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SUMMARY

Systems biology requires not only genome-scale
data but also methods to integrate these data into
interpretable models. Previously, we developed ap-
proaches that organize omics data into a structured
hierarchy of cellular components and pathways,
called a ‘‘data-driven ontology.’’ Such hierarchies
recapitulate known cellular subsystems and discover
new ones. To broadly facilitate this type of modeling,
we report the development of a software library
called the Data-Driven Ontology Toolkit (DDOT), con-
sisting of a Python package (https://github.com/
idekerlab/ddot) to assemble and analyze ontologies
and a web application (http://hiview.ucsd.edu) to
visualize them. Using DDOT, we programmatically
assemble a compendium of ontologies for 652 dis-
eases by integrating gene-disease mappings with a
gene similarity network derived from omics data.
For example, the ontology for Fanconi anemia de-
scribes known and novel disease mechanisms in its
hierarchy of 194 genes and 74 subsystems. DDOT
provides an easy interface to share ontologies online
at the Network Data Exchange.

INTRODUCTION

Biological systems are organized hierarchically across multiple

scales, from genes and proteins to protein complexes and path-

ways to cells, tissues, and individuals. The proliferation of omics

datasets creates the potential to reveal this organizational

complexity in an unprecedented and unbiased manner, whether

throughgenerationofproteomicdata (protein-protein interactions

and co-localization) (Chong et al., 2015; Huttlin et al., 2017), tran-

scriptomic data (RNA co-expression across conditions and time

points) (Saha et al., 2017; Sefer et al., 2016), or genetic data (epis-

tasis and synthetic lethality) (Costanzo et al., 2016).

In the interest of building models that are both hierarchical and

data driven, we previously introduced an approach for orga-
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nizing genes into a hierarchy of cellular subsystems based on

their gene-gene pairwise similarities in omics data (Dutkowski

et al., 2013; Kramer et al., 2014). Unlike other hierarchical clus-

tering algorithms that produce binary trees (a.k.a. dendrograms),

the core idea is to produce hierarchies with the flexibility to cap-

ture the structure of a cell, recognizing, for instance, that a sub-

system may factor into many subcomponents (not just two) and

participate in several higher-order processes (pleiotropy). In this

way, the resulting model, called a data-driven hierarchy or data-

driven ontology, has the potential to complement the knowledge

in literature-curated ontologies in an unbiased and scalable

manner. Through a procedure known as ontology alignment,

we showed that these hierarchies not only recapitulate subsys-

tems in the GeneOntology (GO), including 60%of known cellular

components in S. cerevisiae, but also discover new subsystems

(Dutkowski et al., 2013).

Motivated by the initial success of this approach (Carvunis and

Ideker, 2014; Dolinski and Botstein, 2013), additional methods

have since been developed for inferring data-driven hierarchies

(Gligorijevi�c et al., 2014; Li and Yip, 2016; Peng et al., 2016).

The data-driven nature of these methods also enables the de

novo modeling of diseases and biological processes (Ames,

2017; Kim et al., 2016; Kramer et al., 2017). For instance, previ-

ously, we used data from experimental models of autophagy to

infer a hierarchy of autophagy-related processes (Kramer

et al., 2017). This hierarchy suggested many mechanistic hy-

potheses, a number of which we experimentally confirmed,

including a revised understanding of known processes such

as selective autophagy, the discovery of new processes such

as the transport of Atg19-receptor cargos, and the discovery

of new functions of genes such as Gyp1 and Atg26.

