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ABSTRACT

The function of a protein is intimately tied to its sub-
cellular localization. Although localizations have
been measured for many yeast proteins through
systematic GFP fusions, similar studies in other
branches of life are still forthcoming. In the interim,
various machine-learning methods have been pro-
posed to predict localization using physical charac-
teristics of a protein, such as amino acid content,
hydrophobicity, side-chain mass and domain com-
position. However, there has been comparatively
little work on predicting localization using protein
networks. Here, we predict protein localizations by
integrating an extensive set of protein physical char-
acteristics over a protein’s extended protein–protein
interaction neighborhood, using a classification
framework called ‘Divide and Conquer k-Nearest
Neighbors’ (DC-kNN). These predictions achieve
significantly higher accuracy than two well-known
methods for predicting protein localization in
yeast. Using new GFP imaging experiments, we
show that the network-based approach can extend
and revise previous annotations made from high-
throughput studies. Finally, we show that our
approach remains highly predictive in higher eukary-
otes such as fly and human, in which most

localizations are unknown and the protein network
coverage is less substantial.

INTRODUCTION

For a protein to operate properly, it must reside in the
correct compartment of a cell. Knowing the subcellular
localization of a protein, therefore, is an important step
to understanding its function (1,2). In budding and fission
yeast (1–4), systematic protein localization experiments
have been carried out through GFP fusions to each
open reading frame at the 30- or 50-end. Such studies
have not yet been performed in higher eukaryotes such
as Caenorhabditis elegans, Drosophila melanogaster or
mammals, due to the larger proteome sizes and the tech-
nical difficulties associated with protein tagging in those
species (5–7). In the interim, reliable and efficient compu-
tational methods are required to predict the subcellular
localization of a newly identified protein.
A considerable number of classification methods have

been developed for this purpose (5–24). Typically, these
algorithms input a list of features with which to character-
ize a protein, such as its molecular weight, amino acid
content, codon bias, hydrophobicity, side-chain mass
and so on. During the training phase, they learn to recog-
nize which features, or patterns of features, are best able
to classify a set of gold-standard proteins whose localiza-
tions are well known. To date, amino acid content
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has been a very successful and widely used feature
(5,6,8,11–16). Other informative features have been pro-
tein sorting signal motifs near the N-terminus (18), as well
as protein sequence motifs (7,9–12,16,24) and Gene
Ontology terms (5). Classification of these features has
relied on a variety of algorithms, including Least
Distance Algorithms (20,21), an Artificial Neural
Network (10), a Nearest Neighbor approach (5,14), a
Markov Model (22), a Bayesian Network approach (9),
Support Vector Machines (SVMs) (13,15,16) and Support
Vector Data Description (SVDD) (6).
Early methods attempted to classify proteins into a

small number of compartments, e.g. intracellular versus
extracellular (19). More recently, many compartmental
localizations have been defined, including not only
membrane-enclosed organelles but also categories such
as spindle pole or microtubule association. Current pre-
diction algorithms in yeast cover as many as 22 distinct
cellular localizations (5,6). Not surprisingly, approaches
which limit their predictions to smaller numbers of loca-
lizations have performed better than approaches which
attempt to predict many. Moreover, most of these studies
have demonstrated their predictions assuming a single
localization per protein within a single species such as
yeast. Therefore, some open challenges for new methods
development are to: (i) increase the classification accuracy
when predicting across many cellular compartments;
(ii) allow for multiple predictions per protein; and
(iii) stabilize performance across many species, some of
which may have far fewer data available for training
and classification than does yeast.
The recent availability of large protein–protein interac-

tion networks in yeast, fly, worm and human (25–34)
provides one means to at least partially address these chal-
lenges. To interact physically, two proteins must localize
to the same or adjacent cellular compartments, suggesting
that interaction may serve as an indicator for co-locali-
zation. Integrated analysis of genome-wide protein
localization and protein–protein interaction data in
Saccharomyces cerevisiae (SC) supports this hypothesis,
showing that interactions are strongly enriched between
co-localized proteins (1). However, there have been rela-
tively few attempts to use interacting proteins in the pre-
diction of localization (7). Moreover, in recent years the
numbers of protein interaction measurements have
increased exponentially. This increase has been driven by
various proteomics technologies, such as co-immunopre-
cipitation followed by tandem mass spectrometry, the
yeast two-hybrid system and its variants, and large screens
for genetic interactions (26,35,36). As a result, there were
more than 170 000 protein interactions in the public data-
bases as of this writing (http://www.ebi.ac.uk/intact/);
prior to 2002 there were no more than several hundred.
Given these developments, protein interactions have
become a basic feature available for many proteins. It is
therefore of significant interest to ask whether, and to
what extent, protein interaction networks can impinge
on the prediction of subcellular localization.
Here, we pursue a protein network-based approach

