
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref19
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref20
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref20
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref20
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref21
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref21
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref21
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref21
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref22
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref22
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref22
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref22
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref23
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref23
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref24
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref24
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref25
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref25
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref25
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref25
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref26
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref26
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref26
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref26
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref27
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref27
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref28
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref28
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref28
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref29
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref29
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref29
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref29
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref30
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref30
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref31
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref31
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref32
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref32
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref33
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref33
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref34
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref34
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref34
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref35
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref35
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref36
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref36
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref36
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref36
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref37
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref37
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref38
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref38
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref38
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref39
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref39
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref39
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref39
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref40
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref40
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref40
https://doi.org/10.1371/journal.pone.0061318
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref42
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref42
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref42
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref42
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref42
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref43
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref43
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref43
http://refhub.elsevier.com/S1535-6108(20)30488-8/sref43


Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B. (2019).

Definitions, methods, and applications in interpretable machine learning.

Proc. Natl. Acad. Sci. U S A 116, 22071–22080.

Nguyen, D., and Gocke, C.D. (2017). Managing the genomic revolution in can-

cer diagnostics. Virchows Arch. 471, 175–194.

Nutt, C.L., Noble, M., Chambers, A.F., and Cairncross, J.G. (2000). Differential

expression of drug resistance genes and chemosensitivity in glial cell lineages

correlate with differential response of oligodendrogliomas and astrocytomas

to chemotherapy. Cancer Res. 60, 4812–4818.

Occhipinti, G., Romagnoli, E., Santoni, M., Cimadamore, A., Sorgentoni, G.,

Cecati, M., Giulietti, M., Battelli, N., Maccioni, A., Storti, N., et al. (2020).

Sequential or concomitant inhibition of cyclin-dependent kinase 4/6 before

mTOR pathway in hormone-positive HER2 negative breast cancer: biological

insights and clinical implications. Front. Genet. 11, 349.

Park, J.S., Burckhardt, C.J., Lazcano, R., Solis, L.M., Isogai, T., Li, L., Chen,

C.S., Gao, B., Minna, J.D., Bachoo, R., et al. (2020). Mechanical regulation

of glycolysis via cytoskeleton architecture. Nature 578, 621–626.

Pernas, S., Tolaney, S.M.,Winer, E.P., andGoel, S. (2018). CDK4/6 inhibition in

breast cancer: current practice and future directions. Ther. Adv. Med.

Oncol. 10.

Potts, M.B., McMillan, E.A., Rosales, T.I., Kim, H.S., Ou, Y.-H., Toombs, J.E.,

Brekken, R.A., Minden,M.D., MacMillan, J.B., andWhite, M.A. (2015). Mode of

action and pharmacogenomic biomarkers for exceptional responders to di-

demnin B. Nat. Chem. Biol. 11, 401–408.

Pozdeyev, N., Yoo, M., Mackie, R., Schweppe, R.E., Tan, A.C., and Haugen,

B.R. (2016). Integrating heterogeneous drug sensitivity data from cancer phar-

macogenomic studies. Oncotarget 7, 51619–51625.

Pratt, D., Chen, J., Welker, D., Rivas, R., Pillich, R., Rynkov, V., Ono, K., Miello,

C., Hicks, L., Szalma, S., et al. (2015). NDEx, the network data Exchange. Cell

Syst. 1, 302–305.

Preuer, K., Lewis, R.P.I., Hochreiter, S., Bender, A., Bulusu, K.C., Klambauer,

G., and Wren, J. (2018). DeepSynergy: predicting anti-cancer drug synergy

with Deep Learning. Bioinformatics 34, 1538–1546.

Rajkomar, A., Dean, J., and Kohane, I. (2019). Machine learning in medicine.

N. Engl. J. Med. 380, 1347–1358.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead Contact
Correspondence and requests regarding this manuscript should be sent to and will be fulfilled by the lead investigator Dr. Trey Ideker

(tideker@ucsd.edu).

Data and Code Availability
DrugCell code and sample training data are available on GitHub (https://github.com/idekerlab/DrugCell) and the version of the co-

debase used in the manuscript is archived on Zenodo (https://zenodo.org/badge/latestdoi/250580982). The trimmed version of the

Gene Ontology (GO) used as the architecture for DrugCell is visualized and available for download on the Network Data Exchange

(NDEx; URL: http://ndexbio.org/#/network/a20b3699-4862-11ea-bfdc-0ac135e8bacf) (Pratt et al., 2015). Other data sources used

in this study are available from their original publications and web portals.