Similarly, the co-expression of genes in the fungal pathogen

Magnaporthe oryzaewas used to infer a hierarchy of cellular sub-

systems that are invoked during infection (Ames, 2017). Beyond

genes and cellular subsystems, this form of modeling has also

been used to organize other biomedical concepts. For instance,

Park et al. hierarchically organized diseases based on their

shared molecular mechanisms and showed correspondences

with MeSH and the Disease Ontology (Park et al., 2017). We

have also organized text phrases into a hierarchy of higher-order

semantic concepts based on their co-usage in the abstracts of

biomedical papers (Wang et al., 2018).
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To broadly facilitate these approaches in the biomedical

research community, we now report the development of a soft-

ware framework, the Data-Driven Ontology Toolkit (DDOT), to

enable the construction and analysis of hierarchical models in

a Python package and their visualization in a web application.

In contrast to existing tools for studying hierarchical models

and literature-curated ontologies, DDOT supports general hier-

archies rather than trees and focuses on the analysis of data-

driven structure instead of semantic relations.

RESULTS

Introduction with Application to Fanconi Anemia
DDOT implements four major functions.

d Build data-driven ontology: Given a set of genes and a

gene similarity network, hierarchically cluster the genes

to infer cellular subsystems using the CliXO algorithm

(Kramer et al., 2014). The resulting hierarchy of subsys-

tems defines a data-driven ontology.

d Visualize hierarchical structure: Browse the full hierarchical

structure of a data-driven ontology, including the network

of gene similarities used to infer it, in a web application

called the Hierarchical Viewer (HiView, http://hiview.

ucsd.edu).

d Align ontologies: Annotate a data-driven ontology by align-

ing it to a curated ontology such as the GO. For instance, if

a data-driven subsystem contains a similar set of genes

as the GO term for DNA repair, then annotate this subsys-

tem as being involved in DNA repair. Data-driven subsys-

tems with no such matches represent new molecular

mechanisms.

d Expand gene set: Given a set of genes as a ‘‘seed set’’ and

a gene similarity network, identify an expanded set of

genes that are highly similar to the seed set. This function

can broaden the scope of a data-driven ontology beyond

genes that are already well known.

We illustrate the above functions in an example study of Fan-

coni anemia (FA), a rare genetic disorder that is associated with

bone marrow failure, myeloid dysplasia, and increased cancer

risk (Ceccaldi et al., 2016). A total of 20 genes have been classi-

fied as FA genes because their germline mutations in patients

have been associated with FA clinical phenotypes (Fanconi Ane-

mia Mutation Database, http://www2.rockefeller.edu/fanconi/).

All of these genes have known functions in the repair of DNA

damage due to interstrand cross-links. However, beyond these

DNA repair functions, the full spectrum of genes and pathways

underlying FA remains unclear. For example, recently, 7 of the

20 FA geneswere linked to new functions in autophagy, separate

from their classical roles in DNA repair (Sumpter et al., 2016).

Moreover, 127 other genes have been co-cited with FA in at least

one study (STAR Methods).

Based on our previous procedure for studying autophagy

(Kramer et al., 2017), we applied DDOT in a five-step pipeline

to construct a FA gene ontology (FanGO) as follows (Figure 1A).

First, we gathered input data, consisting of the 20 known FA

genes as a seed set of genes for modeling and a gene similarity

network derived by integrating several types of molecular evi-

dence including protein-protein interactions, co-expression,
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co-localization, and epistasis (STAR Methods; Figure S1A).

Second, we scored every gene for its involvement in FA by calcu-

lating its average functional similarity to the seed genes. Themin-

imum score among the seed genes was used as a threshold to

identify an additional set of 174 candidate genes (Figure 2A).

Third, we organized all genes in a hierarchy of 74 cellular subsys-

tems to construct FanGO. Fourth, we aligned it with GO. Finally,

we uploaded FanGO to an online database, the Network Data

Exchange (NDEx, http://ndexbio.org) (Pratt et al., 2015), and

visualized the results in HiView (Figure 1B).