for summarizing diverse sequence and functional infor-
mation of interacting proteins into useful predictors

of localization. A variant of the k-Nearest Neighbors
classification algorithm (5,14) is developed to exploit
the synergy between the physical characteristics of an
individual protein and the properties of its interacting
neighbors. After generating useful features based on
single proteins and their neighbors, the method extracts
the best combination of feature sets for each cellular
localization. We apply this network-based prediction
method to predict the localizations of 5681 SC proteins,
in which a protein is not given a single annotation
but is characterized by its predicted distribution
across 22 subcellular compartments. Through further
GFP imaging experiments, we show that the predic-
tions can provide novel leads even when the localization
of a protein has already been measured experimentally.

MATERIALS AND METHODS

Overview of protein network-based localization prediction

We integrated three major types of features to predict the
localization of a protein, which we term S, N and L
(Figure 1). S (single protein) features, nine in total, were
used to describe various characteristics of the protein.
Seven of the nine S features were extracted from the pro-
tein’s primary sequence, depicting its amino acid composi-
tion and chemical properties. Occurrences of known
signaling motifs in the primary protein sequence, down-
loaded from cross-references in UniProt or FlyBase, was
also used as one S feature. The final S feature encoded
functional annotations of the protein downloaded from
the Gene Ontology database. N and L are network-
dependent: N summarizes the S features of the protein’s
extended network neighborhood, while L represents the
distribution of known localizations in the neighborhood.
Our modified k-Nearest Neighbor classifier, called
DC-kNN, integrates the diverse information of all these
features for each localization in a Divide-and-Conquer
manner, in which a single kNN classifier is built using
each type of feature and the predictions are made through
majority voting of the kNN classifiers. A protein can be
assigned to multiple localizations if the protein has an
estimated probability over a meaningful threshold for
each localization.

To generate the network features (N and L), we pooled
protein–protein interactions for SC from the BioGRID
(BiG) (37), the Database of Interacting Proteins (DIP)
(38), and the Saccharomyces Genome Database (SGD)
(39). Known localizations of 3914 proteins from Huh
et al. (1) were used for L features (Table 1). Most interac-
tions (>57%) in the protein networks connected known
co-localized protein pairs, which implies a high degree of
correlation between interaction and localization
(Figure 2a and Supplementary Table S5; P<< 10�16 com-
pared to 100 random networks of same topology). Among
the three databases, BiG has the largest coverage and
highest enrichment of co-localized proteins. We also
found that proteins in some localizations (e.g. endoplas-
mic reticulum) tend to interact with proteins in different
localizations (e.g. vacuole). To reflect the possibility
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of interacting pairs being in different localizations, we
incorporated such conditional probability into the L
features.

Localization and network data

For SC, we downloaded the localization data of Huh et al.
(1), who used GFP-tagging experiments to annotate 3914
proteins with up to 22 distinct localizations (Table 1). The
22 localizations are actin (actin cytoskeleton), bud, bud
neck, cell periphery, cytoplasm, early Golgi (early Golgi/

COPI), endosome, ER (endoplsmic reticulum), ER to
Golgi (endoplasmic reticulum to Golgi), Golgi (Golgi
apparatus), late Golgi (late Golgi/clathrin), lipid particle,
microtubule, mitochondrion, nuclear periphery, nucleolus,
nucleus, peroxisome, punctate composite, spindle pole,
vacuolar membrane and vacuole (see Supplementary
Table S1 for more information). The remaining 1530 SC
proteins have no known localization at present and were
designated ‘localization-unknown’. For DM and HS,
we first downloaded all proteins which had sequence infor-
mation in FlyBase and UniProt, respectively. We assigned
localization information to the 2187 DM and 4570 HS

Figure 1. Schematic overview of the integrated network-based framework. (a) Generation of single-protein feature vectors (Ss). Nine kinds of Si

