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SUMMARY
Patients with neurodevelopmental disorders, including autism, have an elevated incidence of congenital
heart disease, but the extent to which these conditions share molecular mechanisms remains unknown.
Here, we use network genetics to identify a convergent molecular network underlying autism and congenital
heart disease. This network is impacted by damaging genetic variants from both disorders in multiple inde-
pendent cohorts of patients, pinpointing 101 geneswith shared genetic risk. Network analysis also implicates
risk genes for each disorder separately, including 27 previously unidentified genes for autism and 46 for
congenital heart disease. For 7 genes with shared risk, we create engineered disruptions in Xenopus tropi-
calis, confirming both heart and brain developmental abnormalities. The network includes a family of ion
channels, such as the sodium transporter SCN2A, linking these functions to early heart and brain develop-
ment. This study provides a road map for identifying risk genes and pathways involved in co-morbid
conditions.
INTRODUCTION

Autism spectrum disorder (ASD), a heterogeneous neurodeve-

lopmental condition affecting behavior and communication in

approximately 1 of every 59 children (CDC, 2018), commonly

arises in combination with other disorders including congenital

heart disease (CHD) (Zaidi and Brueckner, 2017). Likewise, chil-

dren with CHD are at increased risk for neurodevelopmental dis-

orders (NDDs), with a likelihood that strongly correlates with

CHD severity and the presence of de novomutations, especially

those impacting chromatin modifiers (Zaidi and Brueckner,

2017; Jin et al., 2017). Genetics and adverse events during post-

natal heart surgery have been proposed as explanations for the

observed ASD-CHD co-morbidity (Homsy et al., 2015; Willsey

et al., 2018; Gaynor et al., 2015; Morton et al., 2017; Jin et al.,

2017), but the precise molecular mechanisms remain unclear

(Zaidi and Brueckner, 2017; Homsy et al., 2015). As surgical

techniques for newborns with CHD improve, with concomitant

increases in survival, research is shifting to improving quality of

life (Andonian et al., 2018; Zaidi and Brueckner, 2017) including

timely monitoring and potential intervention for ASD and other
Cell Systems
NDDs (Homsy et al., 2015; Jin et al., 2017; Zaidi and Brueckner,

2017). Critical to this goal is to better understand the shared ge-

netic and molecular components of the cardiac and neurological

phenotypes (Morton et al., 2017).

Both rare and common variants contribute to ASD and CHD

genetic risk (Glessner et al., 2014; Fakhro et al., 2011; Sanders

et al., 2012, 2015; Zaidi and Brueckner, 2017; Jin et al., 2017;

Grove et al., 2019; Sestan and State, 2018; Satterstrom et al.,

2020; Zaidi et al., 2013; O’Roak et al., 2012; Sebat et al.,

2007; De Rubeis et al., 2014). While studies have identified

some of the same genes harboring ASD and CHD rare variants

(Homsy et al., 2015; Gelb and Chung, 2014; de la Torre-Ubieta

et al., 2016; Iossifov et al., 2014; Jin et al., 2017; Willsey et al.,

2018), the majority of risk genes for these two disorders have

not overlapped. For example, only 5 genes overlap between

the 65 ASD risk genes and the 66 CHD risk genes identified

in previous studies (Sanders et al., 2015; Jin et al., 2017).

Therefore, it has been proposed that much larger patient co-

horts, as well as genome-wide analyses of common variants,

will be required to truly understand the risk genes, effect sizes,

and, most critically, core biological mechanisms underlying the
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two disorders (O’Roak et al., 2012; Zaidi and Brueckner, 2017).

Even with very large sample sizes, variants with particular effect

sizes, population frequencies, or recessive inheritance have

been difficult to uncover by current modes of genetic analysis

(State, 2010), which prioritize heterozygous or non-inherited

variants.

In any quest to identify genes and mechanisms underlying

complex conditions, a necessary consideration is that the

various genes and loci are hardly independent but act synergis-

tically or antagonistically within gene networks (O’Roak et al.,

2012; Willsey et al., 2013; Parikshak et al., 2013; Menche et al.,

2015; Liu et al., 2014; Lage et al., 2012). While genetic variants

at any single locus may be relatively rare, they can be more

readily recognized by their convergence on commonly altered

multi-gene systems, including protein complexes, signaling

pathways, and higher-order developmental and metabolic

processes. Integration of genomic variants with molecular

networks, thus, provides a complementary genetic analysis

strategy, with the ability to identify constellations of risk genes

and variants across a large range of effect sizes, frequencies,

and inheritance patterns (Barabási et al., 2011; Navlakha and

Kingsford, 2010; Califano et al., 2012; Flint and Ideker, 2019; Civ-

elek and Lusis, 2014).

Here, we integrate human molecular network knowledge with

large-scale patient sequencing data to identify a common ASD-

CHD network underlying both disorders. Further analysis of this

network reveals convergent pathways in brain and heart devel-

opment, including chromatin modification and MAPK/Notch

signaling, as well as an unexpected role for ion transport. We

functionally validate 7 shared ASD-CHD genes, including an

ion transport gene, sodium voltage-gated channel alpha subunit

2 (SCN2A), confirming that ion transport plays an earlier role in

development than expected.

RESULTS

A human molecular network integrating de novo

variants
Our network analysis was based on the parsimonious composite

network (PCNet), a resource of 2.7million physical and functional

associations among human genes (Huang et al., 2018). PCNet is

formulated from a consensus of 21 molecular interaction data-

bases and integrates multiple lines of evidence across tissues,

including protein-protein interactions, co-expression, literature

curation, and other measures (Figure 1A).

We first confirmed that genes with putatively damaging de

novo variants (dDNV) identified in ASD, or separately in CHD,

were significantly interconnected in the PCNet network (Jin

et al., 2017; Homsy et al., 2015) (Figures S1A and S1B, ASD

p = 43 10�83, CHD p = 33 10–29, degree-matched permutation

test, STAR Methods). These observations were consistent with

previous findings that genes with dDNVs in patients with ASD

are more connected in protein-protein interaction networks

than expected by chance (Chang et al., 2015; O’Roak et al.,

2012; Liu et al., 2014) and that CHD risk factors functionally

converge in protein networks (Lage et al., 2012). In contrast,

genes with dDNVs from unaffected siblings of ASD probands

were not significantly interconnected in the network (p = 0.20,

Figure S1C).
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Network propagation identifies risk genes for ASD
or CHD
As a quantitative means of scoring network proximity among a

set of disorder risk genes, we turned to the framework of network

propagation, a general mathematical tool that has been repeat-

edly and successfully applied in biological analyses (Cowen

et al., 2017) (Figure 1A). Here, we used network propagation to

spread the signal fromwell-established risk genes to other genes

in the network neighborhood, with the goal of implicating a

broader network of genes for which the propagated genetic

signal was above a set threshold (we used zD R 2, where zD is

the network proximity score for disorder D, STAR Methods).

The expanded network could include direct network neighbors

of established genes or those at greater distances, depending

on the convergent signal. Risk genes, defined previously by un-

biased whole-exome sequencing studies based on a diagnosis

of ASD or CHD, were used to seed the analysis: 65 high confi-

dence ASD risk genes (Sanders et al., 2015) and 66 genes with

recurrent dDNVs in CHD probands (Jin et al., 2017) (Figure 1B).

Individual disorder subnetworks were then created, separately

for ASD (1,583 genes; Table S1) and CHD (1,081 genes; Table

S2), using network propagation seeded from the ASD or CHD

risk genes.