Since the time of constructing FanGO, one of the candidate

genes, RFWD3 (a.k.a. FANCW), was independently confirmed

as a FA gene (Knies et al., 2017). Among the other candidate

genes, 54 have been co-cited with FA (Figure 2B). Using the

co-cited genes as a benchmark, the recall of our set of candi-

date genes is 54/127 = 0.43, and the precision is 54/174 =

0.31. Moreover, the co-cited genes tended to have stronger

functional similarities to the seed set than other candidate

genes (Figures S1B–S1D). An ontology alignment between

FanGO and GO revealed that 43 of FanGO subsystems

(58%) had significant overlap with GO terms (Figure 2C).

Consistent with prior knowledge that FA is marked by sensi-

tivity to DNA damage, many of these overlapping GO terms

are cellular complexes or pathways involved in the recognition

of DNA lesions, including the GINS and MutSalpha complexes,

or the repair of the DNA helix. Canonical FA subsystems, such

as the ‘‘FA nuclear complex’’ and the ‘‘FANCM-MHF’’ com-

plex, were also found (Figure 2D).

The recovery of these known connections suggests that the

other 120 genes and 31 subsystems in FanGO are attractive

hypotheses for further study in laboratory models or patients

with FA phenotypes. In particular the genes RFC4 and RMI,

although not currently known to be involved in FA, have higher

average similarity scores to the seed set than observed

among the seed genes themselves. Several FanGO subsys-

tems involve cellular functions that are not immediately recog-

nizable as related to DNA damage repair, such as mRNA

splicing (Figure 2E), the condensin complex, and telomere

maintenance.

Assembly of Data-Driven GOs for 652 Diseases
To demonstrate the accessibility and ease of computational

modeling enabled by DDOT, we repeated the modeling proced-

ure used for FA to programmatically construct data-driven

ontologies for numerous other diseases, totaling 652 in all. These

ontologies were based on two types of input data: a set of known

gene associations for each disease, curated in the Monarch

Initiative database (Mungall et al., 2017), and the same gene

similarity network used to construct FanGO. By calling DDOT

functions, the pipeline for constructing these ontologies was

very concise, consisting of 16 lines of code for loading input

data and setting parameters and 8 lines for modeling in a single

Python script. The ontologies are available on NDEx and can be

visualized through HiView (Table S1).

A Suite of Functions Organized in a Python Package
Beyond the major functions described above, DDOT provides

many other utility functions to analyze an ontology using the Py-

thon package (STAR Methods). At the core of the package is an
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Figure 1. Software Architecture of the Data-Driven Ontology Toolkit

(A) An example workflow of using DDOT to construct, analyze, and visualize a data-driven gene ontology. This workflow is executed in an integrated software

framework, consisting of a Python package and a web application called the Hierarchical Viewer (HiView, http://hiview.ucsd.edu). Input and output data can be

stored online at the Network Data Exchange (NDEx, http://ndexbio.org), facilitating the sharing and reproducibility of results.

(B) HiView visualizes both the hierarchical structure of an ontology (left), as well as the omics data (right), in the form of gene interaction networks, whichwere used

to infer a subsystem and its hierarchical relations. Genes and subsystems can be searched by name or metadata (top-left).
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Figure 2. Discovery of Genes and Cellular Subsystems Involved in 652 Diseases

(A–C) A Fanconi anemia gene ontology (FanGO) assembled by combining prior knowledge of a seed set of 20 known FA genes with large-scale omics data. (A)

Every gene was scored for its involvement in FA by calculating its average functional similarity to the seed set. A histogram of these scores is shown for genes in

the seed set (blue), genes that are not in the seed set but have been co-cited with the phrase ‘‘Fanconi Anemia’’ (green), and all other genes (red). The minimum

score among genes in the seed set (0.88) was used as a threshold to identify a candidate set of 174 genes. (B) Decomposition of the combined set of 194 genes.

(C) Decomposition of the 74 subsystems in FanGO based on an alignment to the Gene Ontology (GO).

(D and E) Focused view on FanGO subsystems related to the Fanconi anemia nuclear complex and FANCM-MHF complex (D) and mRNA splicing (E).
‘‘Ontology’’ class throughwhichmost analyses can be executed.