(AA, diAA, gapAA, three kinds of chemAA, pseuAA, Motif and GO) were generated for each protein Pi based on its sequence, chemical properties,
motifs and functions. (b) Calculation of Neighbors’ Significance Matrixes (NSMs). These were calculated based on the number of distinct localiza-
tions covered by proteins falling along the path with the highest weight from a target protein to a neighbor protein (see Materials and methods
section). (c) Calculation of PLCPs. They were calculated based on a weighted counting with normalization (see Materials and methods section).
(d) Generation of network feature vector Ni

D. Each Ni
D was generated using up to D-th neighborhood’s Ss with neighbors’ significance degrees from

NSMs. (e) Generation of network feature vector Li
D. Each Li

D was generated using Pi’s network neighbors up to distance D, weighted by NSMs and
PLCPs to reflect each neighbor’s significance and the conditional probabilities of interactions between localization pairs, respectively. (f) Model
selection for each localization. The best combination of feature sets was selected for each localization based on a forward approach with
the DC-kNN classifier. (g) Prediction of unknown localizations. After generating all feature vectors using all known localization and network
information, a confidence degree and a decision (on whether an unknown protein has a specific localization or not) were computed for each
localization.
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proteins with GO cellular component annotations.
To define the corresponding set of localization unknown
proteins, we identified 5656 DM and 3767 HS proteins
in the BiG protein network with sequences available
but that did not have known localizations, i.e. missing
GO annotations. For the interaction data, we downloaded
the contents of BiG, DIP, and SGD for SC, of BiG and
DIP for DM and of BiG for HS.

Generation of single protein feature vectors (S)

Using sequences from UniProt for SC and HS and
FlyBase for DM, we generated three kinds of amino
acid features for each protein: amino acid composition
frequencies (AA), pair-coupled amino acid frequencies
(diAA) and pair-coupled amino acid frequencies with a
gap (length=1) (gapAA). AA is a vector of length 20;
the diAA and gapAA vectors contain 400 elements enu-
merating frequencies over all ordered amino acid pairs.
For incorporating chemical properties, we generated
three kinds of chemical amino acid compositions
(chemAA) using normalized hydrophobicity (40) (HPo),
hydrophilicity (41) (HPil) or side-chain mass (42)
(SCM), respectively (see Supplementary Table S6 for the
normalized values of each chemical property). The
chemAA compositions were computed by scanning a

window of length k along the amino acid sequence
(1� k� 40) and recording the mean squared difference
in the chemical property value across all window posi-
tions. The k-th element of chemAA using hydrophobicity
was defined as:

HPoðkÞ ¼
1

n� k

Xn�k
l¼1

HPoðRlÞ �HPoðRlþkÞð Þ
2,

where HPo(Rl) is the normalized hydrophobicity value of
the l-th residue, and n is the length of the protein sequence.
The pseudo-amino acid composition (pseuAA) (43) was
generated by combining the three chemical properties
into one. Formally stated:

PseuAAðkÞ ¼
1

n� k

Xn�k
l¼1

1

3
Uþ VþW½ �,

where U ¼ HPoðRlÞ �HPoðRlþkÞð Þ
2, V ¼ HPilðRlÞ�ð

HPilðRlþkÞÞ
2 and W ¼ SCMðRlÞ � SCMðRlþkÞð Þ

2: For
the Motif and GO feature vectors, we downloaded
InterPro Motifs and GO information from UniProt (SC
and HS proteins) and FlyBase (DM proteins). After
extracting the motif or GO set using all localization-
known proteins for each species, we constructed a

Table 1. Data sources integrated to predict localization information

Species Data set Proteins Localizations

Localization
Saccharomyces cerevisiae (22 localizationsa) Localization-known proteins 3914 5184

Localization-known and having interactions 3206 4284
Ambiguous 237 189 335
Localization-unknown 1530 0

Drosophila melanogaster (12 localizationsb) Localization-known 2187 2398
Localization-known and having interactions 1610 1778
Localization-unknown and having interactions 5656 0

Homo sapiens (13 localizationsc) Localization-known 4570 5251
Localization-known and having interactions 2684 3093
Localization-unknown and having interactions 3767 0

Species Data set Proteins Interactions

Interaction
Saccharomyces cerevisiae BioGRID 5184 70 700

DIP 4931 17 471
SGD 5395 56 035

Drosophila melanogaster BioGRID 7545 25 463
DIP 7038 20 719

Homo sapiens BioGRID 7378 20 968

Feature Description

Protein feature
Sequences UniProt (for SC and HS) and FlyBase (for DM)
Chemical property Hydrophobicity, hydrophilicity and side-chain mass
Motifs InterPro
Functions InterPro and GO