Since the majority of dDNVs occur in genes not yet confidently

associated with disease (‘‘non-seed’’ genes, Figure 1C), we

sought to determine whether non-seed genes were identified

within our ASD or CHD subnetworks were enriched for dDNVs

from probands. Indeed, dDNVs from individuals affected with

ASD or with CHD were enriched within the disorder-specific

subnetworks (Figures S1D–S1F; ASD p = 1 3 10–9, CHD

p = 2 3 10–7, hypergeometric tests), but not dDNVs from unaf-

fected siblings (ASD p = 0.10; CHD p = 0.27 Figure S1G).

Given this enrichment, we used the ASD and CHD disorder-

specific networks for risk gene discovery, revealing 27

network-implicated autism risk genes and 46 network-impli-

cated congenital heart disease risk genes (exome-wide Bonfer-

roni-corrected p value % 0.1; Table S1 and S2). We found that

these putative risk genes appear inherently different from estab-

lished risk genes, in that they have significantly lower pLI (prob-

ability of loss-of-function intolerance; ASD p = 0.02; CHD p = 13

10–4), Miz_Z (missense Z; ASDp = 0.01; CHD p= 0.001), and SHet

(selection coefficient; ASD p = 0.003; CHD p = 0.01; Wilcoxon

rank-sum tests) (Lek et al., 2016).

Analysis of gene sets specific to brain region and development

period (Xu et al., 2014) revealed that the broader set of network-

implicated ASD risk genes (excluding seed genes) was signifi-

cantly enriched for genes with early and mid-fetal expression

signatures in the amygdala, cerebellum, cortex, striatum, and

thalamus (Table S3; STAR Methods), consistent with previous

findings (Satterstrom et al., 2020; Willsey et al., 2013; Parikshak

et al., 2013; Shohat et al., 2017). Young adulthood and adoles-

cence cortex were also significantly enriched, although to a

much lesser extent. Furthermore, the broader set of ASD risk

genes implicated by the network included 19 genes that had

been newly identified as ASD risk genes in the latest sequencing

study (Satterstrom et al., 2020) (p = 3 3 10–8, hypergeometric

test), validating the predictive value of our network approach

and suggesting that additional network-implicated risk gene

candidates are likely to be identified in future studies. Similarly,
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Figure 1. Overview of genetic data and workflow

(A) Study workflow. We determined the network intersection of two sets of disorder risk genes, autism spectrum disorder (ASD, left, green) and congenital heart

disease (CHD, right, pink); red denotes network proximity to both. Gene variants in the shared network are over-represented in patients from an independent

replication cohort with co-morbid neurodevelopmental disorders (NDDs) and heart conditions, and disruptions to these genes give rise to brain and heart defects

in a Xenopus tropicalismodel of development. Analysis of ASD-CHD network architecture reveals a hierarchical organization of functional modules. SSC, Simons

simplex collection; PCGC/PHN, Pediatric Cardiac Genomics Consortium/Pediatric Heart network.

(B) Numbers of patients in the ASD and CHD cohorts with neurodevelopmental and heart conditions, with numbers of de novo coding variants and established

disorder risk genes. The ASD cohort has not been systematically examined for heart phenotypes.

(C) Bar chart displaying the fraction of patients in ASD and CHD cohorts with putatively damaging de novo variants (dDNVs) in ASD or CHD risk genes, dDNVs

outside of these ‘‘risk’’ genes, and with no dDNVs yet identified.
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the broader set of network-implicated CHD risk genes (Table S2,

excluding seed genes) were significantly enriched for genes that

are associated with CHD in mouse models (Izarzugaza et al.,

2020) (p = 2 3 10-18, hypergeometric test).

Network intersection identifies ASD-CHD shared
risk genes
To identify genes with network proximity to both ASD and CHD,

we computed a combined ASD-CHD network proximity score,

zASD-CHD, by taking the product of the separate network propa-

gation scores for each disorder (zASD 3 zCHD) (Figures 2A, 2B,

and S2A; STAR Methods). The number of genes at the intersec-

tion of the ASD and CHD networks was much larger than ex-
pected by chance, resulting in a distinct ASD-CHD network of

844 genes (empirical p = 4 3 10–141, Figures 2B and 2C; Table

S4). Within this list, we further prioritized 398 high confidence

genes with both zASD > 1.5 and zCHD > 1.5 and a joint corrected

p value < 0.1, reflecting genes that are highly connected to both

disorders (Table S4).

To confirm that the ASD-CHD network represents genes car-

rying risk for both disorders, we assessed whether dDNVs pre-

sent in CHD probandswith NDDs (Homsy et al., 2015) (Figure 1B)

were enriched among the ASD-CHD network genes (excluding

seed genes). Indeed, we observed significant over-representa-

tion of these so-called ‘‘dual-condition’’ dDNVs within the

ASD-CHD subnetwork (hypergeometric p = 3 3 10–4), but not
Cell Systems 12, 1–14, November 17, 2021 3
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Figure 2. ASD and CHD de novo risk variants converge on common network regions

(A) Scatterplot of human proteins based on network proximity to established ASD risk genes or established CHD risk genes (y versus x). Proteins at the network

intersection are shown in orange, with high confidence (HC; adjusted p < 0.1 and zASD > 1.5 and zCHD > 1.5) proteins shown in red.

(B) Visualization of ASD-CHD network intersection, with the largest connected component shown. Node size is mapped to the number of variants observed for

that gene, node color is the minimum of the brain or heart percentile expression from GTEx (The GTEx Consortium, 2015). Triangles indicate genes harboring at

least one dual-condition variant. Edges are drawn for gene pairs with a network neighborhood similarity > 0.95 (percentile cosine similarity), with a purple-yellow

color gradient indicating percentile above this threshold. Network layout was determined by a spring-embedding algorithm with edge bundling in cytoscape

(Shannon et al., 2003). The spring layout was subsequently modified to enable visualization of the ASD and CHD seed nodes, where the seed nodes were

manually translated to the left (ASD), right (CHD), and down (ASD and CHD) from the original layout. Selected genes are labeled. High confidence network

intersection genes are indicated with a white border.

(C) Number of genes found at the ASD-CHD network intersection compared with the number expected by chance. ***empirical p = 4 3 10–141.

(D) Enrichment for dDNVs associated with dual NDD and CHD phenotypes is shown for ASD-specific network genes (zASD R 2, zCHD < 2, zASD-CHD < 3), CHD-

specific network genes (zCHDR 2, zASD < 2, zASD-CHD < 3), or genes at the ASD-CHD network intersection, and high confidence network intersection ***p < 0.001,

**p < 0.01, *p < 0.05. Vertical bars indicate one standard deviation.
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Figure 3. Validation of the ASD-CHD network in independent patient cohorts

(A) Distribution of minimum percentile mRNA expression of ASD-CHD network genes in GTEx brain or heart tissues (orange), compared with all expressed

genes (gray).

(B) Distribution of minimum percentile mRNA expression of ASD-CHD network genes in mouse developmental brain or heart tissues (orange), compared with all

expressed genes (gray).

(C) Heatmap showing the degree of network intersection among ASD rare variants, CHD rare variants, ASD common variants, and common variants from an

unrelated control disease, atherosclerosis. Color bar shows enrichment in units of log 2 (observed/expected) number of genes.

* denotes larger-than-expected intersection at p < 0.05.

(D) Receiver operator characteristic (ROC) showing recovery of damaging variants associated with dual brain and heart phenotypes in the independent

DECIPHER cohort. Genes are ranked by network proximity to ASD and CHD established risk genes (zASD-CHD). Results for all ranked genes in maroon

(AUC = 0.71, p = 53 10–22); results excluding established risk genes in salmon (AUC = 0.66, p = 53 10–14, empirical p values). Black circles highlight the sets of

genes at the zASD-CHD R 3 cutoffs used to define the ASD-CHD network intersection in previous figures. Examined variants are damaging single nucleotide

variants and indels.

