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INTRODUCTION 
 

The healthy aging process is associated with a host of 

neurobiological changes to brain structure and function, 

often leading to instances of cognitive and behavioral 

decline and further, functional dependence in later life. 

Amongst these changes are age-related aberrations in 

local inhibitory processing (e.g., sensory gating). Briefly, 

sensory gating is a neurophysiological phenomenon 

whereby the brain’s response to a second redundant input 

is attenuated compared to its response to the first 

presentation of the stimuli [1–4]. This attenuation is 

thought to reflect the brain’s capacity to filter irrelevant 

or redundant information to preserve neural resources  

for more behaviorally-relevant stimuli [5]. While 

disturbances in sensory gating have been demonstrated in 

numerous clinical populations (e.g., schizophrenia, bipolar 

disorder, cerebral palsy) and across sensory modalities 

(e.g., somatosensory, auditory) [6–9], recent evidence 

suggests that healthy older adults and those demonstrating 

age acceleration (e.g., HIV-infection) exhibit impaired 

gating of sensory input in both primary somatosensory 

and higher order prefrontal regions [10–13]. Nevertheless, 

these deficits in bottom-up filtering mechanisms are often 

reflective of impaired inhibitory function and importantly, 

may also be predictive of changes in higher order 
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ABSTRACT 
 

It is well recognized that not all individuals age equivalently, with functional dependence attributable, at least 
in part, to stress accumulated across the lifespan. Amongst these dependencies are age-related declines in 
cognitive function, which may be the result of impaired inhibitory processing (e.g., sensory gating). Herein, we 
examined the unique roles of life and biological stress on somatosensory gating dynamics in 74 adults (22-72 
years old). Participants completed a sensory gating paired-pulse electrical stimulation paradigm of the right 
median nerve during magnetoencephalography (MEG) and data were subjected to advanced oscillatory and 
time-domain analysis methods. We observed separable mechanisms by which increasing levels of life and 
biological stress predicted higher oscillatory gating ratios, indicative of age-related impairments in inhibitory 
function. Specifically, elevations in life stress significantly modulated the neural response to the first 
stimulation in the pair, while elevations in biological stress significantly modulated the neural response to the 
second stimulation in the pair. In contrast, neither elevations in life nor biological stress significantly predicted 
the gating of time-domain neural activity in the somatosensory cortex. Finally, our study is the first to link 
stress-induced decline in sensory gating to cognitive dysfunction, suggesting that gating paradigms may hold 
promise for detecting discrepant functional trajectories in age-related pathologies in the future. 
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cognitive abilities [14, 15]. Thus, it is possible that age-

related cognitive decline may be attributable, at least in 

part, to deficits in pre-attentive inhibition. Unfortunately, 

the key factors driving age-related inhibitory decline 

remain poorly understood, highlighting the need to 

identify markers that more precisely characterize the 

neural and behavioral aberrancies in aging adults.  

 

Healthy aging (i.e., maintenance of physiological 

homeostasis and stability) requires an organism to 

effectively adapt to changing environmental and/or 

biological demands (i.e., stress). For example, psycho-

social and physical life stress (e.g., experience, education, 

income, health status) in humans is thought to be the 

most common precursor to physiological imbalances in 

the system (e.g., hormone secretion, metabolic 

dysfunction), which emerge in aging and are often 

termed allostatic load [16]. In other words, cumulative 

exposure to life stressors activate physiological 

responses, and when overloaded can lead to functional 

decline during the aging process. Importantly, the life 

stress precursors (i.e., allostatic load) that accompany this 

physiological dysregulation have been shown to be 

tightly linked to cognitive and behavioral function in 

aging adults [17–19]. For example, in the MacArthur 

studies of successful aging, older adults exhibiting 

greater allostatic load (defined as physiological 

biomarkers reflecting more stress) had worse baseline 

cognitive (e.g., abstraction, memory) and physical (e.g., 

balance) performance, as well as greater functional 

decline during a 3-year longitudinal follow-up than those 

identified with lower allostatic load [18, 20–22]. 

Similarly, greater allostatic load has also been associated 

with changes in the brain, including distributed grey and 

white matter volume loss in primary sensory and 

association cortices. However, few studies have 

demonstrated a direct link between these stress-related 

neural aberrations and the cognitive decline associated 

with allostasis in aging populations [17, 23, 24]. 

Nonetheless, these studies suggest that quantitative 

assessments of allostatic load (i.e., induced by life 

stressors) may be critical to understanding the variability 

in age-related alterations seen in neural and behavioral 

performance.  

 

In addition to life stress, biological origins of stress may 

also prove informative for evaluating the variability in 

age-related neural and cognitive decline. One such 

marker that has gained popularity in recent years is the 

methylation of cytosine-phosphate-guanine (CpG) sites 

in the DNA of human tissues [25, 26]. Not only are 

epigenetic markers of DNA methylation highly 

correspondent with an individual’s chronological age 

(i.e., calendar time since birth) [25, 27, 28], they are also 

predictive of all-cause mortality rates [29], physical and 

cognitive ability in older age [30], as well as the 

pathological age acceleration (i.e., relative age 

acceleration) observed in neuro-degenerative diseases 

such as Alzheimer’s disease [31], Parkinson’s disease 

[32], and HIV-infection [33–35]. Together, these data 

suggest that epigenetic changes accumulate over the 

lifespan (i.e., biological stress) and may be particularly 

sensitive to detecting disparate aging trajectories. 
 