Here, we only considered the proteins with sequence information.
a22 SC localizations are actin, bud, bud neck, cell periphery, cytoplasm, early Golgi, endosome, ER, ER to Golgi, Golgi, late Golgi, lipid particle,
microtubule, mitochondrion, nuclear periphery, nucleolus, nucleus, peroxisome, punctate composite, spindle pole, vacuolar membrane, vacuole.
b12 DM localizations are actin, cell periphery, centrosome, cytosol, ER, golgi, lysosome, mitochondrion, nucleolus, nucleus, peroxisome, vacuole.
c13 HS localizations are actin, cell cortex, centrosome, cytosol, ER, golgi, lysosome, mitochondrion, nucleolus, nucleus, peroxisome,
plasma membrane, vacuole. Further details regarding localizations and interactions of SC, DM and HS are in Supplementary Figure S1 and
Tables S1–S4.
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binary feature vector (5,6) in which each element was set
to ‘1’ if the protein had the corresponding motif (or GO)
annotation, otherwise ‘0’. Note that GO terms also
include cellular component annotations, which are also
used as class labels especially for DM and HS. Thus, to
reduce circularity we omitted these annotations while gen-
erating the GO feature vectors even though most previous
studies used all three branches of GO terms (5,44).

Pair-localizations’ conditional probability

We calculated a pair-localizations’ conditional probability
(PLCP) matrix for each protein network (BiG SC, DIP
SC, SGD SC, BiG DM, DIP DM and BiG HS) to capture

the probability of a protein being in localization lj given
that its interaction partner is in localization li:

PðljjliÞ ¼
IijP

k

Iik
,

Iij is the normalized number of interactions between pro-
tein pairs spanning (li and lj). Iij is defined as:

Iij ¼

P
a2li,b2ljða6¼bÞ

�ða,bÞ
NðaÞ�NðbÞ

NðliÞ þNðljÞ

where NðliÞ is the total number of proteins in localization
li, NðaÞ is the number of localizations in protein a, and

Figure 2. Correlation between known localizations and protein interactions of yeast proteins. (a) The number of interactions (inside the circles) and
the fraction of interactions whose proteins share localization information (outside the circles) of three interaction databases: BiG, DIP and SGD.
(b–d) The PLCPs of BiG, DIP and SGD, respectively. Given a protein at a particular localization (row), each cell corresponds to the conditional
probability of the localization of its interacting partners (column). The squares on the diagonal (or off-diagonal) indicate the locations with relatively
low (or high) degrees of location-sharing interactions within (or between) locations; the dotted circles on the diagonal indicate different patterns
among three interaction databases for proteins in the lipid particle.
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�ða,bÞ is ‘1’ if there is an interaction between proteins a
and b; otherwise, zero.

Network-dependent interacting protein-group
feature generation

In this study, we generated two kinds of network feature
vector: ND and LD. ND of protein Pi is defined as the
weighted average of the S feature vectors over proteins
up to distance D from Pi in the network, including Pi

itself (called the D-th neighborhood of Pi and represented
by the variable CD

i ):

HD
i ¼

1P
wki

X
Pk2C

D
i

wkiSk:

The weightings wki, which make up the Neighbors’
Significance Matrix (Figure 1), represent the significance
of neighbor Pk, defined as:

wki ¼
1

�ki þ �
,

where �ki is the number of distinct localizations covered
by proteins along a path from Pi to Pk, and � is a pseudo-
counter for handling incompleteness of localization data
(in this study �=1 for SC, �=2 for HS and �=3 for
DM; different values were used because the portions of
known localizations for DM and HS are less than that
of SC—see Figure 6b). Note that we assigned max wki

among multiple paths from Pi to Pk and assigned less
weight on a neighbor protein that interacts with other
proteins having many distinct localizations.
Li

D is a vector representing the probability that Pi has
each of the 22 localizations, given the D-th neighborhood
of protein Pi and considering the probabilities of interac-
tion between proteins in distinct localization pairs:

LD
i ¼ LD

i 1ð Þ, . . . LD
i yð Þ, . . . LD

i 22ð Þ
� �

LD
i yð Þ ¼

1P
wki

X
Pk2C

D
i

wki max
lx2�k

p lyjlx
� �� �

where lx is one element of the localization set Ck of Pk, and
pðlyjlxÞ is the conditional probability of label ly given the
label lx (from the PLCP matrix). Note that we choose the
maximum value among multiple choices for the condi-
tional probability of each localization, owing to the multi-
ple localization property. Moreover, to satisfy the
symmetric property, we also include the single protein
feature vector of input protein Pi when generating net-
work feature vectors.