(E) The number of dual-condition variants in DECIPHER is listed for all ASD-CHD network genes with four or more such variants. High confidence ASD-CHD

network genes not previously identified in one or both disorders (Table S4) labeled in red.

ll
Article

Please cite this article in press as: Rosenthal et al., A convergent molecular network underlying autism and congenital heart disease, Cell Systems
(2021), https://doi.org/10.1016/j.cels.2021.07.009
within the ASD-specific (p = 0.75) or CHD-specific subnetworks

(p = 0.21, STARMethods; Figure 2D). As further evidence in sup-

port of this network, ASD-CHD network genes had higher brain

and heart expression than would be expected by chance in

both adult human tissue (The GTEx Consortium, 2015) (p = 3 3

10–70, rank-sum test, Figure 3A) and in developing mouse tissue

(Homsy et al., 2015) (p = 33 10–37, rank-sum test; Figure 3B; em-

bryonic day [E] 14.5 in heart; E9.5 in the brain).

We also examined genes with network proximity to one disor-

der only (STAR Methods). We found that genes proximal only to

CHD risk genes were significantly enriched for dDNVs in CHD

patients without symptoms of NDDs (p = 1 3 10–4, Figures

S2B and S2C; Table S2), and they were not enriched for ASD
dDNVs (p = 0.62). Reciprocally, genes proximal only to ASD

risk genes were significantly enriched for dDNVs found in

ASD patients (p = 0.04, Figures S2D and S2E; Table S1), and

they were not enriched for CHD dDNVs (p = 0.10).

Network links between ASD rare and common variation
We next assessed the intersection between the top 65 ASD

associated genes, based on de novo and rare inherited variants

(Sanders et al., 2015), and genes implicated by proximity to com-

mon single nucleotide polymorphisms (SNPs) identified in the

most recent ASD genome-wide association study (GWAS)

(Grove et al., 2019). The size of the network intersection between

these genes identified by rare or common variants was
Cell Systems 12, 1–14, November 17, 2021 5
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significantly and substantially larger than expected by chance

(p = 7 3 10–34 with > 2-fold effect, Figure 3C), suggesting that

these two types of variation impact a common molecular

network. This finding extends a previous report that identified

both rare and common variants in modules of genes co-ex-

pressed in the human brain (Ben-David and Shifman, 2012).

While a large GWAS for CHD does not currently exist, in the

future it will be interesting to see whether the same finding holds

between CHD rare and common variation. Regardless, we saw a

weaker, but significant, network intersection between the ASD

genes identified by common variation and the CHD risk genes

(p = 2 3 10–24), suggesting that common variant risk may also

overlap across ASD and CHD.

To examine the specificity of our findings, we selected athero-

sclerosis as a negative control (Piñero et al., 2017), which has a

similar number of risk genes as ASD and CHD and significant

localization in PCNet (Figures S3A–S3D) but is not co-morbid

with either ASD or CHD. We observed no significant network

overlap of ASD or CHD variants with common variants for this

condition (Figure 3C; STAR Methods), suggesting the observed

overlaps do, in fact, reflect shared biology between common

and rare variation.

Shared ASD-CHD risk genes replicate in an independent
cohort
To validate the 844 genes of the ASD-CHD gene network, we

asked whether they had damaging variants in an independent

cohort of 2,628 individuals having both ‘‘Abnormality of the ner-

vous system’’ and ‘‘Abnormality of the cardiovascular system’’

extracted from 29,069 individuals in the DECIPHER database

(Firth et al., 2009) (STAR Methods; Tables S5 and S6). For this

validation cohort, we indeed observed an over-representation

of likely damaging variants within the 844 genes (Figures 3D

and S4, empirical p = 5 3 10–22). This effect was maintained

when excluding the established ASD and CHD risk genes (Fig-

ures 3D and S4, empirical p = 5 3 10–14, STAR Methods).

Some of these genes contained variants observed in large

numbers of DECIPHER probands. For example, KANSL1,

ANKRD11, CREBBP, and KAT6A each harbored damaging var-

iants from ten or more dual-phenotype individuals (Figure 3E).

Altogether, we identified 101 genes in the ASD-CHD high confi-

dence network with at least one damaging variant observed in a

dual-phenotype DECIPHER or Pediatric CardiacGenomics Con-

sortium (PCGC)/Pediatric Heart Network (PHN) proband, which

were not seed genes for both disorders. Of these, 98 genes

had not been previously identified in one or both disorders

(Table S4).

Prioritized ASD-CHD genes reveal atypical brain and
heart development in Xenopus tropicalis

Candidate ASD-CHD risk genes with the highest number of dual-

condition variants in the DECIPHER databasewere prioritized for

validation (Table S5). Excluding geneswith prior evidence in both

ASD and CHD, we proceeded with validation for 3 genes, which

were seeds for CHD but not ASD (KMT2A, PTPN11, and KMT2D)

and 3 genes that were not seeds for either disorder (KANSL1,

KAT6A, and MAPT) (Table S7; with the additional gene

SCN2A, described below, a total of 7 geneswere validated). Vali-

dation testing leveraged theXenopus tropicalis, a powerful in vivo
6 Cell Systems 12, 1–14, November 17, 2021
vertebrate model for uncovering fundamental mechanisms of

human development and pathobiology (Kaltenbrun et al., 2011;

Hwang et al., 2019; Sater and Moody, 2017; Blum and Ott,

2018), including ASD and CHD (Willsey et al., 2018b, 2018a,

2021; Garfinkel and Khokha, 2017; Exner and Willsey, 2021).

We tested whether disruption of each gene was able to pheno-

copy known abnormalities in the brain and/or heart development

for ASD andCHD, respectively (Willsey et al., 2021; Garfinkel and

Khokha, 2017; Duncan and Khokha, 2016). We conducted

CRISPR-Cas9 mutagenesis in the F0 generation via injection of

Cas9 protein and a single guide RNA (sgRNA) targeting the

gene of interest at the two-cell stage (Figure 4A). Animals were

phenotyped at tadpole stages by fluorescence microscopy,

with researchers blinded to the gene name (Figure 4A). Hearts

were assessed for gross abnormalities including situs inversus

and size differences, as these phenotypes have previously

been observed for CHD risk genes in Xenopus (Garfinkel and

Khokha, 2017; Duncan and Khokha, 2016). Similarly, brains

were phenotyped for increased variation in forebrain size, as

has been observed in Xenopus for multiple large-effect ASD

risk genes (Willsey et al., 2018, 2020, 2021).

Targeting a negative control pigmentation gene did not cause

any brain or heart anatomical phenotypes (slc45a2, Figures 4B

and 4C), whereas positive control genes are known to have roles

in both ASD and CHD (nsd1 and ankrd11) (Satterstrom et al.,

2020; Jin et al., 2017; Homsy et al., 2015; Zaidi and Brueckner,

2017) resulted in severemorphological changes to both the heart

and brain (Figures 4B, 4C, and S5). Notably, for all 7 genes un-

dergoing validation, we observed known brain and heart pheno-

types previously associated with ASD or CHD in Xenopus at a

greater frequency than in controls, albeit with different degrees

of penetrance and severity by gene (Figures 4B, 4C, and S5A–

S5C; Table S8). The most common phenotypes among the

genes were an increase in telencephalon size variance (Fig-

ure S5A), changes in the heart size (Figure S5B), and reversed

heart situs (Figure S5C).