Materials Availability
This study did not generate any unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture and Reagents
A549, A427, and MCF7 cells were retrieved from the American Type Culture Collection (ATCC) and cultured in DMEM + 10% FBS or

EMEM + 10% FBS according to ATCC recommendations. All cell lines tested negative for mycoplasma contamination and were

authenticated by short tandem repeat (STR) analysis. Paclitaxel (Selleckchem) was dissolved in DMSO (10mM) and diluted in media

for use. 2-deoxy-d-glucose (Selleckchem) was dissolved in media (100mM), filtered, and further diluted in media for use.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Paclitaxel Selleckchem S1150

2-deoxyglucose Selleckchem S4701

Critical Commercial Assays

CellTiter-Glo Luminescent Cell

Viability Assay

Promega G7572

Blood and Cell Culture DNA Mini Kit Qiagen Cat No./ID: 13323

Deposited Data

DrugCell hierarchy This paper http://ndexbio.org/#/network/a20b3699-

4862-11ea-bfdc-0ac135e8bacf

Experimental Models: Cell Lines

A549 ATCC CCL-185

A427 ATCC HTB-53

MCF7 ATCC HTB-22

Oligonucleotides

lentiCRISPRv2 Sanjana et al., 2014 Addgene Plasmid #52961

lentiCas9-Blast Sanjana et al., 2014 Addgene Plasmid #52962

See Table S6 for gRNA sequences

Software and Algorithms

limma Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

DrugCell algorithm This Paper https://github.com/idekerlab/DrugCell
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METHOD DETAILS

Defining a Hierarchy of Genes and Cellular Subsystems
To computationally represent cancer genotypes, we selected the top 15%most frequently mutated genes in human cancers accord-

ing to the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) among genes annotated to Gene Ontology (GO) terms (Ash-

burner et al., 2000). This procedure yielded 3,008 genes, henceforth called ‘DrugCell genes’, which were used in model construction.

These genes were organized into a hierarchy of nested gene sets, representing cellular subsystems at different scales, based on

terms extracted from the GO Biological Process hierarchy. Terms were retained from GO if they had at least 10 DrugCell genes

and were distinct from all child terms, defined as having at least 30 DrugCell genes more than any child (both part_of and is_a hier-

archical term relations were considered). Every other term was removed from the hierarchy, and instead its children were assigned

directly to its parents to keep the hierarchy connected. To further reduce model complexity, we restricted the hierarchy to a maximal

depth of five subsystems by removing all subsystemsmore than five parent-child relations above the bottom layer subsystems of the

hierarchy (subsystemswithout any children). The resulting hierarchy, composed of 2,086 subsystems, defined the branch of DrugCell

for embedding of genotype (left branch in Figure 1A, also called the VNN; Figure 1B).

Pharmacogenomics Data Processing and Morgan Fingerprint Encoding
To obtain a sufficiently large pharmacogenomic dataset for model training, raw drug sensitivity data were retrieved from the Geno-

mics of Drug Sensitivity in Cancer database (GDSC) and the Cancer Therapeutics Response Portal v2 (CTRP) (Seashore-Ludlow

et al., 2015; Yang et al., 2013). These data covered a total of 509,294 (cell line, drug) pairs. Among these data, 24,923 pairs redun-

dantly measured in the two repositories were left intact in the training dataset, as such replicates can be beneficial to reduce model

over-fitting. Luminescence values were background corrected (media only), normalized to vehicle treatment (DMSO) at each com-

pound concentration, and replicate values averaged. To standardize across the two datasets, we calculated the Area Under dose

response Curve (AUC) normalized such that AUC = 0 represents complete cell killing, AUC = 1 represents no effect, and AUC > 1

represents a treatment granting a growth advantage to the cells. Curves were created by connecting individual response points in

a piecewise linear fashion, rather than using a sigmoid curve fit. We then normalized the AUC of this piecewise linear fit to the

area under a null curve spanning the tested concentration range. The calculated AUC values were in high agreement with previous

analyses of this dataset (r2 = 0.87) while correcting for artifacts introduced by forced sigmoid curve fitting seen in other studies

(Seashore-Ludlow et al., 2015) (Figure S7A). No batch correction was performed in addition to AUC standardization. The correlation

between AUC values present in both datasets was on par (n = 24,923; Spearman rho = 0.5) with previous studies (Hatzis et al., 2014;

Pozdeyev et al., 2016). To standardize drug representation across datasets, we queried the PubChem entry for each compound used

in CTRP or GDSC to obtain an isomeric SMILES notation based on the drug name or InChIKey provided in the dataset. Compounds

with no matches in the initial search were manually annotated. To computationally represent chemical structure we used RDKit

(http://www.rdkit.org/) to calculate aMorgan fingerprint (radius = 2), which decomposes each chemical structure intomolecular frag-

ments by iteratively obtaining distinct paths through each atom of the molecule. These fragments were hashed into a bit vector of

length 2,048 to be used for model training. Genotypes of each cell line were formulated from non-synonymous coding mutations

as previously annotated and used by the Cancer Cell Line Encyclopedia (CCLE; http://portals.broadinstitute.org/ccle, 18q2 release)

(Barretina et al., 2012). The dataset was filtered to represent only the top 15%most frequently mutated genes (n = 3,008). Each cell-

line genotype was represented as a bit vector across the 3,008 DrugCell genes indicating the mutational status of each gene in that

cell line (0 = wild type; 1 = mutated).