Divide-and-Conquer k-Nearest Neighbor Classifier

The DC-kNN has three main steps: dividing, choosing,
and synthesizing. In the dividing step, the full feature
vector is divided into m meaningful feature subvectors.
In this study, each single protein feature set and each
network-dependent protein group feature set were treated
as meaningful sub-vectors, yielding m=69 subvectors in
total for yeast: the 9S vectors (AA, diAA, gapAA, three
kinds of chemAA, pseuAA, Motif, GO), the 54N vectors

[=9S vectors� 2 (up to second neighborhood)� 3 (the
number of network databases)], and the 6 L vectors [=2
(up to second neighborhood)� 3 (the number of network
databases)]. In the choosing step, the k-nearest neighbors
are chosen for each protein and subvector (in this study,
k=5). Finally, the synthesizing step averages the m sets of
k neighbors with a weight on each set, and it generates a
confidence for each label by means of a normalization
process with m and k. Formally, the confidence �l for
label l is defined as:

�l ¼
1

k

X
m

nml � �m

" # 1ffiffi
m
p

,

where nml is the number of k-nearest neighbors that have

label l according to sub-vector m. �m(
P
m
�m¼1) is the

weight of the m-th subvector. Instead of using all
sub-vectors, DC-kNN finds the best combination of fea-
ture subvectors for each label, based on a forward
approach. At each iteration, DC-kNN chooses the most
predictive feature subvector among those remaining, i.e.
the vector that shows the best AUC when added to the
previously selected feature subvectors. In the first itera-
tion, feature subvectors are used individually for finding
the most predictive one. For the weights �m, DC-kNN
uses the AUC obtained using each feature subvector
alone. DC-kNN produces a confidence degree (0–1) and
a decision on whether a protein has a specific localization
or not, using a threshold based on a false positive rate (in
this study, <0.01).

Microscopic localization analysis

Yeast cells grown to mid-logarithmic phase in SC medium
were microscopically analyzed in 96-well glass bottom
microplates (Whatman, Florham Park, NJ, USA) pre-
treated with concanavalin A (Sigma, St. Louis, MO,
USA) to ensure cell adhesion. Microscopy was performed
on a Zeiss Axiovert 200M inverted microscope with a
Plan-NeoFluar 100�/1.3NA oil immersion objective.
Images were recorded on a Zeiss Axiocam MRm with
2� 2 binning. Fluorescence images for GFP were taken
using a standard fluorescein isothiocyanate filter set (exci-
tation band pass filter, 450–490 nm; beam splitter, 510 nm;
emission band pass filter, 515–565 nm).

RESULTS AND DISCUSSION

Network information improves localization prediction
in yeast

We compared the predictive performance of different fea-
tures during prediction of localization: S features only,
N features only, L features only, all three features together
(S+N+L) and random guesses. DC-kNN classification
was used in all cases, and performance was evaluated
using the technique of leave-one-out cross-validation
(LOOCV). In every run of LOOCV, the known localiza-
tion of one of the 3914 SC proteins in Huh et al. (1) was
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designated as ‘test’ data and withheld during classifier
training.

Three metrics, Top-K, Total and Balanced, were used to
summarize the performance of the 3914 runs. The Top-K
measure is the fraction of correctly predicted runs, in
which the prediction is considered correct if at least one
of the known localizations of the test protein is included in
the top-K predicted localizations. We used K= 3 assum-
ing most yeast proteins have less than or equal to three
localizations (6). The Total measure is the fraction of cor-
rectly predicted localizations in the 3914 runs, counting all
predictions for all proteins. The Balanced measure calcu-
lates the averaged fraction of correctly predicted locali-
zations in distinct localizations (see Supplementary
Figure S2 for the metrics used). The Balanced measure is
used because predictions based on localization categories
with few proteins are usually not as good as predictions
based on localization categories with many proteins anno-
tated. For the random guesses, we randomly permuted the
assignment of localizations to proteins preserving both the
number of localizations per protein and the number of
proteins per localization; the measures (Top-3, Total and
Balanced) were averaged over 30 runs.