While age-related decline in functional inhibition (i.e., 

sensory gating) has been well-documented in recent years, 

there remain many open questions regarding the 

mechanisms underlying this deficit, as well as its 

relationship to higher order cognitive processing and the 

global functional decline observed across the lifespan. 

Thus, the goal of the current study was to determine the 

independent and cumulative impact of life and biological 

stress (i.e., allostatic load and DNA-methylation based 

age acceleration, respectively; Figure 1) on the neural 

oscillatory dynamics serving somatosensory gating (i.e., 

local inhibition) and cognitive function in 74 healthy 

adults. Specifically, adults aged 22-72 years old 

completed a paired-pulse electrical stimulation paradigm 

during magnetoencephalographic (MEG) imaging, and 

we applied advanced signal processing methods and 

structural equation modeling for hypothesis testing. 

Despite the most common approach for characterizing 

sensory gating being the evaluation of event-related 

potentials, several recent studies have found rich, multi-

spectral neural oscillatory activity up to 90 Hz using 

advanced analysis approaches [6, 11, 13, 15, 36–39]. 

Interestingly, high frequency gamma oscillations (>30 

Hz) like those elicited during somatosensory gating 

paradigms may rely critically on GABAergic inhibitory 

interneuronal pools, and thus alterations in gating of high-

frequency oscillations may be directly related to changes 

in intracortical inhibition, making the evaluation of neural 

oscillations an attractive endeavor for probing functional 

inhibitory processing in healthy aging [40–47]. Thus, to 

facilitate comparison with previous studies of evoked and 

oscillatory somatosensory processing, we employed both 

time- and time-frequency domain approaches in this 

study. Our primary hypotheses were that greater levels of 

life (i.e., allostatic load) and biological (i.e., relative age 

acceleration) stress would (i) predict worse sensory gating 

in healthy adults, (ii) have dissociable mechanisms of 

action on sensory gating processes in the brain, and (iii) 

would more strongly affect gamma-mediated mechanisms 

of sensory gating compared to evoked neural responses to 

somatosensory stimulation.   

 

RESULTS 
 

Neural responses to somatosensory stimulation  
 

Statistical analysis of our MEG sensor-level oscillatory 

data revealed robust broadband synchronizations in 



 

www.aging-us.com 19998 AGING 

sensors near the sensorimotor cortices from about 10 to 

90 Hz during the first 50 ms following onset of the first 

stimulation, with responses to the second stimulation 

(500-550 ms) extending from roughly 10 to 75 Hz  

(p < .001, corrected; Figure 2). To evaluate the dynamics, 

we focused our beamformer image reconstruction 

analysis on the higher 30-75 Hz frequency range and 

two 50 ms time intervals in which the oscillatory 

 

 
 

Figure 1. Predictive model of sensory gating. Conceptual figure denoting the statistical model probed in the current study. Allostatic 
load (i.e., life stress), relative age acceleration (i.e., biological stress) and their interaction (i.e., cumulative stress) were used to predict the 
age-related decline in somatosensory gating (response power to stim #2/response power to stim #1). The factors contributing to allostatic 
load were derived from an exploratory factor analysis (EFA) and included depression symptom severity, years of education, self-reported 
declines in activities of daily living, and BMI. Variables denoted with a red ‘X’ reflect measures that loaded poorly and were not included in 
the final factor definition for allostatic load. Relative age acceleration was quantified using the residuals from the regression of the 
“Consensus Model” predicted biological age on chronological age in our sample. 

 

 
 

Figure 2. Oscillatory response to electrical stimulation. (Left): Time-frequency spectrogram over the sensorimotor cortices (M0443) 
revealed robust broadband gamma responses (i.e., 30-75 Hz) following the first and second stimulation of the right median nerve. Time is 
denoted on the x-axis (in ms) and frequency is denoted on the y-axis (in Hz), with units being the percent power change from baseline (-700 
to -300 ms). A color scale bar denoting the directionality of this change is shown to the right of the graphic. Grand-averaged beamformer 
images (i.e., across all participants and both stimulations) revealed strong increases in gamma activity in the contralateral hand region of the 
primary somatosensory cortex (inset in top right). (Right): The neural time course of the relative power envelope (30-75 Hz band) was 
extracted from the peak voxel in the contralateral somatosensory cortex and is shown averaged across all participants. Oscillatory responses 
to the second stimulation in the pair were strongly attenuated compared to the first (box plot inset in top right), indicative of significant 
gating of gamma activity across all participants. ***p < .001. 



 

www.aging-us.com 19999 AGING 

response was the strongest following stimulation (i.e., 

0-50 and 500-550 ms for stimulations 1 and 2, 

respectively). Of note, we limited our analysis to 30 Hz 

on the low end because this aligns with the traditional 

definition of the gamma band. In contrast, we restricted 

our analyses to 75 Hz on the high end as the relative 

power sharply decreased thereafter, especially in 

response to the second stimulus.  