Hierarchical organization of the ASD-CHD network
implicates shared molecular mechanisms
To chart the functional organization of the ASD-CHD network,

we applied the technique of network community detection

(Kramer et al., 2014; Yu et al., 2019) to identify modular sys-

tems of genes enriched for high densities of molecular interac-

tions (STAR Methods). We identified 120 gene systems orga-

nized hierarchically, with small specific systems contained

within those that are progressively larger and more general as

one moves upward in the hierarchy (Figure 5A). Systems corre-

sponding to known biological functions were labeled by align-

ment to multiple gene knowledge bases (STAR Methods),

revealing major functional branches related to chromatin and

histone modification, ion channels and transport, Notch

signaling, and MAP kinase signaling (Figure 5A). Approximately,

a quarter of systems corresponded to well-characterized bio-

logical functions (27%), while many others (55%) expanded a

known function by adding genes or by factoring that function

into multiple distinct subsystems (Figure 5B; Table S9). The re-

maining 22 systems (18%) did not clearly enrich for a known

function, representing putative functional gene assemblages.

A convergence of replicated genes (genes with at least one
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(A) CRISPR mutagenesis strategy. CRISPR reagents and a tracer dye (red) are injected at the two-cell stage, either into both cells (bilateral mutants, heart

phenotyping) or into one cell (unilateral mutants, brain phenotyping). Animals are grown to tadpole stages and phenotyped for the brain (top) or heart (bottom)

anatomy. The brain is normally bilaterally symmetric. Note leftward heart looping direction. Telencephalon (tel), outflow tract (OFT), ventricle (V), right atrium (RA),
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dual-condition dDNV in DECIPHER) was observed in select

chromatin modification subsystems (e.g., System 886, 9/17

genes replicated, Figure S6A), supporting results from previous

studies (Homsy et al., 2015). Convergence of replicated genes

was also observed in brain morphogenesis subsystems (e.g.,

System 920, 19/37 genes replicated, Figure S6B) and in system
901 for which 7/22 genes replicated in DECIPHER (Figure S6C;

Tables S1 and S10). While it is not yet obvious how the various

genes in system 901 interrelate within the broader supersystem

function of chromatin modification (CHD8, SIN3B, ARID1A, and

RNF44, among others), it is clear that they have many more in-

terconnections than would be expected by chance, suggesting
Cell Systems 12, 1–14, November 17, 2021 7
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a common functional role within the scope of chromatin modi-

fication (Figures S6D and S6E).

SCN2A and other ion channels underlie ASD-CHD
co-morbidity
A prominent collection of systems in the ASD-CHD systems map

was related to ion channels and transport (Figure 5C). While indi-

vidual genes in these systems had only 1–2 replicated dual-condi-

tion variants each when considering the network structure, the

number of dual-condition validated geneswithin ion transport sys-

temswasmuch higher than expected by chance (p = 13 10–6, hy-

pergeometric test). This discovery highlights the utility of a sys-

tems-level approach in which convergence is identified among a

group of functionally interconnected genes, in the absence of

recurrent gene-level variants indual-phenotypepatients. Although
8 Cell Systems 12, 1–14, November 17, 2021
ion channels have known roles in neuronal function and heart

rhythm (Ackerman, 1998;Colbert andPan, 2002), their role in heart

and brain morphogenesis is less clear. While some DECIPHER-

replicated ion-channel genes had been previously associated

with ASD, none had previously been linked to CHD. These include

GRIN2A, GRIN2B, KCNQ2, SCN2A, and SLC6A1 (Figure 5C).

Of particular note was SCN2A, which had been previously re-

ported to be expressed exclusively in the adult prefrontal cortex

where it promotes the firing of mature excitatory neurons

(Sanders et al., 2018; Spratt et al., 2019). Given the strong

network proximity to both CHD and ASD and its replication

in DECIPHER, we added SCN2A to the list of genes to be

phenotyped in Xenopus following CRISPR-Cas9 mutagenesis.

We observed marked defects during brain and heart develop-

ment, including frank situs inversus of heart laterality, as well as
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Figure 6. SCN2A is required for heart and

brain development

(A) Unilateral mutagenesis of scn2a leads to an in-

crease in telencephalon size on the mutated (right)

side. B-tubulin staining.

(B) High magnification of boxed region in (A). Note

increase in the size of the olfactory bulb (ob) and rest

of telencephalon (tel).

(C) Control tadpole with proper organ situs (gall-

bladder, GB, on the image left and gut on image

right) and proper heart looping (toward image left).

(D) High magnification of boxed region in (C)

showing heart. Note outflow tract loops toward the

image left.

(E) scn2a bilateral mutant shows organ situs inver-

sion (GB and gut in opposite positions from control)

and heart looping defects.

(F) High magnification of boxed region in (E) showing

heart. Note outflow tract defects (elongated, looping

toward image right) and abnormal ventricle

morphology.

(G) Adult human expression of SCN2A by tissue,

using data fromGTEx. Note strong expression in the

brain but not the heart.

(H) Adult Xenopus laevis expression of scn2a by

tissue. Note strong expression in the brain but not

the heart.

(I) Embryonic expression of scn2a in Xenopus tro-

picalis. Numbers on x axis represent the develop-

mental stage. Note expression during mesoderm

specification (pink, late blastula/early gastrula

stages) as well as during left-right patterning and

heart morphogenesis.

(J) Embryonic human expression of SCN2A. Note

expression during the blastocyst stage when

mesoderm specification occurs (pink), similar to

Xenopus.
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heart looping defects (Figures 4B, 6A–6F, and S5). While SCN2A

is indeed highly expressed in adult brains but not hearts of hu-

mans (Figure 6G) (The GTEx Consortium, 2015) or Xenopus (Fig-

ure 6H) (Session et al., 2016), it is also expressed at early

embryonic stages during germ layer specification, left-

right patterning, and/or heartmorphogenesis and neural differen-

tiation in Xenopus and human (Figures 6I and 6J)
C

(Yandım and Karak€ulah, 2019; Owens

et al., 2016). Moreover, we found that

SCN2A was expressed in the developing

mouse heart and brain at similar levels (28th

percentile in heart, E14.5; 23rd percentile in

the brain, E9.5) (Homsy et al., 2015). There-

fore, in addition to the function of SCN2A in

mature differentiated cells (Sanders et al.,

2018; Spratt et al., 2019), the data indicate

a second conserved role forSCN2A in verte-

brate heart and brain development and

possibly other organ systems.

DISCUSSION

Risk variants often converge not on

single genes but larger-scale biological
structures and functions (Barabási et al., 2011; Navlakha and

Kingsford, 2010; Califano et al., 2012), with the consequence

that greater power to detect associations can be obtained by

examining levels above the gene. For this purpose, large knowl-

edge networks have been and continue to be assembled,

including data from ongoing systematic gene and protein interac-

tion screens and curation of previous literature (Huttlin et al., 2015;
ell Systems 12, 1–14, November 17, 2021 9
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Szklarczyk et al., 2015; Huang et al., 2018; Luck et al., 2020;

Li et al., 2017). Here, we have demonstrated that by leveraging

such networks, it is possible to identify risk genes and pinpoint

shared molecular mechanisms between co-morbid but otherwise

physiologically distinct disorders. As the diagnosis of CHD is typi-

cally made in utero, the ability to predict the subset of CHD pa-

tients at high risk for ASDmoves us closer to prioritizing newborns

withCHD for early screening, behavioral and therapeutic interven-

tions, and/or prospective observational studies (Willsey

et al., 2018).