Although all classifiers were clearly better than random
(based on the background distribution of proteins in the
22 localizations; Figure 3a), the combination of all three
features provided the highest predictive accuracy regard-
less of the measure. Moreover, according to the Balanced
metric, either of the network features N or L achieved
higher accuracy than S features. These results suggest
that when the number of proteins was not sufficient to
learn sequence-level rules for classifying smaller compart-
ments like ‘bud’ or ‘peroxisome’, interaction networks
provided one alternative to amplify the weak signals
encoded in the individual protein sequences.

In all of the above cases, the network neighborhood was
defined as a protein’s immediate interactors (N1 or L1,
designating network distance=1). Next, we explored
the impact of expanding a protein’s network neighbor-
hood to incorporate not only immediate neighbors, but
all proteins at network distances up to and including dis-
tance D. As seen in Figure 3b–d, incorporating network
information up to distance 2 generally improved the accu-
racy of the amino acid, chemical AA properties and GO
features. However, network distances larger than 2 did not
have a significant increase in performance, which is under-
standable given the diameter of the yeast network was six.
Similar findings were observed for the L features
(Figure 3e). The L features alone (Total accuracies range
from 60% to 66% depending on the network used) out-
performed any kind of S feature (42–55%), but their
accuracies did not increase significantly when more than
distance 2 neighbors were included.

Interestingly, a network pooled from all three interac-
tion databases did not improve the performance over any
single network alone (Figure 3b–e). It achieved equivalent
performance as the SGD network and sometimes worse
than the BiG network, indicating that the network quality
played a bigger role than the coverage in generating useful
N and L features. Overall, the BiG network had the best
performance.

The best combination of single-protein features and
network features for each localization

Using a subset of features may reduce the possibility of
overfitting and therefore lead to a more robust classifier
(45,46). To further optimize the predicted localizations, we
applied a forward selection which combined feature sets of
high predictive power from a pool of S, N and L features
from up to distance 2 network neighborhoods. During
feature set selection, we used the common measure of
Area Under receiver operator characteristic Curve
(AUC) (47,48) to rank the predictive power of features
and also to evaluate the performance of the resulting clas-
sifiers. To reduce overfitting further, we withheld two
examples from each training round of cross-validation,
and then used one for feature selection and one for per-
formance reporting. Without feature selection, DC-kNN
with all single-protein S features achieved 0.65 AUC aver-
aged from the prediction of the 22 compartments. This
accuracy increased to 0.79 if feature set selection for
each localization was applied during classifier training
using all single-protein features (Figure 4a).
Lastly, we explored the effect of selecting the best com-

bination of single-protein features S and network features
N and L for each localization separately. We found that
selecting different features per localization using single
and network features resulted in a dramatic increase in
performance, with average AUC of 0.94 for the 22 locali-
zations (see Supplementary Figures S4–S6 for the forward
feature set selection, the ROC curves of each approach,
and the selected feature sets for each compartment, respec-
tively). This means that the combinatorial effect between
single-protein features and network features is indispens-
able for capturing functional characteristics of proteins.
Another issue in the localization prediction of proteins

might be the influence of homologous data in training
data. To evaluate the influence of sequence similarity in
the developed network-based approach, we checked the
performance of DC-kNN with only nonhomologous
yeast proteins (see Supplments.doc for more information).
We observed similar performance (average AUC value of
0.94) with the previous result with all known yeast pro-
teins. It implies that the network-based DC-kNN is insen-
sitive to the presence of close sequence homologs in a
training data set.