Neural Network Configuration, Training and Evaluation
The DrugCell VNN (the genotype embedding branch; Figures 1A and 1B) was configured following the DCell protocol (Ma et al., 2018)

with minor modifications. Each subsystem s in DCell, and also in the hierarchy of subsystems in DrugCell (see above), is assigned a

number k of neurons to represent its multidimensional state. This subsystem state, denoted by the output vector OðsÞ is defined as a

function of the states of its c child subsystems and g directly annotated genes, concatenated in the input vector IðsÞ:

OðsÞ = fðWðsÞIðsÞ + bðsÞÞ
WðsÞ is a weight matrix of dimensions and k3ðk�c +gÞ and bðsÞ is a weight vector of dimension k.WðsÞ and bðsÞ provide the parameters

to be learned for subsystem s. The function f is a non-linear transformation based on hyperbolic tangent and batch normalization.

Training of parameters is performed using an objective (loss) function based on mean-squared error and an optimization procedure

based on standard gradient descent and back-propagation. All parameters are initialized uniformly at random between �0.001

and 0.001.

In what follows, we focus on aspects of DrugCell that significantly build on or depart from the original DCell model (Ma et al., 2018).

First, in parallel to the subsystem hierarchy used to embed genotype, DrugCell implements a drug embedding branch configured as a

conventional artificial neural network with three hidden layers, with the neurons of each layer fully connected to the next (these three

layers have 100, 50, and 6 neurons respectively, see Figure 1C). The input vector to this ANN is the 2,048-bit Morgan fingerprint of a

drug (described above) and is fully-connected to the first hidden layer with 100 neurons. The final layer is a set of six neurons rep-

resenting the drug embedding learned by DrugCell. These six neurons are concatenated with the six-neuron genotype embedding
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(see above) and fed to an additional hidden layer of six neurons, which feeds a final output layer of a single neuron representing the

predicted drug response,OðDCÞ, measured as a continuous valued AUC (see Figure 1A and Pharmacogenomics Data Processing and

Morgan Fingerprint Encoding section, above). Second, the number of neurons per subsystem k (VNN branch, see above) is selected

by training and evaluation of a progression of neural network models with increasing values of this parameter (k = 1;3; 6; 9;12; Fig-

ure S7B). The DrugCell model used for all subsequent analysis is configured with k = 6, as this value yielded the best Spearman rho

between actual and predicted drug responses across all (cell-line, drug) pairs. The DrugCell model is implemented using the PyTorch

library and trained using three GPU servers (two servers with Nvidia RTX 2080Ti with 4352 CUDA cores and 11Gb GDDR6 RAM; one

server with Tesla K80 with 4992 CUDA cores and 24Gb GDDR5 RAM).

Model predictive performance was evaluated using a standard training / validation / test procedure. The 509,294 (cell line, drug)

pairs in the data were divided into five groups of approximately equal size. Five separate models were created, in which each of these

groups was held out as the test data, and the remaining four groups were pooled for training and validation. During the training phase

of each model, 5,000 random (cell line, drug) pairs were further withheld for use as a validation set on which model predictive per-

formance was used as an early terminating condition; all remaining samples were designated as training. Each model was trained

through a maximum of 300 epochs; performance on the validation data was evaluated after each epoch and training was terminated

early in the event of decreasing model performance. The performance of each model was measured using Spearman rho between

actual and predicted drug responses (AUC) in the test data and the final overall performance was reported (rho = 0.80) as the average

rho across the fivemodels. Following evaluation of model performance (Figure 2), we used amodel trained using all 509,294 (cell line,

drug) pairs to ensure maximal predictive power and interpretability (Figures 3 and 7).

Implementation of Alternative Models for Comparison of Predictive Performance
We compared DrugCell to several alternative models trained using the same data as DrugCell: an elastic net (Figure 2B) and two fully

connected neural network models (Figures 2C and 2D). A similar test procedure for 5-fold cross validation to that described above

was used for evaluation of all thesemodels. The elastic netmodel was implemented using the ElasticNetCV function in the scikit-learn

library with cv = 5. A black-box neural network model (‘‘Matched’’ in Figure 2C) was designed to have an identical hierarchical struc-

ture as DrugCell, but with the gene annotation inputs (gene-to-subsystem assignments) randomly shuffled. The predictive perfor-

mance was reported as an average Spearman (rho) across 10 such random models. A second black-box model (‘‘Tissue only’’ in

Figure 2D) was a fully connected neural network model, whose input was a 2,049-bit vector concatenating the 2,048-bit Morgan

fingerprint representation of each drug and a single bit indicating the tissue of origin for each cell line. All elements in the input layer

were fed to a stack of five hidden layers, of which each has 1,000, 500, 200, 100, 50 neurons respectively. The final hidden layer of 50

neurons was connected to a single neuron representing the predicted drug response output. We further compared DrugCell’s pre-

dictive performance to that of five additional models, using the predictive performance reported in the corresponding publications

rather than reimplementing those models directly in our study (Ammad-ud-din et al., 2017; Cortés-Ciriano et al., 2016; Iorio et al.,

2016; Zhang et al., 2015) (Table S1).