 

Beamformer images revealed robust increases in gamma 

activity in the contralateral hand region of the primary 

somatosensory cortex (Figure 2), with identical peak 

locations in response to the first and second stimulation. 

As described in the methods, these images were grand-

averaged across all participants and both stimulations to 

extract virtual sensor time series from the peak voxel. We 

derived the relative power envelope for the 30-75 Hz 

band from the resulting baseline-corrected time series, 

and used these in subsequent multilevel models of life 

and biological stress on gamma activity. Importantly, 

paired-sample t-tests between stimulation response power 

revealed that the response to the second stimulation was 

significantly reduced compared to the first, indicative of 

significant gating of gamma oscillatory power in the 

primary somatosensory cortex across all participants 

(t(73) = 6.54, p < .001; Figure 2). 

 

In contrast, evaluation of sensor-level time-domain 

responses revealed more temporally-extended clusters 

evolving shortly after each somatosensory stimulation 

(i.e., 25-125 ms and 525-625 ms for stimulations 1  

and 2, respectively) in sensors near the contralateral 

sensorimotor strip (p < .001, corrected; Figure 3). 

sLORETA source images revealed robust increases in 

phase-locked, time-domain neural responses in the left 

primary somatosensory cortex contralateral to 

stimulation, with identical peak locations in response to 

the first and second stimulation. As described in the 

methods, these images were grand-averaged across all 

participants and both stimulations to extract time series 

from the peak voxel for subsequent multilevel models 

of life and biological stress on evoked data (Figure 3). 

Paired-sample t-tests of stimulation response power 

revealed significantly weaker time-domain responses to 

the second stimulus compared to the first, indicative of 

significant sensory gating in the time-domain across all 

participants (t(73) = 9.31, p < .001, Figure 3).  

 

Oscillatory profiles of somatosensory gating are 

modulated by life and biological stress 

 

To investigate how indices of life and biological stress 

impacted sensory gating across the lifespan, a multiple 

regression of empirically-derived and sample-specific 

definitions of allostatic load, relative age acceleration/ 

deceleration, and their interaction was computed on the 

somatosensory gating ratio derived from the gamma band 

relative time series. Of note, higher gating ratios are 

indicative of worse suppression of redundant 

information. For descriptive statistics regarding our 

empirically-derived, sample-specific measures of life and 

biological stress, see Figure 4. Interestingly, allostatic 

load, relative age acceleration/deceleration, and their 

interaction (i.e., cumulative stress) were significantly 

 

 
 

Figure 3. Time-domain response to electrical stimulation. (Left): Time domain average of data from a representative sensor 
near the left sensorimotor cortex (M0443). Grand-averaged sLORETA source estimates (inset in top right) of statistically-derived 
sensor-level temporal clusters showed robust increases in phase-locked neural activity from 25-125 ms and 525-625 ms in the left 
primary somatosensory cortex. (Right): The peak voxel time course revealed significantly attenuated time-domain responses to the 
second stimulation compared to the first, indicative of significant gating of time-domain activity across all participants during paired-
pulse stimulation (Right: box plot). ***p < .001. 
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predictive of the integrity of sensory gating, such that 

increases in life, biological, and cumulative stress were 

predictive of higher gating ratios (i.e., worse suppression; 

Figure 5; allostatic load: b = 0.51, p = .012, 95% CI 

[0.18, 0.85], relative age acceleration: b = 0.43, p = .027, 

95% CI [0.11, 0.75], cumulative stress: b = -0.02, p = 

.030, 95% CI [-0.04, -0.01]. 

 

Finally, to evaluate the mechanism of action by which 

life and biological stressors impact filtering in the 

primary somatosensory cortex, we performed structural 

equation modelling with allostatic load and relative age 

acceleration predicting gamma response power  

in response to the first and second stimulation, 

sequentially. As expected, response power to the first 

stimulation was significantly predictive of gamma 

activity in response to the second stimulation, such that 

increases in gamma power during the first stimulation 

were predictive of increased gamma power during the 

second stimulus (b = .60, p < .001, 95% CI [0.55, 

0.65]). In regard to our measures of life and biological 

stress, allostatic load was significantly predictive of 

gamma power during the first stimulation, but not the 

second, such that greater levels of life stress were 

predictive of reduced neural response to the first 

stimulation in the pair (b = -.56, p = .043, 95% CI [-

1.02, -0.11]). In contrast, relative age acceleration was 

significantly predictive of the neural response to the 

second stimulus in the pair, but not the first, such that 

greater age acceleration indices were predictive of 

greater gamma power during the second stimulation 

(i.e., less gating-related attenuation; b = 0.11, p = .014, 

95% CI [0.01, 0.05]; Figure 5). 

 

Evoked neural response is unaffected by life and 

biological stress 
 

For correspondence with the previous literature, which 

has focused on evoked somatosensory processing, we 

computed the time-domain sLORETA source images for 

each participant. Time series data were then extracted 

from the grand-averaged peak voxel of the phase-locked 

response estimates to derive indices of somatosensory 

processing (i.e., gating ratio, source power). Next, we 

conducted multiple regressions to evaluate whether life, 

biological, and cumulative stress (i.e, their interaction) 

predicted changes in the gating of phase-locked neural 

responses. Interestingly, allostatic load (b = -0.001,  

p = .993, 95% CI [-0.15, 0.15]), relative age acceleration  

(b = -0.001, p = .987, 95% CI [-0.14, 0.14]), and their 

interaction (b = 0.000, p = .913, 95% CI [-0.01, 0.01]) did 

not significantly predict the gating ratio derived from our 

time-domain analysis, suggesting that the evoked neural 

responses to somatosensory stimulation were not 

sensitive to changes in life and biological stress, as 

defined in the current study (Figure 6).  