This object-oriented design enables more intuitive software

development, as conceptual manipulations to an ontology’s

structure can be reflected by programmatic changes to an

Ontology object’s attributes. DDOT’s functions have all been de-

signed to work together in concise pipelines that involve minimal

boilerplate code. To facilitate shareable and reproducible soft-

ware pipelines, DDOT has been designed such that both the

input data and output ontologies can be stored and retrieved

online at NDEx (Figure 1A) (Pratt et al., 2015). This built-in

connection enables the use of a common data portal and sharing

of results through URLs referencing data on NDEx.
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Ontology Visualization with HiView
The HiView web application provides an interactive visualization

of the two major features of a data-driven ontology: (1) the hier-

archical structure relating genes and subsystems and (2) the

data supporting the inference of each subsystem (Figure 1B).

Visualizing the hierarchical structure is challenging because it

is a directed acyclic graph (DAG), in which each node may

have multiple parents and multiple children. Drawing a DAG on

a two-dimensional canvas often requires that many edges cross,

inducing an inscrutable ‘‘hairball’’ effect. Current tools for visual-

izing hierarchies are typically limited to simplified planar struc-

tures, such as a tree, where each node has at most one parent,



or a small subgraph of the DAG based on local context. For

instance, the QuickGO browser (Binns et al., 2009) for the GO

shows the subgraph containing the ancestors of a selected

term but excludes other close relations, such as sibling terms.

In HiView, a user can graphically transform a DAG into a tree us-

ing three different methods, each providing a tradeoff between

the size of the tree and the information captured. In one transfor-

mation (Figures S2A and S2B), edges in the DAG are pruned to

leave behind a spanning tree—a smaller structure that loses

some hierarchical information. In the other two transformations,

a larger tree preserving all information is created by duplicating

nodes, either to represent a top-down traversal of the DAG (Fig-

ure S2C) or to recover information lost in the spanning tree (Fig-

ure S2D). Given any of these transformations, a user can choose

to render the tree as either a ‘‘node-link’’ diagram (Figure S2E),

where hierarchical relations are represented by directed edges

and drawn compactly with a layout algorithm, or a ‘‘circle-pack-

ing’’ diagram (Figure S2F), where relations are intuitively repre-

sented by drawing small circles nested within larger ones (like

physical compartments of the cell). In addition, HiView allows

the user to interactively zoom between more expansive views

of the entire hierarchy and more focused views of particular sub-

systems. Finally, genes and subsystems can be searched based

on their names and metadata.

Whereas a subsystem in a manually curated ontology is ex-

plainedbya tableof literaturecitationsandevidencecodes,a sub-

system in a data-driven ontology is explained by a densely con-

nected community of nodes in a biological network, which

themselves require special graphical visualization. In HiView,

these networksaredisplayed in a sidepanelwhen the user selects

a subsystem (Figure 1B). Distinct interaction types, such as pro-

tein-protein versus co-expression, are distinguished by edge co-

lor, and the interaction strength is represented by edge thickness.

Tofilter theamountof data shown, auser can select edgesby their

interaction type and strength. Furthermore, to understand why a

subsystem was factorized into children subsystems, the user

canalsohighlight thegenesbelonging toaparticular child,making

it easier to inspect the density of interactions within that child

versus the density across all other interactions. HiView has been

designed to be programmatic and capable of visualizing any

ontology that has been pre-formatted with the Python package

and hosted online at NDEx. Additional metadata about genes or

subsystems can be viewed as node attributes, such as color

and size.