Ranking Important Subsystems in DrugCell
To quantitatively determine important subsystems for drug response prediction, we adopted the Relative Local Improvement in Pre-

dictive Power (RLIPP) score as described previously for DCell (Ma et al., 2018). Briefly, for each subsystem inDrugCell we constructed

and compared two different L2-normpenalized linear regressionmodels of drug response local to that subsystem. The first regression

model predicts drug response using the neuron values that represent the state of the subsystem under the different genotypes. The

second regressionmodel predicts drug response using the neuron values that represent the states of the subsystem’s children. Both

models are optimized to predict drug response, butwith consecutive layers of neurons located at and below the subsystemof interest

in DrugCell. Performance is calculated as the Spearman correlation (rho) between the actual andpredicted drug responses for each of

the twoalternative linear regressionmodels (AUC). TheRLIPPscore is thendefinedas the ratio ofSpearman rhoof the first linearmodel

to that of the second linear model. RLIPP > 1 reflects that the state of the parent subsystem has more predictive power for drug

response than the mere concatenation of the states of its children, indicating the importance of the parent subsystem in learning.

Comparing Important DrugCell Subsystems to Predictive Biomarkers Reported by Alternative Models
Beyond a comparative assessment of predictive accuracy (see above), we wished to compare the genes and subsystems nominated

by DrugCell to genetic markers reported previously. For this comparison, we focused on predictive models published by the GDSC

(elastic net and random forest; Table S4) (Iorio et al., 2016) in a previous analysis of the same cell-line drug response data as examined

by our study (see Pharmacogenomics Data Processing and Morgan Fingerprint Encoding above). We focused on 60 drugs for which

GDSC had published predictive gene mutations that were relatively frequent in tumors (top 15% of mutated genes in the integrated

GDSC and CTRP dataset, see above). For each of these drugs, we listed the genetic mutations identified as predictive biomarkers in

the GDSC study, along with the corresponding DrugCell subsystem containing that gene and its RLIPP score. Separately, we exam-

ined the top three subsystems reported by DrugCell according to RLIPP score. For every gene in one of these subsystems, we deter-

mined the maximum weight connecting that gene to the neuron of that subsystem that is most relevant to the observed drug

response (AUC); the top three genes by weight were reported (Table S4). To select the most relevant neuron to drug response,

we first found the principal component that has the strongest Spearman correlation with the observed drug response. We then

determine the neuron with the highest loading (eigenvalue) to that principal component as the most relevant neuron to that response.
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Viability Assays
Cell viability assays were conducted according to themanufacturer’s specifications for CellTiter-Glo Luminescent Cell Viability Assay

(Promega). Cells were seeded at 1,000 cells/well in a 384-well microtiter plate and treated after 24 hours. Drugs were diluted in the

respective culturemedium at the indicated concentrations. Cells were treated for 72h before the addition of CellTiter-Glo reagent and

read on a Synergy HT Multi-Detection Microplate Reader (Biotek).

Combinatorial CRISPR-Cas9 Gene Knockouts and Systematic Evaluation
For gene knockout experiments, the CRISPR-Cas9 nuclease was stably integrated at the AAVS1 ‘safe harbor’ locus in MFC7 cells.

LentiCas9-Blast (Addgene plasmid # 52962; http://n2t.net/addgene:52962; RRID:Addgene_52962) and lentiCRISPR v2 (Addgene

plasmid # 52961; http://n2t.net/addgene:52961; RRID:Addgene_52961) were gifts from Dr. Feng Zhang (Sanjana et al., 2014).

MCF7-Cas9 cells were tested forMycoplasma contamination, expanded, and frozen into multiple aliquots so that experiments could

be performed at low passage numbers. Cells were grown in DMEM, 10% FBS, and hygromycin to select for Cas9 expression, which

was confirmed by capillary western (Wes, Protein Simple). A custom library of double gRNA constructs (gene + non-targeting, gene +

gene) was used which covers all single and pairwise combinations of 3 primary genes (MEK1, PARP1, and TP53) versus 176 sec-

ondary genes. These secondary genes were designed to be broadly representative of major cancer-related processes including pro-

liferative signaling, cell cycle progression, transcription regulation, and DNA repair with special attention to druggable targets and

tumor suppressor genes. Double (primary, secondary) gRNA constructs were designed as described previously (Shen et al.,

2017) with three distinct 20-bp gRNAs per target gene (Table S6) along with three non-targeting controls for a total of 33 3 = 9 con-

structs per gene or gene pair. The library was packaged into lentiviruses, and MCF7 cells were infected at an MOI of 0.3 to ensure

each cell had zero or one double gRNA construct. Puromycin selection (2.5 mg/mL) was started two days after transduction and the

concentration was reduced by half upon each splitting to a final concentration of 0.625 mg/mL, which was maintained for the

remainder of the experiment. Following initial puromycin selection, cells were maintained in exponential growth by harvesting and

removing a fraction of cells every two days. DNA was extracted from cells after 21 days of growth with a Blood and Cell Culture