The network-implicated ASD and CHD genes appear to repre-

sent a different class of risk genes from those identified in current

large-scale patient sequencing studies, which typically focus on

rare, heterozygous variants for gene discovery and therefore

tend to identify haploinsufficient genes intolerant to mutation

(e.g., high pLI, Mis_Z, and SHet). In contrast, the network-impli-

cated risk genes tend to have a lower pLI and lower heterozy-

gous selection coefficients (Shet), consistent with recessive in-

heritance patterns (i.e., requiring homozygous mutations for a

clinical phenotype). These results suggest that the putative risk

genes may be enriched for haplosufficient genes with recessive

inheritance patterns. On the other hand, we acknowledge that

low loss-of-function intolerance alone is only suggestive of a

recessive inheritance pattern, and it is also possible that a num-

ber of these network-implicated genes are false positives.

Further, our results show that rare and common variants in

ASD converge on the same molecular network, implying shared

function. Notably, the overlap between rare and common vari-

ants discovered here occurs not at the level of individual genes

but across sets of genes interconnected by the molecular

network. This result is consistent with the lack of significant

enrichment of GWAS signals within ASD risk genes identified

by whole-exome sequencing (Satterstrom et al., 2020), though

a nominally significant overlap was observed in the study by

Grove et al. (2019). An area of future research will be to see if var-

iants in genes causing more severe symptoms impact separate

network neighborhoods and pathways from variants in genes

causing milder symptoms.

Our study uncovered a strong link between ion channels and

ASD and CHD. The genetic signal from de novo variants was

thinly spread over many different ion-channel genes, however,

suggestive of why this signal has previously been underappreci-

ated. This result again demonstrates the power of multi-scale

network analysis, as each individual ion channel is only rarely

impacted but, when considering a larger family of genes within

a molecular network, the association becomes clear. We used

the Xenopus model to test genetic disruptions in one of these

ion-channel genes, SCN2A, resulting in major heart and brain

structural defects. Based on these results, a crucial future area

of investigation could be to study the molecular mechanisms

by which ion transport factors jointly influence heart and brain

development. SCN2A perturbation led to laterality defects, sug-

gesting an impact on global left-right patterning. Such patterning

would be consistent with evidence that ion transport regulates

the left-right axis (Levin et al., 2002), although the mechanisms

remain controversial (Walentek et al., 2012; Delling et al.,

2016). While sodium channels like SCN2A would typically be

ascribed a postnatal role in action-potential neuronal physiology

or cardiac rhythm (Spratt et al., 2019), our results suggest earlier
10 Cell Systems 12, 1–14, November 17, 2021
expression and function during embryonic development. Such a

developmental role has implications for pathobiology and the

timing of gene therapy approaches. For example, gene therapies

delivered postnatally may not be able to reverse defects intro-

duced during embryogenesis. Beyond ion channels, the Xeno-

pus model adds to a growing body of evidence implicating

chromatin remodelers in both brain and heart development (Sat-

terstrom et al., 2020; Jin et al., 2017), including KMT2A, KAT6A,

KMT2D, and KANSL1. The findings presented here also facilitate

future prioritization of risk genes for further study inmodel organ-

isms, with the expectation that such genes may vary in their

effect sizes, with some genes causing only mild conditions,

and others causing major abnormalities, due in part to

haploinsufficiency.

Some of the genes validated in Xenopus have previous links to

cardiac abnormalities and/or NDD in general; the disruption of

PTPN11 is known to cause Noonan syndrome for example (Tar-

taglia et al., 2002). However, here we associate these genes spe-

cifically with ASD and CHD and provide direct experimental

evidence that these dual-phenotype genes phenocopy reliable

and published phenotypes for ASD and CHD risk genes in Xen-

opus (Willsey et al., 2021; Garfinkel and Khokha, 2017; Duncan

and Khokha, 2016). While there has been debate in the field

regarding the extent to which ASD genes differ from NDD genes,

and while some genes certainly carry a risk for both NDD and

ASD, recent work supports the idea that there are discrete sets

of ASD-predominant and NDD-predominant genes (Satterstrom

et al., 2020).

We expect that the predictive value of network approacheswill

continue to improve as molecular interaction networks become

more complete. Currently, large-scale protein-protein interac-

tion mapping has been completed in a yeast-two-hybrid setting

(Luck et al., 2020) and is progressing for a first human cell-line

model, e.g., BioPlex (Huttlin et al., 2015) or CellMap (Go et al.,

2019) in HEK293 cells. Other ongoing efforts are focused on

mapping the specific molecular and genetic interactions under-

lying ASD and other NDDs (Willsey et al., 2018). As these and

other projects continue to fill gaps in network knowledge, one

might anticipate that the ability to associate genotype with

phenotype will also improve markedly (Willsey et al., 2018).

Such associations will also be improved by other factors, such

asmore complete patient phenotyping and the inclusion of addi-

tional classes of genetic variants (Young, 2019).

Finally, while the focus of this work has been on ASD andCHD,

one can envisage the application of a similar methodology to any

group of genetic disorders for which there is suspected co-

morbidity. The list of documented co-morbid conditions is

already quite extensive, not only among developmental disor-

ders like ASD and CHD but for common disorders of adulthood.

Indeed, diagnoses such as cancer (Bluethmann et al., 2016) and

type II diabetes (Schram et al., 2014) typically present not in

isolation but as embeddings within a complex web of conditions,

many of which have a suspected but poorly characterized

shared genetic component. Understanding the molecular con-

nections between these conditions will not only shed light on

the etiology of these diseases but may also help predict off-

target effects of therapeutics and repurpose therapeutics across

disorders. In this light, perhaps it is not so surprising that aweb of

phenotypes would be tied intimately to a web of molecular
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interactions. Insofar, as that precept continues to hold, our expe-

rience here argues that (network) knowledge is power.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-b-Tubulin DSHB E7

Experimental models: Organisms/Strains

Xenopus tropicalis National Xenopus Resource Superman strain; RRID: SCR_013731

Xenopus tropicalis Khokha Lab (Yale) Superman strain

Xenopus tropicalis Nasco, Fort Atkinson, WI LM00822

Oligonucleotides

sgRNAs; See Table S8 This paper N/A

Genotyping primers; See Table S8 This paper N/A

Deposited data

ASD-CHD network intersection This paper Ndexbio.org, UUID: cedacca2-8f2c-11ea-

aaef-0ac135e8bacf

ASD-CHD systems map This paper Ndexbio.org, UUID: 5109757e-a5d6-11ea-

aaef-0ac135e8bacf

PCNet interactome Huang et al. 2018 https://public.ndexbio.org/#/network/

f93f402c-86d4-11e7-a10d-0ac135e8bacf

CHD de novo damaging variants Jin et al. 2017 Table S9

ASD de novo damaging variants Homsy et al. 2015 Table S8

DECIPHER shared condition variants https://decipher.sanger.ac.uk/ Version 11.1

Software and algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Python 2.7 https://www.python.org/download/

releases/2.7/

Clixo 1.0 Kramer et al., 2014 https://github.com/fanzheng10/CliXO-1.0

Networkx 1.11 https://networkx.github.io/

Combined network propagation This paper https://doi.org/10.5281/zenodo.5048355

https://github.com/ucsd-ccbb/

ASD_combined_network_analysis

Gprofiler Reimand et al., 2016 https://biit.cs.ut.ee/gprofiler/

Cytoscape 3.8.0 Shannon et al., 2003 https://cytoscape.org

CSEA Xu et al., 2014 http://genetics.wustl.edu/jdlab/csea-

tool-2/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the Lead Contact, Trey Ideker (tideker@ucsd.edu)

Materials availability
This study did not generate new materials.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key re-

sources table.
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d All original code has been deposited at https://github.com/ucsd-ccbb/ASD_combined_network_analysis, and is publicly avail-

able as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal models
Xenopus tropicalis adult breeding animals originated in the Khokha lab (Yale University, wildtype Superman strain), in the National

Xenopus Resource (RRID:SCR_013731, wildtype Superman strain) or from Nasco (Fort Atkinson, WI, wildtype). Animals were main-

tained in a recirculating system and used in accordancewith approvedUCSF IACUCprotocols. Embryo stages 1-46 (Nieuwkoop and

Faber, 1994) were used, as indicated in the manuscript. Males and females were used and clutch mates were always used as

controls.