DISCUSSION

Bioinformaticsanalysisoften involvescomplexmaneuversamong

heterogeneous formatting, model construction, and interpreta-

tion.To facilitate thesesteps increatinghierarchicalmodelsofbio-

logical systems, DDOT has been engineered with several key

design choices worthy of mention. First, we have implemented

anOntology class as a central data structure throughwhichmajor

functions are executed. Both low-level and high-level functions

have been implemented to enable flexible and concise software

pipelines.Second,wesupport several types of formats for import-

ing and exporting Ontology objects, including text files (tabular,

CX, and OBO formats), in-memory Python objects (Pandas data-

frames, iGraph objects, and NetworkX objects), and online files
storedonNDEx.Third,model constructionby thePythonpackage

has been seamlessly tied to model interpretation by HiView,

enabling faster prototyping and iteration of ideas. Finally, we

have provided in-depth documentation of every function and a

tutorial of the Python package to minimize the learning curve for

using it and to encourage software extensions by others.

Hierarchical models of the cell and other biological systems

have long been curated in the form of biomedical ontologies,

but their construction and visualization in a data-driven manner

is a more recent endeavor for which no unified software frame-

work yet exists. DDOT enables rapid exploration of hierarchies

of cellular subsystems for numerous diseases and biological

contexts. We have taken a first step in this exploration by

creating hierarchies for 652 diseases.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Python package source code This paper https://github.com/idekerlab/ddot

Python package documentation This paper https://ddot.readthedocs.io

Python package tutorial This paper https://github.com/idekerlab/ddot/blob/

master/examples/Tutorial.ipynb

Jupyter notebook to make data-driven gene

ontologies of 652 diseases

This paper https://github.com/idekerlab/ddot/blob/master/

examples/Make_disease_gene_ontologies.ipynb

Jupyter notebook to process the curated Gene

Ontology (for ontology alignment)

This paper https://github.com/idekerlab/ddot/blob/master/

examples/Process_the_Gene_Ontology.ipynb

Jupyter notebook to load datasets (gene-disease

associations, processed GO, gene-gene similarity

network)

This paper https://github.com/idekerlab/ddot/blob/master/

examples/Load_example_datasets.ipynb

HiView web application This paper http://hiview.ucsd.edu

NDEx (Pratt et al., 2015) http://ndexbio.org

Visualize FanGO in HiView This paper http://hiview.ucsd.edu/0fb9fec3-f772-11e8-aaa6-

0ac135e8bacf?type=public&serverhttp://public.

ndexbio.org

Visualize other disease gene ontologies in HiView This paper https://github.com/idekerlab/ddot/blob/master/

examples/disease_gene_ontologies.txt

(also Table S1)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Trey

Ideker (tideker@ucsd.edu).

METHOD DETAILS

Other Functions Implemented by DDOT
d Examine ontology structure. For each subsystem, retrieve its hierarchical connections (genes, child and descendant subsys-

tems, parent and ancestral subsystems) and the subnetwork of gene similarities that supports the subsystem’s existence. For

each gene, retrieve its set of subsystems.

d Modify ontology structure: Reduce the size of an ontology by removing a set of subsystems or genes. Randomize connections

between genes and subsystems to create new ontologies representing a null model for statistical tests.

d Flatten ontology structure. Instead of inferring an ontology from a gene similarity network, perform the reverse process of infer-

ring a gene similarity network from an ontology. In particular, the similarity between two genes is calculated as the size of the

smallest common subsystem, known as the Resnik semantic similarity score (Resnik, 1999).

d Map genotypes to the ontology. Given a set of mutations comprising a genotype, propagate the impact of these mutations to

the subsystems containing these genes in the ontology. In particular, the impact on a subsystem is estimated by the number of

its genes that have beenmutated. These subsystem activities, whichwe have called an ‘‘ontotype’’, enablesmore accurate and

interpretable predictions of phenotype from genotype (Yu et al., 2016).

d Load curated ontologies. Parse Open Biomedical Ontologies (OBO) and gene-association file (GAF) formats that are typically

used to describe curated ontologies like GO.
The Hierarchical Viewer
In designing HiView, the rendering library was chosen based on a tradeoff between rendering speed and visual styling capabilities.