 

 
 

Figure 4. Life and biological stress in healthy aging adults. (Left) Violin/box plots of allostatic load score (Mean ± SD: 2.7 E -5 ± 0.85) 
extracted from the exploratory factor analysis of depression symptom severity, BMI, perceived declines in ADL, and total years of education 
with positive values indicative of elevated levels of life stress in our sample. (Right) Violin/box plots of relative age advancement (Mean ± SD: 
-0.18 ± 5.08), which was computed using the residuals from a regression of the consensus DNA methylation model of predicted biological age 
on chronological age in our sample. 
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For completeness, we conducted the follow-up 

structural equation model interrogating the role of life 

and biological stress on the time-domain response to 

the first and second stimulation response power, 

sequentially. Similar to our oscillatory analysis, 

increased evoked response power to the first 

stimulation was significantly predictive of increased 

neural response power to the second stimulation (b = 

0.62, p < .001, 95% CI [0.54, 0.69]). Interestingly, 

while allostatic load was not significantly predictive 

of phase-locked responses to the first or second 

stimulation (ps > .158), relative age acceleration was 

significantly predictive of neural response to the 

second stimulus, but not the first, such that greater age 

acceleration (i.e., greater biological age relative to 

chronological age) led to stronger neural responses to 

redundant stimuli (i.e., less attenuation; b = 12.91, p = 

.011, 95% CI [4.58, 21.24]; Figure 6). 

 

Stress-induced changes in sensory gating predict 

poorer cognitive outcomes  
 

Finally, given the previous literature suggesting that 

bottom-up, pre-attentive gating is closely linked with 

top-down higher order cognitive functions (e.g., 

attention; (15)), we evaluated whether stress-induced 

changes in somatosensory gating across the lifespan 

significantly predicted cognitive function. To assess

 

 
 

Figure 5. Life and biological stress differentially predict gamma oscillatory responses. (Top Panel): Multiple regressions of life 
stress (i.e., allostatic load, left), biological stress (i.e., relative age acceleration, middle) and their interaction (i.e., cumulative stress, right) on 
the gating of gamma activity in the primary somatosensory cortex were conducted. Raincloud plots (combined box plot, histogram 
distribution and individual scattered data points) denote somatosensory outcome metrics at low and high levels of each stressor (i.e., ±0.5 
SDs). Life, biological and cumulative stress were all significant predictors of gating ratios, such that increased stress was associated with 
higher gating ratios, indicative of worse suppression of redundant sensory input. (Bottom Panel): Follow-up regressions of life and biological 
stress on neural response to stimulation 1 (darker color) and 2 (lighter color) in the paired-pulse paradigm revealed differential modulation of 
stimulation response based on stressor type. Allostatic load was significantly predictive of oscillatory responses to the first stimulation, such 
that higher levels of life stress led to reduced neural response to the first stimulation in the pair. In contrast, relative age acceleration was 
predictive of the oscillatory response to the second stimulation, such that greater biological age led to less attenuated response power to the 
second stimulation. All axes are fixed for each graph per row. *p < .05. 
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cognitive function, we used an extensive neuro-

psychological battery that probed six domains and 

global cognitive function, including learning, memory, 

processing speed, executive function, attention, motor 

function and global cognition. As described in the 

methods, domain-specific composite scores were 

computed by averaging the Z-scores of assessments 

comprising each respective domain. Of note, we used 

unadjusted Z-scores rather than demographically-

normed ones due to the fact that age and years of 

education were important variables comprising our 

measures of relative age acceleration and allostatic load, 

respectively. Next, we calculated the predicted gating 

ratios accounting for levels of allostatic load, relative 

age acceleration and their interaction using the 

regression equation described above. This yielded a 

predicted value of stress-induced gating, with higher 

values indicative of worse sensory gating, accounting 

for levels of life and biological stress. Interestingly, 

linear regressions of predicted oscillatory gating ratios 

on each cognitive domain and global cognitive function 

scores revealed that higher gating ratios (induced by 

increased levels of stress) were significantly predictive 

of poorer global cognitive function (i.e., decreased Z-

scores averaged across all domains (b = -2.08, p = .005, 

95% CI [-3.50, -0.66])). In addition, stress-induced 

declines in sensory gating were also predictive of poorer 

cognitive function on learning (b = -3.78, p = .001, 95% 

CI [-5.94, -1.62]), memory (b = -3.03, p = .003, 95% CI 

[-5.00, -1.07]), attention (b = -2.17, p = .028, 95% CI [-

4.10, -0.24]), and processing speed-specific composites 

(b = -2.07, p = .025, 95% CI [-3.86, -0.27]), suggesting 

that less filtering of redundant sensory information 

(accounting for elevated levels of stress) led to 

significantly worse performance on these cognitive 

domains (Figure 7). 