METHOD DETAILS

Data acquisition
The PCNetmolecular interaction networkwas downloaded fromNDex onNovember 13, 2018 (https://public.ndexbio.org/#/network/

f93f402c-86d4-11e7-a10d-0ac135e8bacf). Putatively damaging de novo variants were downloaded from the supplemental materials

of previous studies (Homsy et al., 2015; Jin et al., 2017); the 750 ASD de novo damaging variants came from the Simons Simplex

Collection (SSC), the 827 CHD de novo damaging variants came from the Pediatric Cardiac Genomics Consortium (PCGC) and

the Pediatric Heart Network (PHN), and the 201 control de novo damaging variants came from SSC unaffected siblings. Putatively

damaging de novo variants for CHD were defined in Jin et al. (2017) (Jin et al., 2017) as minor allele frequency % 0.04% across the

cohort, and an annotation of nonsense, canonical splice site disruption, frameshift insertion-deletion, start loss, stop loss, or probably

damaging (aka D-mis or Missense 3 (Dong et al., 2015)). Putatively damaging de novo variants for ASD probands and sibling controls

were defined as in Iossifov et al. (2014) (Iossifov et al., 2014)–namely allele frequency% 0.3% in parents (to remove likely false pos-

itives), and an annotation of nonsense, canonical splice site disruption, frameshift insertion-deletion, start loss, stop loss, or D-mis.

ASD and CHD established risk genes used as the seeds for our analyses were identified in previous studies (65 ASD risk genes

(Sanders et al., 2015), 66 CHD risk genes (Jin et al., 2017)). ASD established risk genes were defined based on a false discovery

rate for ASD association < 0.1, as per Sanders et al. (2015) (Sanders et al., 2015), and CHD established risk genes were defined

as thosewith recurrent dDNVs in unrelated probandswith CHD (Jin et al., 2017). For independent replication of variants, we accessed

DECIPHER (DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources, https://decipher.sanger.ac.uk/,

version 11.1 ), an interactive web database. ASD common variant summary statistics (Grove et al., 2019) were acquired from

https://ipsych.dk/en/research/downloads/ on September 25, 2019. For analysis of adult human gene expression, data were down-

loaded from the Genotype-Tissue Expression (GTEx) Portal v8 (The GTEx Consortium, 2015). Human developmental data were

downloaded from the supplemental materials of a previous study (Yandım and Karak€ulah, 2019). Xenopus developmental data

were accessed at Xenbase (Karimi et al., 2018) (http://www.xenbase.org/, RRID:SCR_003280) as generated in a prior study (Session

et al., 2016).

Xenopus mutagenesis and genotyping
Single guide RNAs (sgRNAs) were designed by CRISPRscan (Moreno-Mateos et al., 2015) and synthesized in vitro (Engen) and pu-

rified (Zymo). While off-target effects from using only one sgRNA per gene are possible, sgRNAs were designed according to the

most stringent criteria within the algorithm CRISPRscan (Moreno-Mateos et al., 2015), with zero off-target sites predicted. 800 ng

of sgRNAwas injected with 1.5 ng of Cas9-NLS protein (MacroLabs, UC Berkeley) with a fluorescent dextran into one cell (brain phe-

notyping) or two cells (heart phenotyping) at the two-cell stage. A subset of the bilaterally injected animals were genotyped to ensure

efficient mutagenesis by the sgRNA. Briefly, genomic DNA was extracted and PCR amplified using the sequence surrounding the

PAM site. Sanger sequencing with sequence deconvolution by TIDE (Tracking of INDEls) was used to determine mutation efficiency

(Brinkman et al., 2014; DeLay et al., 2018). The full list of sgRNA sequences, genotyping primers and mutation efficiencies has been

made available (Table S8).

Fluorescence staining, microscopy, and phenotyping
For brain imaging, animals were stained according to a previous method (Willsey et al., 2018) with a b-Tubulin primary antibody

(DSHB, clone E7, 1:100) which labels all mature neurons and a fluorescence-conjugated secondary antibody (Life Technologies).

For heart imaging, animals were processed similarly, with the omission of the bleaching step, and incubated with a fluorescent phal-

loidin (Invitrogen, 1:50) for 2 hours at room temperature instead of primary or secondary antibodies. Phalloidin labels actin, allowing

for visualization of heart muscle tissue, rich in actin. Animals were imaged on a Zeiss AxioZoomV16 stereomicroscopewith 1X objec-

tive, apotome, and a Zeiss AxioCam 512. Images were scored blinded to gene name and predicted phenotype. Phenotype severity

was scored as ‘‘none’’, ‘‘mild,’’ or ‘‘severe’’ per animal for every gene for both phenotypes. Telencephalon size wasmeasured as a 2D

area (um2) in Fiji and converted to a size ratio by dividing the injected side area by the uninjected side. Variance in telencephalon size
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for each sample was determined in R. A Shapiro-Wilks test verified that no condition violated assumptions of normality, and qq plots

for standard distribution were reviewed and did not appear skewed. A 95%confidence interval was derived from the F test function in

R, as was variance ratio (var.test). Differences in telencephalon size variance compared to control CRISPR slc45a2were determined

by a two-sided F-test, with p < 0.05 considered significant. Qualitative differences in heart situs and size were noted for each image

and summed per condition (Figures S5B and S5C). sgRNAmutational efficiencies, sample sizes, and full phenotype quantification for

every gene for both phenotypes is presented in Table S8 and Figure S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Measuring network localization of a gene set
We downloaded the Parsimonious Composite Network (PCNet, UUID: f93f402c-86d4-11e7-a10d-0ac135e8bacf), a resource of 2.7

million gene-gene associations (Huang et al., 2018). PCNet is formulated from integration of the STRING molecular interaction data-

base (Szklarczyk et al., 2015) with a consensus of 21 additional molecular interaction databases. The interactions in PCNet cover a

variety of interaction evidence types, including physical protein-protein, genetic (including synthetic lethality and epistasis), co-

expression, and co-citation (where an interaction between genes is scored if they are mentioned frequently in the same papers,

compared to how often they receive separate mentions in the literature) (Figures S6 and S7). Interactions were included in PCNet

if they were supported by entries from two ormore databases, the threshold identified by the authors to result in optimal performance

in risk gene recovery. The majority of PCNet interactions were in fact supported by two or more types of evidence, with co-citation,

co-expression, and protein-protein interactions making up the largest contributors. PCNet has been shown to enrich for genetic var-

iants for a wide variety of diseases, to a higher degree than each database taken separately. We measured the localization of a dis-

order risk gene set in a gene network by calculating the number of PCNet interactions connecting pairs of genes in the set. A gene set

which is localized in the network will have more interactions than a randomly selected gene set. We compared this localization mea-

sure, computed for the true disorder risk gene sets, to 1000 random gene sets of identical size and network degree distribution

(Guney et al., 2016) (Figures S1 and S3).