The main panel for viewing a hierarchy’s structure is rendered with sigma.js withWebGL enabled. The side panel for viewing the sup-

porting interaction networks, on the other hand, was implemented using cytoscape.js (Franz et al., 2016), which renders more slowly

than sigma.js but offers more styling capabilities out-of-the-box, such as node shapes and color gradients. The spanning tree used
e1 Cell Systems 8, 267–273.e1–e3, March 27, 2019
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for the transformations in Figures S2B and S2D was calculated by connecting each subsystem to its smallest parent subsystem; all

other connections were hidden. For the node-link diagram, the layout of nodes in a tree is calculated using the Bubble Tree Layout

algorithm (Grivet et al., 2006) implemented in the Tulip Python library (Auber et al., 2017). The circle-packing diagram is implemented

using a customized version of the D3.js library (https://d3js.org/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Construction of Disease Gene Ontologies
The 20 seed FA genes are FANCA, FANCB, FANCC, BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCI, BRIP1, FANCL, FANCM,

PALB2, RAD51C, SLX4, ERCC4, RAD51, BRCA1, UBE2T, and XRCC2. The set of genes that have been co-cited with Fanconi Ane-

mia was gathered using a text mining procedure described in (Wang et al., 2018). Briefly, we gathered all Pubmed abstracts pub-

lished up to date on April 30th, 2017 and identified all words that appear in an abstract with the phrase ‘‘Fanconi Anemia’’. The words

that are either an official or alias symbol of a human gene, according to the HGNC consortium, were counted (disregarding letter

casing).

Gene-disease associations for 8,590 diseases from theMonarch Database was downloaded onMay 13, 2017with the help of Kent

Shefchek and Chris Mungall (personal communication). For most diseases, the known and candidate genes together totaled more

than 500 genes, suggesting the lack of a coherentmolecular signature. Ontologies were constructed and studied for the 651 diseases

that had no more than 500 known and candidate genes.

The gene similarity network was based onmore than 1000 gene-gene interaction networks from publicly available sources. Briefly,

we compiled 16 tissue-specific coexpression networks from the GTEx project (GTEx Consortium, 2013; Saha et al., 2017), 10 PCA

components of the 980 GEO co-expression networks (Edgar et al., 2002) curated by the GIANT study (Greene et al., 2015), 1 co-

expression network from the Cancer Cell Line Encyclopedia (Barretina et al., 2012), 2 protein domain similarity networks (InterPro

(Hunter et al., 2009), PFAM (Bateman et al., 2004)), 1 genetic interaction network from (Lin et al., 2010), 2 curated protein-protein

interaction networks from databases (BioGRID (Stark et al., 2006), InBioMap (Li et al., 2017)), and 4 high-throughput protein-protein

interaction networks ((Huttlin et al., 2017), (Havugimana et al., 2012), (Rolland et al., 2014), (Hein et al., 2015)), and 1 computationally

predicted human interactome (Zhang et al., 2013). Following the procedure in (Kramer et al., 2017), we integrated these networks by

using them as features in a supervised learning (random forests) of the Resnik semantic similarity (Resnik, 1999) between genes in the

Gene Ontology. This integration was done in 5-fold cross validation, i.e., for each fold we only used the predictions made on the test

set of gene pairs. To assess the performance of this integration procedure, we found that our network has a substantial correlation

(Pearson r = 0.39) with the Resnik similarity (Figure S1A). Agreements between our network and the Resnik similarity reflect consis-

tency with known biological connections in the Gene Ontology. On the other hand, disagreements reflect biological connections in

our network that is supported by data but not captured in the Gene Ontology.

To discover candidate genes for every disease, we applied the same strategy as for Fanconi Anemia. In particular, we scored every

gene by their average similarity to the seed set, and we used the minimum score among seed genes as a threshold to identify candi-

date genes. Although many methods exist for discovering candidate genes using biological networks (reviewed in (Leiserson et al.,

2013) and (Chimusa et al., 2018)), we chose this method in order to demonstrate a simple and clear analytical pipeline. Users of the

Python package can input their own set of genes to analyze and can also substitute their ownmethod for identifying candidate genes.