DNA Mini Kit (Qiagen) according to manufacturer protocols. To assess the relative frequencies of gRNAs before and after selection,

integrated DNA encoding the gRNA sequence was PCR amplified and prepared for HiSeq4000 sequencing (Illumina) according to

manufacturer protocols. Standard Illumina primers were used for library preparation, and sequencing was conducted to generate

100-bp reads in a paired-end fashion. After sequencing, data quality was assessed with FastQC. Fitness effects of gene knockouts

were determined as previously described (Shen et al., 2017) and normalized to the median fitness for non-targeting guides. Exper-

iments were performed in biological duplicate.

To systematically validate the identified mechanisms of sensitivity to trametinib, olaparib and nutlin-3, we first ranked subsystems

by importance in DrugCell simulation of each compound (RLIPP analysis, see above). This ranking was filtered to retain the top five

subsystems that contained sufficient (three or more) secondary genes in our CRISPR library. These subsystems were all among the

top 25 overall subsystems (top 1%) identified for each drug.We then examined the fitness effects resulting from pairwise knockout of

themajor target of each compound (MAP2K1, PARP1 and TP53) together with each CRISPR library gene present in a top subsystem

(up to a maximum of five genes). These pairwise knockout effects were compared to the effects of pairwise knockout of the major

target of each compound together with knockout of genes in five random subsystems selected from among those with low RLIPP

scores < 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Assessing the Correspondence of Learned Subsystem Embeddings to Measured Subsystem Activities
To assess whether the subsystem states that DrugCell had learned are representative of experimentally measured activities of these

subsystems, we adapted an expression-based analysis similar to that piloted by our previous DCell proof-of-concept (Ma et al.,

2018). We obtained reverse phase protein array (RPPA) data (Li et al., 2017) covering 899 cell lines from the Cancer Cell Line Ency-

clopedia (CCLE), including the majority of cell lines for which genotypes and drug responses were used to train the DrugCell model.

For each subsystem, we created a subsystem activity score similar to other methods that have been described for pathway-based

gene expression analysis (Hwang, 2012; Yang et al., 2014). Here, we calculated the ‘‘RPPA activity’’ of each subsystem as the simple

sum of signal intensities across all proteins and phosphorylation sites mapping to that subsystem. We then trained a random forest

regression model to predict this RPPA activity using the top 6 principal components of that subsystem’s DrugCell embedding as fea-

tures. We compared the predictive performance of these individual subsystemmodels to models trained to predict the RPPA activity

of random sets of genes of matched sizes (Figure S3A).

Differential Expression Analysis
We performed differential expression analysis, which is commonly used to identify pathways regulating drug sensitivity (Kang et al.,

2004; Nutt et al., 2000; Suzuki et al., 2014), to identify pathways mediating paclitaxel sensitivity. Raw RNAseq count data were ob-

tained from CCLE (http://portals.broadinstitute.org/ccle) for the top 25 most paclitaxel sensitive and 25 most paclitaxel resistant

cell lines. Raw counts were transformed to log2 counts per million (log-CPM) and genes with low expression levels were removed

(CPM < 0.1) as previously described (Chen et al., 2016). Data were normalized using the trimmed mean of M-values (TMM) method

(Robinson andOshlack, 2010). Differential expression was determined by linearmodeling using limma (Ritchie et al., 2015). Pathways
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enriched for differentially expressed genes were determined using DAVID (Huang et al., 2007). We identified 125 genes that were

significantly differentially expressed (q < 0.05) when contrasting the 25 most paclitaxel-sensitive cell lines with the 25 most pacli-

taxel-resistant cell lines (Figure S5B). Pathways enriched for these genes includedRNA splicing and cell division (Figure S5C), consis-

tent with previous studies (Bani et al., 2004; Liu et al., 2017; Moos and Fitzpatrick, 1998), as well as pathways responding to ionizing

radiation and DNA replication.

Synergy Determinations
Drug combination profiling data across a diverse cell line panel were obtained from DeepSynergy (http://www.bioinf.jku.at/software/

DeepSynergy/) (Preuer et al., 2018), which used the Loewe model of additivity (Loewe, 1953) to evaluate the interaction of 583

different drug combinations across 39 human cancer cell lines. We used these DeepSynergy data to systematically evaluate the abil-

ity of DrugCell to pair a primary drug D1 with a synergistic second agent D2 by targeting top subsystems mediating sensitivity to the

primary drug (see text and Figure 5). We collected protein target information for drugs from the Therapeutic Target Database (Wang

et al., 2020), yielding targets for 283 drugs onwhich DrugCell had been trained in cell lines and 32 drugs considered byDeep Synergy.