 

 

 

Figure 6. Evoked somatosensory neural responses are unaffected by stressors. (Top Panel): Multiple regressions of life stress (i.e., 
allostatic load, left), biological stress (i.e., relative age acceleration, middle) and their interaction (i.e., cumulative stress, right) on sensory 
gating in the time-domain. Raincloud plots (combined box plot, histogram distribution and individual scattered data points) denote 
somatosensory outcome metrics at low and high levels of the stressor (i.e., ±0.5 SDs). Life, biological and cumulative stress were not 
significantly predictive of gating in the time-domain. (Bottom Panel): Follow-up regressions of life and biological stress on neural response to 
stimulation 1 and 2 sequentially in the paired-pulse paradigm also showed no change in time-domain response power as a function of life 
stress, although increases in relative age acceleration were significantly predictive of greater neural responses to the second stimulation, but 
not the first. All axes are fixed for each graph per row. *p < .05. 
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DISCUSSION 
 

The goal of the current study was to evaluate the 

independent and cumulative contributions of life and 

biological stress on the age-related decline in sensory 

gating. Specifically, we used a paired-pulse electrical 

stimulation paradigm during MEG to interrogate the 

gating of oscillatory and evoked neural responses to 

somatosensory stimulation in a large sample of aging 

adults (aged 22-72 years old). Using empirically-derived 

definitions of allostatic load (i.e., life stress) and relative 

age acceleration (i.e., residuals of DNA methylation 

predicted biological age on chronological age; biological 

stress) and structural equation modeling, we observed 

dissociable mechanisms of action for predicting age-

related decline in the gating of gamma oscillations within 

the primary somatosensory cortex, but not the gating of 

evoked neural responses. In addition, our study was the 

first to establish a predictive link between stress-induced 

changes in bottom-up functional inhibitory processing 

(i.e., sensory gating) and top-down cognitive dysfunction 

across the lifespan. The implications for these novel 

findings are discussed below.  

 

Many recent studies of somatosensory gating have 

focused on the high-frequency gamma (30-75 Hz) 

oscillatory dynamics in response to the first and second 

stimulation in a paired-pulse paradigm, and herein we 

evaluated the contributions of life and biological stress 

on the findings noted in these prior studies. Critically, 

we found that gating of gamma responses in the primary 

somatosensory cortex was significantly modulated by 

indices of life, biological and cumulative stress. As 

expected, greater levels of allostatic load (i.e., life 

stress), relative age acceleration (i.e., biological stress) 

and their interaction (i.e., cumulative stress) were 

significantly predictive of higher gating ratios, 

indicative of worse suppression of redundant sensory 

input. Importantly, to facilitate comparison with the 

broader literature on gating, we also interrogated this 

relationship with source estimates of evoked neural 

responses to somatosensory stimulation. Interestingly, 

neither life, biological nor cumulative measures of 

stress significantly predicted gating ratios derived from 

our time-domain analysis, suggesting that evoked and 

gamma oscillatory activity may be differentially 

sensitive to stress accumulation across the lifespan. This 

result is not surprising, as previous investigations by our 

lab and others have demonstrated dissociable effects  

on evoked and oscillatory neural responses during 

somatosensory processing. For example, previous 

studies have shown that gating ratios derived from

 

 
 

Figure 7. Stress-induced gating changes predict poorer cognitive outcomes. Linear regressions of predicted somatosensory gating 
ratios in the oscillatory domain (accounting for levels of allostatic load, relative age acceleration and their interaction) on six cognitive domain 
composites (Z-scores) and global cognitive function. Higher gating ratios (i.e., worse suppression of redundant sensory information, 
accounting for levels of stress) were predictive of poorer global cognition and poorer performance on learning, memory, attention and 
processing speed domains (ps < .028). All axes are fixed for each graph. 95% confidence intervals are displayed in gray for each regression 
line. *p < .05, **p < .005, ***p < .001. 
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oscillatory analysis approaches are more sensitive to 

subtle external factors, including paradigm shifts (e.g., 

inter-stimulus interval [39]) and even participant 

characteristics (e.g., participant age [11]). In a previous 

study of healthy aging, our lab observed robust 

increases in the gating ratio based on gamma oscillatory 

activity, such that older adults exhibited worse 

suppression of redundant information in the somato-

sensory cortex [11]. However, gating ratios derived 

from the time-domain analysis of the same MEG data 

were not significantly modulated by aging as previously 

reported by other investigators [10–12].  

 

Indeed, the current study aligns well with prior studies of 

gamma-mediated mechanisms, and brings attention to the 

extensive literature implicating GABAergic mechanistic 

drive in the generation and modulation of gamma activity. 