Network propagation
Network propagation refers to a family of techniques (Cowen et al., 2017) which simulate how heat diffuses through a network

by traversing its edges, starting from an initially hot set of ‘seed’ nodes. Here, we applied network propagation to the PCNet

gene network (see above) with seed nodes defined as the risk genes for ASD (N=65) and CHD (N=66) (Figure 1A). At each

iterative step of the algorithm, a unit of heat is added to each of the seeds and is spread to neighbors. A constant fraction of

heat is then removed from all genes so that heat is conserved in the system. After a number of iterations, the heat on the genes con-

verges to a stable value. This final heat vector is a proxy for the closeness of each gene in the network to the initial seed set. For

example, if a gene interacts directly with two or more seed genes, it will tend to have a high final heat value, whereas if it is far

from a seed gene, it will tend to have a low final heat value. This process is described according to the equation (Vanunu et al.,

2010) Equation 1:

Ft = aW 0Ft�1 + ð1�aÞY (Equation 1)

where Ft is the heat vector at time t, Y is an indicator vector labeling the seed nodes,W 0 is the column-normalized adjacency matrix

representation of the network under study, and a˛ð0;1Þ is the fraction of total heat retained at every time step. Following network

propagation, gene scores are indexed against a null score distribution for each gene. This null distribution is constructed by randomly

selecting a set of genes with size equal to the number of seed genes, and which match the degree of the seed gene set. We imple-

mented a previously proposed approach (Guney et al., 2016) in which genes are binned such that each bin has at least 10 genes of

similar degree. Network propagation is carried out 5,000 times with different random seed gene sets, resulting in a null distribution of

random scores for each gene. A gene-level z-score is then calculated representing the number of standard deviations of the true

score for that gene above (positive z) or below (negative z) themean of the null distribution. This score defines the ‘network proximity’,

z!D for disorders D = ASD or CHD, to the seed genes Equation 2:

zn;D =

�
log

�
Fn;D

�
�

�
log

�
F
!

n;rand

����
s

�
log

�
F
!

n; rand

�
(Equation 2)

Where Fn;D is the propagation score of gene n, seeded by established disorder seed genes; F
!

n;rand is the vector of propagation

scores of gene n seeded by randomly selected degree-matched genes,CDdenotes an average of gene n’s propagation score over

Nrandomly sampled sets, and s denotes the standard deviation of the random distribution. Note the proximity vectors are log trans-

formed so as to be approximately normally distributed. For example, a genewith z = 2 is two standard deviationsmore proximal to the

established disorder risk genes than the average gene, and we may calculate an empirical p = 0.023 corresponding to the likelihood

of observing this value by chance. Geneswith Bonferroni corrected p-value < 0.1 defined the high confidence single disorder network

risk genes.
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Joint network propagation to identify network intersection between two disorders
To prioritize genes related to two disorders, we implemented a joint network propagation procedure taking inspiration fromprior work

(Paull et al., 2013). Network propagation was carried out from ASD risk genes, and then CHD risk genes, separately. We then took the

product of the two resulting proximity vectors in Equation 3,

zn;ASD�CHD = zn;ASD � zn;CHD (Equation 3)

where zn;ASD�CHD represents the vector of combined network proximity across all genes. Note the subscript n was dropped in the

main text, for conciseness. We then selected genes for which zn;ASD�CHD was greater than a threshold (zn;ASD�CHDR3, Figure 2A)

and zn;ASD and zn;CHD were non-negative. This operation selected 844 genes, which were interrelated by quantitative gene-gene sim-

ilarities based on the cosine similarity of each gene pair in the PCNet as per a prior procedure (Yu et al., 2019), forming the ‘‘ASD-CHD

gene network’’ reported in the main text (with edges thresholded at cosine similarityR 0.95, Figure 2B). This network is available for

download from the Network Data Exchange (NDEx) (Pratt et al., 2015) as a community resource:https://ndexbio.org/viewer/

networks/cedacca2-8f2c-11ea-aaef-0ac135e8bacf

This gene set was further refined to a set of 398 high confidence genes, with both zASD > 1.5 and zCHD > 1.5 and a joint corrected p

value < 0.1, reflecting genes that are highly connected to both disorders. The z-score product identifies genes proximal to both ASD

andCHD.We observed that the gene set overlap between ASD andCHD remained significant even when excluding the 24 CHD seed

genes previously labeled as ‘‘syndromic’’, i.e. genes in which variants have been associated with phenotypes beyond CHD ( p = 53

10–68; Table S2, identified as such in OMIM). A reciprocal analysis (i.e. non-syndromic ASD only) was not performed sincemost of the

samples sequenced for the ASDgene discovery workwere ascertained, in part, specifically based on not having a (known) syndromic

phenotype (Fischbach and Lord, 2010). The combined network proximity score improves upon simpler methods to calculate the

network overlap, such as computing the direct overlap among the neighbors of ASD and CHD seed genes. Since PCNet is a relatively

dense interactome, with 2.7 million edges, there are a large number (7,974) of common neighbor genes between ASD and CHD seed

genes. While these common neighbor genes are also significantly enriched for shared-condition DNV genes, the usefulness of such a

large gene set, containing 40% of all genes in the interactome, is limited due to its low specificity. The combined network proximity

scores allow us to prioritize a more specific set of neighbor genes highly relevant to both seed gene sets.

ASD and CHD specific gene networks were defined by genes which were proximal to one disorder, but not proximal to the other,

and which were not in the ASD-CHD gene network. The ASD-specific gene network was defined by zn;ASDR2, zn;CHD<2, and

zn;ASD�CHD<3, while the CHD-specific gene network was defined by zn;CHDR2, zn;ASD<2, and zn;ASD�CHD<3 (Tables S1 and S2).

Network visualization
A spring-embedded layout algorithm (Prefuse force-directed layout) fromCytoscape was used to determine the positions of genes in

Figures 2B, 5C, S6A–S6E, and S7A–S7C. This layout algorithm simulates the equilibrium positions of network objects whenmodeling

nodes as balls of fixed mass and edges as springs of fixed spring constant (Tamassia, 2013). In Figures S6B–S6E and S7C, we

display interaction edge type, where available. To identify edge type we query those databases in PCNet where interaction type

is available (mainly STRING) since PCnet does not include interaction type information. Interaction types where available are shown

on each edge in the PCnet subgraphs.

Enriched brain regions
Genes in the ASD-proximal subnetwork (zn;ASDR2), excluding seed genes, were tested for enrichment for specific brain regions and

developmental time points using theCSEA tool (Xu et al., 2014); http://genetics.wustl.edu/jdlab/csea-tool-2/. Results are included for

sensitivity threshold 0.05 (Table S3).

ASD common variant analysis
Summary statistics for common Single Nucleotide Polymorphisms (SNPs) were downloaded from a recent ASD genome wide asso-

ciation study (GWAS) (Grove et al., 2019) and were mapped to genes using PASCAL (Lamparter et al., 2016), a positional mapping

tool which accounts for linkage disequilibrium. Genes were called as significant if they had a PASCAL determined p < 2.510–4, re-

sulting in 57 ASD common variant genes. These 57 genes were then subjected to the same network propagation algorithm used

for the other ASD and CHD gene sets (see above).