The 25 drugs in the intersection of these sets were used for systematic evaluation. For each drug in the set of 25 drugs D1 = fdiji =
1.25g, we gathered a set of predicted synergistic target genes, Gi = W

5

j = 1GOAðsjiÞ, based on their membership in the top 5 sub-

systems by RLIPP score
�
s1i ; s

2
i ;.; s5i

�
, where GOAðsÞ is a set of genes contained in a subsystem s according to the Gene Ontology

Annotation. We then collected a set of secondary drugs, fy1i ;y2i ;.;ymi g, targeting any gene in Gi and compiled a set of synergistic

drug combinations, fdig3Di
2 = fðdi;y

1
i Þ;ðdi;y

2
i Þ;.;ðdi;y

m
i Þg. Across all 25 primary drugs inD1, the set of synergistic secondary drugs,

D2 = W25

i = 1D
i
2, led to 75 predicted synergistic drug pairs with corresponding observed DeepSynergy scores. We repeated the pro-

cess for the bottom 5 RLIPP subsystems to predict a set of non-synergistic secondary drugs,D0
2 = W25

i = 1D
0 i
2, leading to 70 predicted

non-synergistic drug pairs with corresponding observed DeepSynergy scores. Finally, we compared the distribution of the synergy

scores of the predicted synergistic pairs, the predicted non-synergistic pairs, and the remaining 76 drug pairs in DeepSynergy

(Figure 5J).

Translation of Continuous Cell Response (AUC) to Binary Cell Response
In addition to Spearman correlation, we characterized DrugCell’s predictive performance by the ability to separate cells into binary

sensitive versus resistant response classes (Figures 5H–5J, Table S7). For this purpose, we binarized DrugCell’s continuous predic-

tions of drug response (AUC) as follows. Let OiðdÞ represent the actual response of cell line i exposed to drug d, reflecting the area

under dose response curve (AUC), and letO
ðDCÞ
i ðdÞ represent the corresponding predictive output of DrugCell. We then seek a drug-

specific threshold, td, that maximizes balanced accuracy over all cell lines:

td = argmaxx

0
@mean

0
@jfijOðDCÞ

i
ðdÞ%x and OiðdÞ%xgj
jfijOiðdÞ%x gj ;

jfijOðDCÞ
i

ðdÞ>x and OiðdÞ>xj gj
jfijOiðdÞ>x gj

1
A

1
A

DrugCell’s prediction is then translated to a binary drug response (B
ðDCÞ
i ˛ { 0: sensitive, 1: resistant }) by use of td:

B
ðDCÞ
i =

(
1; O

ðDCÞ
i ðdÞ > td

0; otherwise

Identification of Boolean Logic Combinations
We developed an approximate Boolean logic representation of how two subsystems, Regulation of PI3K activity and Negative regu-

lation of ERK1/ERK2 cascade (henceforth called subsystems s and t), mediate the prediction of etoposide response in DrugCell. To

achieve this Boolean representation, the continuous DrugCell prediction of drug AUC for each cell-line sample i
�
O

ðDCÞ
i R0

�
was

translated to a binary drug response (BðDCÞ˛ {0: etoposide sensitive, 1: etoposide resistant}) by use of a threshold (see above).

Here, a threshold of 0.82 was selected as it maximizes balanced accuracy when using DrugCell for binary classification of etoposide

response over all samples:

Observed

Etoposide

Response

(AUC > 0.82?)

0 1

DrugCell Predicted

Reponse
�
BðDCÞ : OðDCÞ > 0:82?

� 0 500 58 Balanced accuracy = MEAN [(500 /

724), (372 / 430)]= 0.78

1 224 372 Odds Ratio = (500 / 58) / (224 / 372)

= 14.32
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In the above table, the same threshold was applied to both the predictions (rows) and the observations (columns). We also trans-

lated the multi-dimensional output vector of each subsystem ðOðsÞ
i ;O

ðtÞ
i Þ to a binary state (B

ðsÞ
i ; B

ðtÞ
i ˛ {0: unaltered, 1: altered}) using

OðsÞ or OðtÞ as features to classify BðDCÞ using a k-nearest neighbor (KNN) classifier with k = 10 (Cover and Hart, 1967). The output of

this classifier was taken as the binary value of the subsystem, B
ðsÞ
i or B

ðtÞ
i . For each subsystem, we selected three exemplary genes

with high importance to the subsystem output, creating a vector of gene binary mutation states:

v!j

i = ðxji ;yji ;zjiÞ ;where j˛fs; tg and x;y;z˛f0 : unmutated ; 1 : mutatedg
These gene exemplars were defined as the three gene inputs most heavily weighted by DrugCell in connection to the neuron of s or

t with the highest coefficient of variation over all i. The above procedure thus yielded binarized values for six genes, two subsystems,

and one drug response. For each possible combination of binary gene inputs, v!0
, the (typically multiple) corresponding sampleswere

examined to compute a consensus value C
ðjÞ
v!0 for the states of the two subsystems and the DrugCell output ðj˛fs; t;DCgÞ according

to the following rule:

C
ðjÞ
v!0 =

�
1; PðBðjÞ = 1 j v!= v!0Þ > PðBðjÞ = 1Þ
0; otherwise

This process yielded a logical truth table which was expressed as a minimal set of Boolean logic gates (Figure 4F) using the tech-

nique of Karnaugh maps (Karnaugh, 1953).