Novel localization predictions can revise previous
high-throughput experiments

Based on its good performance, we applied this last
method to comprehensively predict 5184 localizations
for 3914 yeast proteins. Although these yeast predictions
were in good agreement with the GFP localization experi-
ments performed by Huh et al. (1) (as expected since the
Huh data were used as features), to our surprise we found
that for 61 proteins the predicted localizations were novel
(Supplementary Tables S7 and S8). For example, Noc4/
Ypr144c and Utp21/Ylr409c were localized to the nucleus
by Huh et al. (1), whereas our predictions produced the
highest signal (5� 10�4 false positive rate for Noc4 and
1� 10�3 for Utp21) at the nucleolus. To determine
whether a nucleolar localization could be corroborated
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Figure 3. Usefulness of protein interaction networks. (a) The performance of five cases, including (i) random guess of localization, (ii) S features
only, (iii) N1 only, (iv) L1 only and (v) all three kinds of features. (b–e) The performance of the ND features for amino acid frequencies (b), chemical
amino acid properties (c), and GO terms (d) as well as performance of the feature LD (e). Performance is based on the five interaction networks BiG,
DIP, SGD, Combined, and Random (different color curves). The performance of other ND network features is shown in Supplementary Figure S3.
The x-axis is the radius of neighborhood D; D=0 means only the single protein feature vector S was used, which is a conventional approach. For
Combined, the three interactome datasets BiG, DIP and SGD were pooled into a single network. For Random, localizations were randomly assigned
on the BiG network. The solid lines and the dotted lines represent the Total and Balanced measures, respectively.
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experimentally, we re-examined the strains containing
GFP-tagged Noc4 and Utp21 using fluorescence micro-
scopy (see Materials and methods section). The resulting
images show that both proteins do indeed accumulate at
the nucleolus with some spread to the nucleoplasm
(Figure 5a and b). In some cases, therefore, it appears
that network-based predictions can correct or complement
the image readouts of high-throughput experiments. This
power owes mainly to the fact that our framework synthe-
sizes evidence from multiple interacting partners. For
example, Noc4 interacts with many other proteins in the
nucleolus, hence the prediction (Figure 5c).

In Huh et al. (1), 237 SC proteins had ambiguous image
readouts for determining their localizations. Among these,
80 proteins were nonetheless annotated with ‘low confi-
dence’ localizations and 157 were never annotated (1).
Moreover, an additional 1530 yeast proteins could not
be localized by the previous experiments owing to low
GFP signals (1). We used the DC-kNN network-based
classifier to predict the localization of all of these proteins
(Supplementary Figure S7 and Tables S9–S10). For the 80
‘low confidence’ proteins in Huh et al. (1), our predicted
localizations significantly overlapped with their assign-
ments (Supplementary Figure S7c; P< 2.0� 10�31 based
on a hypergeometric distribution). We also found
significant overlap between our predictions and the

literature-curated annotations recorded in the cellular
component branch of the GO database (see Supplemen-
tary Figure S7d and Table S11 for the overlap degree
and the mapping relationship between 22 localizations
and GO terms, respectively; P< 2.6� 10�71).

Comparison with previous methods

We compared DC-kNN with two popular methods, ISort
(5) and PSLT2 (7,17), for the prediction of yeast protein
localization. ISort (5) is one of most comprehensive
sequence-based methods and also the first of the few
machine-learning-based methods to predict more than
15 compartments. PSLT2 (7) is a method that previously
incorporated protein interaction networks into localiza-
tion prediction. In the original PSLT2 paper (7), the
authors demonstrated its accuracy in predicting SC pro-
teins in nine general compartments. Therefore, we ran our
method and ISort (5) for the same nine compartments
with the same data used in the PSLT2 paper (7). Using
both sequence and network features, DC-kNN signifi-
cantly outperformed ISort and PSLT2 based on the
Total and Balanced measures [Top-K and AUC measure-
ments are not available in the PSLT2 paper (7)]
(Figure 4b). Between ISort and PSLT2, ISort had higher
Total accuracy but PSLT2 surpassed ISort in terms of the
Balanced measure, which down-weights bigger compart-
ments with more proteins (see Supplementary Table S12
for the performance of each compartment among three
methods).

Extrapolation to higher eukaryotes

Given the power of protein network information to pre-
dict protein localization, an important question is whether
a network-based approach can be extended to other
eukaryotes with less network coverage than yeast. To
address this question, we ran a series of simulations in
which increasing numbers of interactions in the yeast net-
work were successively removed. As expected, the perfor-
mance of DC-kNN decreased as less network information
was available (Figure 6a). However, the rate of decrease
was gradual, such that when the average degree of the
network was reduced by approximately half (27 versus
13), the associated decrease in AUC was 0.94–0.91.
At an average degree of five, the AUC was still �0.89.
We note that the available protein networks for worm,
fly and human are in this range (average degrees from
3 to 7; see Figure 6a). Thus, these results suggest that
the protein network-based DC-kNN will achieve high
accuracy in predicting protein localization in these species.
At average degrees below three, the performance dropped
more precipitously to approach 0.79, the AUC achievable
without network information (S features only).
Another potential problem is that in eukaryotes other

than yeast, few known protein localizations are available
for classifier training. Thus, our second simulation was to
test the robustness of prediction as the number of proteins
with known localization data was decreased. As expected,
the AUC decreased when less localization data were
available (Figure 6b), but with an even slower rate of
degradation than that observed for loss of interaction