In fact, multimodal neuroimaging studies have linked 

GABA concentration and/or receptor density to gamma 

response properties (i.e., power and/or frequency) in 

primary sensory regions in humans, corroborating this 

well-established link first introduced using cellular 

electrophysiology [40–49]. For example, a study using 

GABA magnetic resonance spectroscopy (MRS) and 

MEG established a link between peak gamma frequency 

and GABA concentration within the primary motor cortex 

contralateral to movement, such that increases in gamma 

frequency were associated with greater GABA 

concentration [50]. Likewise, Muthukumaraswamy and 

colleagues were able to demonstrate a similar relationship 

in the visual system, and related elevations in both peak 

gamma frequency and GABA concentration to better 

visual discrimination performance [51, 52]. In regard  

to healthy aging, previous studies broadly suggest 

modulation of both gamma and GABA properties as a 

function of increasing age, such that decreases in peak 

gamma frequency and GABA concentration are robustly 

induced by the aging process in primary sensory, as well 

as frontoparietal networks [50–53]. Taken together, these 

data suggest that gamma oscillatory activity is critically 

dependent on GABAergic inhibitory function and, while 

we did not evaluate GABA directly in this study, we can 

presume that our stress-induced decline in somatosensory 

inhibition may be the result of progressive local GABA 

dysfunction across the lifespan. Importantly, our study 

was the first to directly link quantitative measures of 

stress (i.e., allostatic load and relative age acceleration) to 

gamma oscillatory dynamics during somatosensory 

inhibition, and future studies explicitly interrogating  

the role of GABA in this process will be incredibly 

informative to fully unravel these mechanisms.  

 

A second important finding involved the mechanism of 

action by which life and biological stress modulate 

sensory gating. Briefly, our follow up analyses using 

structural equation modeling revealed that greater levels 

of allostatic load were predictive of reduced oscillatory 

power to the first stimulation in the pair, but not the 

second, while the opposite effect was observed for 

relative age acceleration. This finding is quite 

interesting when one considers the factors comprising 

our measures of life and biological stress. Specifically, 

our empirically-derived and sample-specific definition 

of allostatic load suggested that depression symptom 

severity, body mass index, activities of daily living, and 

years of education were representative of related life 

stress factors across our aging population, with higher 

values indicative of more stress. This composite of 

factors defining life stress was not surprising, 

considering the numerous studies linking these factors 

(i.e., negative outcomes) with the greater physiological 

dysregulation traditionally defined as impaired 

allostasis [24, 54–59]. In regard to the brain, each of 

these factors (e.g., depression, education) alone has 

been shown to differentially modulate neural responses 

to novel stimulus presentations. For example, using 

auditory oddball tasks, investigators have shown a 

reduction in fronto-central N2 and P3 responses to 

infrequent or novel auditory stimuli in non-medicated, 

depressed individuals compared to controls [60, 61]. In 

addition, a similar reduction in novelty-related 

responses can be seen for older adults with lower 

cognitive ability compared to their higher performing 

counterparts, suggesting a modulation of neural 

amplitude perhaps based on education, exposure levels, 

or even IQ [62–65]. While our sensory gating paradigm 

is quite different from traditional oddball tasks, the 

presentation of the novel, first stimulation in the pair 

was significantly reduced with greater levels of 

allostatic load, suggesting that this stress-induced 

modulation in somatosensory response strength may be 

attributable at least in part to the factors comprising life 

stress (e.g., depression and education) that are known to 

modulate stimulus novelty in the brain.  

 

In contrast, our results also showed a differential 

modulation of the gating effect by relative age 

acceleration/deceleration, such that greater biological 

age acceleration (compared to chronological age) was 

associated with less attenuated gamma responses to the 

second stimulus in the repetitive pair (i.e., the inhibited 

stimulus). Importantly, our study was the first to 

directly link quantitative measures of age acceleration 

(DNA methylation age) to gamma oscillatory dynamics 

in the primary somatosensory cortex and thereby, 

functional inhibition at the neural population level in 

humans. Interestingly, this finding may further 

implicate a role for dysfunctional intracortical inhibition 

at the cellular level during sensory gating paradigms. 

Specifically, previous studies have shown that hyper-

methylated DNA profiles are unique to GABAergic 

inhibitory interneurons compared to their excitatory or 
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glial cell counterparts in the human prefrontal cortices 

[66]. In addition, when key epigenetic controllers of 

DNA methylation are deleted (e.g., methyltransferases), 

synaptic release of GABA is promoted [67] and the 

expected age-related loss in primary sensory inter-

neuronal pools are ameliorated and match younger 

controls in mice [68]. Thus, our results showing that 

relative age acceleration (derived from DNA 

methylation predicted age) modulates the gating of 

redundant somatosensory input through changes in 

gamma response strength to the second gated stimulus, 

but not the first, suggests that a GABA-mediated 

mechanism may underlie the relationship between 

epigenetic markers of biological stress and functional 

inhibitory processing of somatosensory input in the 

brain.  

 

Finally, our most critical finding was likely the stress-

induced changes in gating predicting levels of top-down 

cognitive dysfunction across our aging sample. 

Specifically, our study was the first to demonstrate that 

higher predicted gating ratios in the oscillatory domain, 

accounting for levels of life and biological stress, 

predicted worse cognitive performance on learning, 

memory, attention, processing speed, and global 

functional domains assessed by an extensive neuro-

psychological battery. While numerous studies of 

auditory gating have established a relationship between 

gating ratios and cognitive dysfunction in healthy adults 

[69–71], only one prior study has evaluated this link in 

the somatosensory domain. In a previous study  

of somatosensory gating, Cheng and colleagues 

established a link between gating ratios during a similar 

somatosensory paired-pulse paradigm and performance 

on an attentional task, such that better suppression of 

somatosensory input (i.e., smaller gating ratios) was 

associated with increased accuracy on both auditory and 

somatosensory go/no-go tasks [15]. Our results 

corroborate the previous literature implicating pre-

attentive measures of functional inhibition in attentional 

control processes, and critically expand our knowledge 

of these constructs in the somatosensory cortex to 

learning, memory and processing speed cognitive 

faculties as well. In addition, our study was the first to 

evaluate this relationship in the context of healthy aging 

and, importantly, suggests that stress-induced changes 

in sensory gating oscillatory dynamics are particularly 

sensitive to detecting higher-order trajectories of 

cognitive decline observed across the lifespan.  