PDX Tumor Analysis
For each PDX tumor, measured mutations in DrugCell genes were used as input to DrugCell to predict the response to 6 drugs

belonging to compound classes that DrugCell had previously seen (abraxane, binimetinib, encorafenib, INC-280, BKM-120, and

BYL-719) and had combination data available, which altogether had been treated in 13 pairwise combinations with secondary drugs

from diverse target classes. Since AUC data does not exist for in vivo experiments, tumor size was used as a surrogate for AUC. We

then performedRLIPP analysis to identify subsystemsmediating response to each of the 6 drugs included in this analysis. For each of

the 13 available drug combinations, we defined a set of pathways that would lead to the design of that particular combination. We

then scanned over 100 different RLIPP values, and at each cutoff compared the identified pathways with the pathways defined for

each of the tested combinations to see if it had been identified. We considered a combination to be ‘effective’ if it significantly

improved progression free survival as compared to the tested single drugs (p < 0.05, log-rank test). The observed PFS of each of

these (primary, secondary) combinations was used to evaluate sensitivity and specificity as the number of top ranking DrugCell sub-

systems was progressively increased, yielding estimates of prediction sensitivity and specificity along a ROC curve for the combi-

nation panel.

Breast Cancer Patient Analysis
We obtained aggregated clinical trial data (Smyth et al., 2020) from Project GENIE (Genomics Evidence Neoplasia Information Ex-

change), an international genomics registry and data sharing platform established by the American Association for Cancer Research.

This resource contained mutational profiling data and clinical outcomes for 457 metastatic breast cancer patients following multiple

rounds of therapy. We removed patients from the dataset if they had not been treated with a targeted therapy (mTOR or CDK4/6

inhibitors). Such filtering produced a total of 221 estrogen receptor (ER)–positive metastatic breast cancer patients who had under-

gone treatment with an mTOR inhibitor (everolimus), a CDK4/6 inhibitor (ribociclib), or both compounds in any round of therapy. We

predicted patient response to either mTOR or CDK4/6 inhibition using our pre-trained DrugCell model and the mutational profiles of

each patient. We classified a patient as DrugCell (+) if they were predicted sensitive (%median predicted AUC across all patients) to

either therapy (and had been treated with that particular therapy). Conversely, we classified patients as DrugCell (–) if they were pre-

dicted insensitive to both therapies. We used a log-rank test (p < 0.05) to determine the significance of the associated treatment out-

comes (overall survival).
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Figure S1. Characterization of DrugCell structure and training data, Related to Figure 1. (A) 
Circle packing diagram of the subsystem hierarchy used to structure the DrugCell VNN. Circles 
are subsystems, and circles contained in larger circles indicate child-parent (or child-ancestor) 
subsystem relationships. The largest circle represents the entire collection of subsystems at the 
root of the hierarchy. Select large subsystems are labeled. (B) Number of neurons present in 
each layer of the subsystem hierarchy. (C) Distribution of drug response values across all drugs 
and cancer cell lines. AUC = normalized Area Under dose response Curve (0 = complete cell 
killing, 1 = no effect). (D) Number of cell lines of each tissue type represented in the training data. 
(E) Histogram of the number of mutations per cell line used for model training. (F) Histogram of 
the number of compounds with each distinct number of activated bits, a measure of structural 
complexity. (G) Histogram of the number of molecular fragments contained within each bit of the 
molecular bit vector. 
 
	
	



	
 
Figure S2. Characterization of DrugCell predictive performance, Related to Figure 2. (A) 
Heatmap showing the Pearson correlation of the predicted drug responses across cell lines for 
each pair of 203 high-confidence drugs. Both rows and columns are hierarchically clustered based 
on the observed (rather than predicted) drug responses; note the clustering pattern of these 
training data is maintained in the DrugCell predictions. The high confidence drug set is defined in 
Figure 2C. Outlined cluster solely contains MAPK pathway inhibitors. (B) Scatterplot comparing 
the predictive performance of individual drugs to the number of drug-cell pairs available for 
training. (C) Scatterplot comparing the predictive performance of individual drugs to the structural 
complexity of the compound (number of activated bits). (D) Scatterplot comparing the predictive 
performance of individual drugs to the standard deviation of the observed compound responses 
across all cell lines. (E) Histogram of the predictive performance of DrugCell across individual cell 
lines. (F) Histogram of the predictive performance of DrugCell across individual tissue types. 
	