Figure 4. Performance of the network-based approach. (a) The aver-
aged AUC values of three cases: (i) all S features without feature set
selection (FSS), (ii) all S features with FSS and (iii) all S, N and L
features with FSS for each localization. (b) Performance comparison
with two well-known methods. Performance is computing using the
Total versus Balanced metrics (top three versus bottom three bars).
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data (Figure 6a). Dramatically, with only 1% of network
proteins having known localizations, the network-based
approach still achieved �0.83 AUC, which is significantly
higher than the �0.65 AUC obtained from a conventional
sequence-based approach. The improvement results from
both the consideration of network features and the feature
selection implemented in DC-kNN. These simulations

suggest that the proposed network-based method can
be applied to predict localization of proteins in higher
eukaryotes where only little protein network information
is available and only few proteins have previously deter-
mined localizations.

To cross-check these simulation results, we applied the
proposed framework to predict protein localizations in

Figure 5. Validation of novel localizations for yeast proteins. New localization images for two yeast proteins, Noc4/Ypr144c (a) and Utp21/Ylr409c
(b), for which the network-based prediction (nucleolus) was different than previously measured (nucleus) (1). The near-complete overlap area between
the GFP and RFP images (‘Merge A’), marking the protein and nucleolus, respectively, is consistent with a nucleolar localization (Sik1-RFP was
used as a nucleolus marker). Here, DAPI is used for marking the nucleus, and ‘Merge B’ is the overlap among GFP, DAPI and RFP images.
(c) Proteins that interact with Noc4/Ypr144c and their localizations. The values in the upper-left box represent the interacting protein pairs’
localization purity (IPLP, or enrichment) among interacting protein pairs for distinct localizations (see the ‘Supplements.doc’ for more information).
Panel (c) is drawn using Cytoscape (55).
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both fly and human. The currently available fly and
human networks, containing 25 463 and 20 968 interac-
tions among 7545 and 7378 proteins, respectively, were
downloaded from BiG. Because no high-throughput
experimental studies have been conducted to measure
the localizations of fly and human proteins, we trained
the classifier using literature-curated protein localizations
documented in the Cellular Component branch of the GO
database. According to GO, 1709 fly and 2684 human
proteins in the BiG network have known localizations
covering 12 (fly) and 13 (human) cellular compartments
in total. Approximately 77% (fly) or 64% (human) pro-
teins had no known localizations, in contrast to only 33%
of proteins in yeast (Supplementary Table S13).
Nonetheless, consistent with our above simulation results,
DC-kNN achieved �0.88 (fly) or �0.95 (human) AUC in
cross validation (red ‘X’s in Figure 6b). In terms of net-
work coverage, the performance in human was slightly
higher than predicted in simulation (red ‘X’s in
Figure 6a). (See Supplementary Figure S8 for forward
feature set selection of fly and human and Supplementary
Figures S9–S10 for selected feature sets for each compart-
ment.) Overall, we predicted 7058 (fly) and 4366 (human)
new localizations for proteins with no localizations pre-
viously known (see Supplementary Tables S14–S15 for all
predicted results and Supplementary Figure S11 for dis-
tribution of the results).

In this work, we obtained an average AUC of 0.94 for
yeast, 0.88 for fly and 0.95 for human (see the
‘Supplements’ for the discussion of the localization-
specific predictions of yeast, fly and human proteins).
The high performance of the proposed approach results
from both the consideration of network features, in addition

to single protein features, and the feature selection imple-
mented in DC-kNN. The performance may be further
improved by efforts to specify further details about the
type of relationship each interaction represents. For
instance, interactions fall into specific biological categories,
including physical binding events, genetic interactions such
as synthetic lethals or suppressor relationships, and func-
tional associations. Each of these interaction types may
have different capacity to predict specific protein localiza-
tions. Moreover, protein interactions are dynamic according
to external stimuli or environmental conditions (49,50).
Where condition-specific expression or interaction data are
available, it would be of high interest to predict dynamic
changes in protein localization. It is increasingly recognized
that such changes are the cornerstone of many cellular reg-
ulatory events (51–54), such as the translocation of tran-
scription factors to the nucleus or the trafficking of
proteins to the vacuole or cellular membrane.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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