 

To close, the aging process is associated with numerous 

neurobiological alterations, leading to the functional 

decline observed in later life that is often highly 

disparate from person to person. The current study 

evaluated the independent and cumulative contributions 

of life and biological markers of stress on the age-

related decline in functional inhibitory processing using 

a well-known sensory gating paradigm and high-density 

MEG. Specifically, we empirically-defined sample-

specific indices of life (i.e., allostatic load) and 

biological (i.e., relative age acceleration: residuals of 

DNA methylation age on chronological age) stress in a 

large sample of aging adults (22-72 years old) and 

observed a robust modulation of somatosensory filtering 

in the oscillatory domain, but not the time-domain. In 

addition, we observed a separable mechanism of action 

by which allostatic load and relative age acceleration 

modulated the oscillatory gating effect, suggesting that 

stimulus novelty (i.e., stimulation 1) may be more 

sensitive to factors comprising life stress, while the 

inhibited stimulus (i.e., stimulation 2) may be more 

sensitive to DNA methylation predicted age 

acceleration. Finally, our study was the first to 

demonstrate that stress-induced changes in the gating 

effect were significantly predictive of global and 

domain-specific cognitive decline across our aging 

sample. We propose that these trajectories may be the 

result of GABA-mediated intracortical dysfunction in 

aging populations [53], given the extensive literature 

linking GABA interneurons to the modulation of high-

frequency pyramidal synchrony (i.e., gamma 

oscillations) across the cortex [41–45, 47, 49–52, 72]. 

With the aging population expected to double by 2050 

[73], concomitant with increased recognition that not all 

individuals age equivalently, understanding the factors 

contributing to age-related variation in functional 

decline is of utmost importance. Critically, our study 

supports the notion that markers of stress (including 

psychosocial, physical and biological) predict age-

related decline in pre-attentive functional inhibitory 

processing (i.e., sensory gating) and further, stress-

induced change in sensory gating is particularly 

sensitive to detecting the cognitive decline observed in 

aging populations. Together, these findings suggest that 

the use of sensory gating paradigms in human 

neurophysiological studies may hold broad, tangible 

benefits in the long-term, as it could allow for precise 

detection of healthy and pathological aging trajectories 

in individual persons. 

 

MATERIALS AND METHODS 
 

Participant demographics and neuropsychological 

assessment  
 

Seventy-four healthy adults (Mage = 43.6 years old, 

range: 22-72 years old, 35 females) were enrolled in this 

study. Exclusionary criteria included any medical 

illness affecting CNS function, any neurological or 

psychiatric disorder, history of head trauma, current 

pregnancy, current substance use, implanted 

ferromagnetic objects or extensive dental work, and 
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cognitive impairment. Cognitive impairment was based 

on a thorough neuropsychological battery that assessed 

functionality across six domains (i.e., learning, memory, 

executive function, attention, processing speed, motor 

function). Participants who scored less than one 

standard deviation from the mean using 

demographically-normed scores per test were deemed 

cognitively impaired and excluded from the study. The 

battery included the following tests for each domain: 

learning (Hopkins Verbal Learning Test – Revised 

(HVLT-R) Learning Trials 1-3 [74]), memory (HVLT-

R Delayed Recall and Recognition Discriminability 

Index [74]), executive function (Comalli Stroop Test 

Interference Trial [75], semantic verbal fluency [76], 

phonemic verbal fluency [76], and Trail Making Test 

Part B [76]), processing speed (Comalli Stroop Test 

Color Trial [75], Wechsler Adult Intelligence Scale 

(WAIS-III) Digit Symbol Coding [77], and Trail 

Making Part A [76]), attention (WAIS-III Symbol 

Search [77], and Comalli Stroop Word Trial [75]), and 

motor function (Grooved Pegboard, Dominant and Non-

Dominant Hands [76, 78]). Z-scores were computed 

using raw scores and composite domain-specific scores 

were calculated by averaging the Z-scores of assess-

ments that comprised each domain respectively (see 

above). Global cognitive function scores were 

computed by averaging all domain-specific composite 

Z-scores. Of note, for a subsample of the participants 

included in the current study (N = 29), the HVLT-R 

Learning, Recall and Recognition tests were 

administered faster than the recommended speed (i.e., 

approximately 1 word per 1 second rather than 1 word 

per 2 seconds). However, all statistical analyses 

including these data accounted for this administration 

difference, and the strength of these relationships did 

not differ when accounting for participant exclusions 

using Fisher Z comparisons (learning: Z = 1.29, p = 

.197; memory: Z = 1.52, p = .128). The University of 

Nebraska Medical Center Institutional Review Board 

approved the study and all participants provided written 

informed consent.  