	



	
 
Figure S3. Correspondence of subsystem embeddings with subsystem activities 
measured by RPPA, Related to Figure 3. (A) For each subsystem in DrugCell, we computed 
the Spearman correlation between the predicted subsystem activity and the corresponding activity 
measured by RPPA (red histogram, STAR Methods). Random (blue) shows the equivalent 
correlations for random sets of proteins. (B) Example subsystem embedding for Regulation of 
MAPK cascade. The x and y axes plot the two principal components (PCs) from this embedding 
that are most significantly associated with RPPA activity. Points are cell lines. Color corresponds 
to the measured RPPA activity, calculated as the sum of protein abundance and phosphorylation 
values of proteins in the subsystem. RPPA protein values are normalized across all proteins on 
the array, with the median value set to 0. Also shown is the Spearman rho of the subsystem 
activity as predicted by the DrugCell PCs vs. the actual value measured by RPPA. (C) Scatterplot 
of the activating phosphorylation status of ERK1/2 compared to the subsystem activity from B. 
Spearman rho is displayed. (D – F) Subsystem embeddings of (D) Proteolysis, (E) Regulation of 
PI3K signaling, and (F) Cell cycle arrest subsystems. Display items as in panel B. Some 
subsystem names are abbreviated. 
 
 



	
	
Figure S4. Characterization of chemical structure embedding, Related to Figure 3. (A) 
Scatterplot of the structural similarity of each compound in the dataset (Tanimoto similarity) 
compared to their Euclidean distance in the chemical structure embedding. (B – D) Drug structure 
embedding. Points are individual drugs, with blue-yellow gradient denoting the (B) membrane 
permeability (LogP), (C) compound solubility (Ali LogS), or the (D) number of Lipinski violations. 
 
 
 
 
 
 



	
 
Figure S5. Analysis of mechanisms mediating paclitaxel sensitivity, Related to Figure 3. 
(A) Beeswarm plot of the Loewe synergy score observed upon combination of bortezomib with 
paclitaxel. Red dotted line indicates the mean of all Loewe synergy scores in the dataset. Red 
points are cell lines for which positive synergy is observed. Blue points are cell lines for which 
antagonism (negative synergy) is observed. (B) Heatmap of the mRNA expression levels of the 
top 125 genes (rows) differentially expressed between 25 paclitaxel sensitive and 25 resistant cell 
lines (columns). (C) Gene Ontology enrichment of these 125 differentially expressed genes. Top 
15 most significant GO terms are displayed (hypergeometric test). Terms corresponding to 
subsystems that were also within the top 100 of highest importance (RLIPP score) to DrugCell 
are highlighted in red. (D) Beeswarm plot of the Loewe synergy score observed upon combination 
of veliparib, niraparib or temozolomide with paclitaxel. Drug combinations were chosen based on 
the DNA replication and Response to ionizing radiation terms identified in S5C. Red dotted line 
indicates the mean of all Loewe synergy scores in the dataset (Figure S6). Red points are cell 
lines for which positive synergy is observed. Blue points are cell lines for which antagonism 
(negative synergy) is observed. 
  



 
 
 
 
 

	
 
Figure S6. Distribution of Loewe and Bliss synergy values in DeepSynergy, Related to 
Figure 5. Histogram of Loewe synergy scores across all drug combinations - cell line pairs in the 
DeepSynergy dataset (Preuer et al., 2018). 
  



 
 

	
Figure S7. Comparison of previously published drug responses with this study, Related to 
STAR Methods. (A) Scatterplot of drug response values from this study versus those from a 
previously published analysis of CTRPv2 (Seashore-Ludlow et al., 2015). (B) DrugCell predictive 
performance as a function of the number of neurons per subsystem. Predictive performance is 
assessed for each drug individually as the Spearman correlation between predicted and actual 
drug responses (y axis). Performance is summarized (violin plots) for 684 drugs across the four 
tested models (x axis). Inner box plots as in panel A. Based on these results, DrugCell was 
constructed with 6 neurons per subsystem (purple). 
 
 
 
  



 
Table S1. Comparison of DrugCell performance to predictive models from previous 
literature, Related to Figure 1.  
 
Study Dataset Features Model † Correlation ‡ 
DrugCell (This 
study) 

CTRPv2,  
GDSC 
 

Structure, Mutation VNN 0.80 (s) 

Cortes-Cirlano 
et al. (2016) 

GDSC Structure, Expression RF 0.86 (p) 

Menden et al. 
(2013) 

GDSC Physio-chemical, MSI, 
CNV, Mutation 

ANN 0.85 (p) 

Zhang et al. 
(2015) 

CCLE Physio-chemical, 
Expression 

SN 0.60 +/- 0.15 (p) 

Iorio et al. (2016) GDSC Expression EN 0.40 +/- 0.30 (p) 
Ammad-ud-din 
et al. (2016) 

GDSC Expression KBMF 0.56 (p) 
	

† VNN = Visible Neural Network, RF = Random Forest, ANN = conventional Artificial Neural Network, SN = Similarity 
Network, EN = Elastic Net, KBMF = Kernelized Bayesian Matrix Factorization 
‡ p = Pearson, s = Spearman 
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