To infer gene ontologies from the similarity network, we invoked the CliXO algorithm (Kramer et al., 2014) using the DDOT function

Ontology.infer_ontology(.) with parameters alpha = 0.05 and beta = 0.5. Briefly, CliXO searches for cliques (sets of genes in which all

gene pairs have high similarity) or dense subnetworks (sets of genes in which many gene pairs do) above a specified similarity (scale)

threshold. By progressively loosening this threshold, CliXO identifies progressively larger cliques, which subsume the smaller cliques

found at earlier thresholds. Each clique defines a cellular subsystem, and all cliques are arranged to form a ‘‘data-driven hierarchy’’

(or ontology) of subsystems.

Alignment of Data-Driven Ontologies to GO
Each data-driven ontology was aligned to the Gene Ontology (GO), downloaded on October 3, 2017. Because GO is curated as a

general structure to represent all species, we created a human-focused GO by removing terms that do not contain any human genes

or contain the same genes as its parents terms (DDOT function Ontology.precollapse(.)).

The ontology alignment was performed using the algorithm described in (Dutkowski et al., 2013) with FDR cutoff of 0.05, calculated

from 100 randomized iterations (DDOT function Ontology.align(.)). Briefly, the alignment attempts to find an optimal matching of

subsystems in one ontology to subsystems in the other ontology. The similarity of two subsystems is defined by two notions: an

‘‘intrinsic similarity’’ of the set of genes in the subsystems, and a ‘‘relational similarity’’ of the parents and children of one subsystem

with those of the other. The alignment is constrained so that each subsystem is matched to at most one other subsystem. To respect

the hierarchical structure of the ontologies, the alignment also avoids ‘‘parent-child criss crosses’’: if subsystem A is matched with

subsystem B, then no ancestor of A can be matched with a descendant B, or vice versa. To calculate an FDR of each match, we

simulated a null model by re-running the alignment algorithm on randomizations of the ontologies.
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DATA AND SOFTWARE AVAILABILITY

Source code and installation of the Python package is available at https://github.com/idekerlab/ddot under a MIT open source

license. Further documentation of each Python function is at https://ddot.readthedocs.io. Jupyter notebooks for loading

datasets and constructing data-driven ontologies of the 652 diseases are at https://github.com/idekerlab/ddot/tree/master/

examples. NDEx and HiView URLs of these ontologies are at https://github.com/idekerlab/ddot/bob/master/examples/

disease_gene_ontologies.txt (also Table S1). The HiView web application can be accessed at http://hiview.ucsd.edu/, and its source

code is available at https://github.com/idekerlab/hiview under a MIT open source license.
e3 Cell Systems 8, 267–273.e1–e3, March 27, 2019

https://github.com/idekerlab/ddot
https://ddot.readthedocs.io
https://github.com/idekerlab/ddot/tree/master/examples
https://github.com/idekerlab/ddot/tree/master/examples
https://github.com/idekerlab/ddot/bob/master/examples/disease_gene_ontologies.txt
https://github.com/idekerlab/ddot/bob/master/examples/disease_gene_ontologies.txt
http://hiview.ucsd.edu/
https://github.com/idekerlab/hiview

	DDOT: A Swiss Army Knife for Investigating Data-Driven Biological Ontologies
	Introduction
	Results
	Introduction with Application to Fanconi Anemia
	Assembly of Data-Driven GOs for 652 Diseases
	A Suite of Functions Organized in a Python Package
	Ontology Visualization with HiView

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Method Details
	Other Functions Implemented by DDOT
	The Hierarchical Viewer

	Quantification and Statistical Analysis
	Construction of Disease Gene Ontologies
	Alignment of Data-Driven Ontologies to GO

	Data and Software Availability