Control disorder network overlap
A disease not expected to have significant genetic overlap with ASD or CHD – atherosclerosis – was selected from the DisGeNet

database (Piñero et al., 2017). Using the atherosclerosis gene set from DisGeNet, along with the ASD common variant gene set

(see above), we calculated the network z-scores for all genes (see above) as well as the combined proximity score vector zn;D1�D2

for every disorder pair (6 pairs in total). Based on this vector we also computed the size of the network overlap at a threshold of

zn;D1�D2R3 and compared this size to a null distribution of sizes. This null distribution was obtained by permuting z-score labels

over genes for each disorder 1000 times, in each case taking the product of these shuffled z-score vectors. Significance was as-

sessed by comparing the observed size of the network intersection to the null distribution, by computing an empirical p-value

from the z-score.
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Replication of genetic variants in DECIPHER
Genes in the ASD-CHD network were cross referenced to the DECIPHER database using its web interface (https://decipher.sanger.

ac.uk/), filtering by patients presenting with the dual phenotypes of ‘Abnormality of the nervous system’ and ‘Abnormality of cardio-

vascular system’. After searching for the two traits of interest (abnormality of the nervous system and abnormality of the cardiovas-

cular system), we clicked the ‘browser’ tab in the results to view the summary of all returned variants by chromosome. SNVs and

indels are shown as histograms along the top of each chromosome, while copy number gains and losses are shown below.Wemanu-

ally recorded the number of SNVs and indels reported for each gene, the large majority of which are classified as predicted loss of

function, or protein changing, by DECIPHER. Our analysis was restricted to variants which were likely LOF or protein changing (Table

S6). We separately manually queried the DECIPHER database for small CNVs (<1KB), for each gene in the ASD-CHD network indi-

vidually, to find CNVs that are likely gene specific. The number of small CNVs, along with SNVs/indels and dual-condition DNVs from

(Jin et al., 2017), were included in the criteria for selection of genes to assay in Xenopus (Table S5). These small CNVs were not

included in the ROC analysis since we were not able to access the full set of these small CNVs associated with the dual conditions

of abnormal nervous system and abnormal cardiovascular system. We calculated Receiver Operating Characteristic (ROC) curves

for recovering these genes when ranking human genes by the combined ASD-CHD network proximity score zASD-CHD (Figure 3D).

Based on the ROC, we reported the Area Under ROC Curve (AUC) along with an empirical p-value on this area by permuting the

gene labels 1000 times. Results did not greatly depend on whether we used genes with at least 2 variants (Figure 3D) or all genes

with at least one variant (Figure S4).

Gene discovery
Disorder-specific subnetwork genes with an exome-wide Bonferroni-corrected p value < 0.1 (p values derived from z scores, 18,500

genes were used as the correction factor) were considered to be a risk gene (Tables S1 and S2). Network-implicated ASD risk genes

were classified as not previously identified if they had a Bonferroni adjusted p < 0.1, and they had not been previously identified in

exome studies at an FDR% 0.1 (Satterstrom et al., 2020; Sanders et al., 2015; Doan et al., 2019), and were not present in the SFARI

gene database (Abrahams et al., 2013). Network-implicated CHD risk genes were classified as not previously identified if they had a

Bonferroni adjusted p < 0.1, had not been previously identified in exome studies (Jin et al., 2017) and were not knownCHD risk genes

in humans ormice (Jin et al., 2017). See Tables S1 and S2 for details on classification. Genes not previously identified were compared

to established seed genes for differences in pLI, Mis_Z, and Shet scores (Lek et al., 2016) and tested for significance by Wilcoxon

rank-sum test. In considering risk genes generated from the ASD-CHD network intersection, risk genes not previously identified

were determined as above (with Bonferroni correction of the p value generated from the joint zASD-CHD score, corrected by 18,500

genes x 2 disorders) but with the additional criteria of zASD and zCHD both R 1.5 and at least 1 dual-condition DECIPHER or

PCGC/PHN variant observed (Table S4).

Construction of the ASD-CHD systems hierarchy
The ASD-CHD systems hierarchy was constructed by applying the CliXO community detection algorithm (Kramer et al., 2014) to the

ASD-CHD network (defined above in the section ‘joint network propagation to identify network intersection between two disorders’).

Prior to applying the community detection algorithm, we transformed the PCNet edges in the ASD-CHD network into normalized

cosine neighborhood similarity scores, following a prior procedure (Yu et al., 2019). These cosine similarity scores represent the

extent to which two genes in a pair interact with similar sets of genes and, as such, they help visually reveal the underlying clustering

structure present in a network (Figure 2B). The ASD-CHD network with original PCNet interactions is included for reference (Fig-

ure S7A). CliXO parameters aand bwere swept over a range of values a˛ð0:01; 0:02; 0:03; 0:04; 0:05Þ, b˛ð0:4; 0:45; 0:5Þand the

values (a = 0:01, b = 0:45) were selected as those which gave the best localization of replicated variants in the hierarchy, as

measured by the Resnik semantic similarity (Resnik, 1995) averaged over all pairs of replicated DECIPHER variants. Resnik semantic

similarity is an information-based measure of two items in a taxonomy, based on the distance to the nearest common ancestors. The

resulting hierarchy, consisting of 120 gene communities or ‘‘systems’’, was aligned to the Biological Process branch of the Gene

Ontology (Harris et al., 2004) following a prior procedure (Yu et al., 2019), resulting in 29 significantly aligned systems. The remaining

un-annotated systems were manually annotated with GO, KEGG and REACTOME pathways with gProfiler (Reimand et al., 2016), a

python tool which uses a hypergeometric test to assess whether genes in the un-annotated systems had more shared genes with a

GO, KEGGor REACTOME pathway than expected by chance.We filtered to pathways with less than 500 terms to improve specificity

of annotation. Systems that remained un-annotated could not be confidently associated with a GO, KEGG or REACTOME entity and

thus were considered new processes. Links represent parent/child containment relationships, with genes in child systems con-

tained completely within parent systems. Parent systems may contain additional genes outside of those covered by child systems.

These parent-child relationships were defined by the CliXO (Kramer et al., 2014) algorithm for detecting multiscale community struc-

ture in networks. This ASD-CHD systems hierarchy has been deposited in NDEx (Pratt et al., 2015) as a community resource: https://

ndexbio.org/viewer/networks/5109757e-a5d6-11ea-aaef-0ac135e8bacf

Classification of systems by prior literature support
Systems were classified by prior literature support (Figure 5B; Table S9). A system was classified as either 1) well characterized, if it

aligned to GO following the procedure in (Yu et al., 2019) or had a precision and recall of R40% with a known gene set from GO,

KEGG or REACTOME in over-representation analysis; 2) a putative new/extended subprocess, ifR90% of the genes in the system
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were contained by a known gene set but with precision %40% (the system is largely contained in the known pathway but more

focused); 3) a putative new superprocess if two or more known gene sets with distinct genes (none in common) were significantly

over-represented in the system (the system unites known pathways in a new way); or 4) a putative new process if no known gene

set was found to be significantly over-represented among system genes. Known gene sets from GO, KEGG and REACTOME

were defined as significantly over-represented in a system if they had gene set sizes of %500 (to filter less general biological func-

tions); if they had at least 3 genes contained by the ASD-CHD system; and if they had an enrichment p-value < 0.05 (hypergeometric

test, after Bonferroni correction for multiple testing).

Selection of candidate genes for functional validation in Xenopus

ASD-CHD molecular network prioritized genes were selected for validation that had zn;ASD�CHD R3, and that ranked in the top 10

genes with the highest number of dual-condition variants in the DECIPHER database. Variants were included which were classified

as predicted loss of function, protein changing, or if they were a small CNV < 1KB. The z-score zn;ASD�CHD was used to break ties.

Upon literature review we identified 4 of these 10 genes that already had strong evidence for association with both ASD and CHD

(CREBBP, NSD1, ANKRD11, and CDK13) (Satterstrom et al., 2020; Jin et al., 2017; Abrahams et al., 2013). We decided to treat 2

of these genes (NSD1 and ANKRD11) as positive controls. We also selected one gene (SCN2A), which had only 1 dual-phenotype

DECIPHER variant, to represent the ion channel system, since genes in this system hadmany fewer variants. This resulted in a total of

7 genes not previously identified in ASD and/or CHD which were explored for validation in Xenopus experiments. See Table S7 for a

summary of these genes.
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