 

Experimental paradigm 
 

Participants were seated in a nonmagnetic chair with 

their head positioned within the MEG helmet-shaped 

sensor array. Electrical stimulation was applied to the 

right median nerve using external cutaneous stimulators 

connected to a Digitimer DS7A constant-current 

stimulator system (Digitimer Limited, Letchworth 

Garden City, UK). For each participant, we collected at 

least 80 paired-pulse trials with an inter-stimulation 

interval of 500 ms and an inter-pair interval that 

randomly varied between 4500 and 4800 ms. Note that 

our use of a jittered inter-pair interval of 4500-4800 ms 

is commonly used to avoid habituation of the neural 

responses via anticipation of the upcoming paired-

pulses [11, 13, 36, 38]. Additionally, our use of 500 ms 

as the inter-stimulation interval was chosen based on 

prior studies that have shown that 200-500 ms is the 

optimal inter-stimulation interval for maximizing gating 

effects in this paradigm [39]. Each pulse generated a 0.2 

ms constant-current square wave that was set to a limit 

of 10% above the motor threshold required to elicit a 

subtle twitch of the thumb. 

 

MEG data acquisition and coregistration with 

structural MRI 

 

All recordings were performed in a one-layer 

magnetically-shielded room with active shielding engaged 

for environmental noise compensation. With an 

acquisition bandwidth of 0.1-330 Hz, neuromagnetic 

responses were sampled continuously at 1 kHz using an 

MEGIN/Elekta MEG system (MEGIN, Helsinki, Finland) 

with 306 magnetic sensors, including 204 planar 

gradiometers and 102 magnetometers. Throughout data 

acquisition, participants were monitored using a real-time 

audio-video feed from inside the magnetically-shielded 

room. MEG data from each participant were individually 

corrected for head motion and subjected to noise 

reduction using the signal space separation method with a 

temporal extension [79]. Each participant’s MEG data 

were coregistered with their structural T1-weighted MRI 

data prior to imaging analyses using BESA MRI (Version 

2.0). Structural MRI data were aligned parallel to the 

anterior and posterior commissures and transformed into 

standardized space. After beamformer analysis (see 

below), each subject’s functional images were 

transformed into standardized space using the transform 

that was previously applied to the structural MRI volume 

and spatially resampled.  

 

MEG preprocessing and sensor-level statistics 

 

Cardiac and ocular artifacts were removed from the data 

using signal-space projection (SSP) and the projection 

operator was accounted for during source reconstruction 

[80]. Epochs were of 3700 ms duration, with 0 ms 

defined as the onset of the first stimulation and the 

baseline being the -700 to -300 ms window. Of note, we 

shifted our baseline away from the period immediately 

preceding stimulus onset to avoid potential con-

tamination by any anticipatory responses, although 

there was no evidence of such anticipatory responses  

in our final analyses. Epochs containing artifacts  

were rejected based on a fixed threshold method, 

supplemented with visual inspection. On average, 73 

trials per participant were used for further analysis. 

 

Artifact-free epochs were further processed using two 

parallel pipelines. For the oscillatory analysis, epochs 
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were transformed into the time-frequency domain using 

complex demodulation [81], and the resulting spectral 

power estimations per sensor were averaged over trials to 

generate time-frequency plots of mean spectral density. 

The sensor-level data per time-frequency bin were 

normalized using the mean power per frequency during 

the -700 to -300 ms baseline period. The specific time-

frequency windows used for imaging were determined 

through a two-stage, data-driven approach involving 

statistical analysis of the sensor-level spectrograms across 

all participants and trials. First, paired-sample t-tests 

against baseline were conducted on each data point, with 

the output spectrogram of t-values initially thresholded at 

p < .05 to define time-frequency bins containing 

potentially significant oscillatory deviations. To reduce 

the risk of false positive results due to multiple 

comparisons, the time-frequency bins that survived that 

initial threshold were temporally and/or spectrally 

clustered with neighboring bins that were also significant, 

and a cluster value was derived by summing all of the t-

values of all data points in the cluster. Nonparametric 

permutation testing (10,000 permutations) was then used 

to derive a distribution of cluster values and the 

significance level of the observed clusters were tested 

directly using this distribution. Based on this analysis, the 

time-frequency periods that contained significant 

oscillatory events across all participants were subjected to 

beamforming analyses. Of note, in the case of the 

broadband gamma oscillations, we focused on a window 

surrounding the peak of the response (i.e., greatest 

amplitude change from baseline) in order to optimize the 

signal to noise ratio. Note that the significant time-

frequency extent of the gamma response extended beyond 

this 75 Hz band, especially following the first stimulation.  

 

For the time domain (i.e., evoked) analyses, all artifact-

free epochs per participant were averaged with respect to 

the onset of the first stimulation for each sensor in the 

array, and the resulting mean time series per sensor and 

participant were examined statistically to determine the 

specific time windows used for subsequent source 

analyses. Like the oscillatory analyses, we used a two-

stage approach that included paired-sample t-test against 

baseline, followed up with cluster-based permutation 

testing to control for multiple comparisons (initial 

threshold: p < .05, permutations: 10,000). The phase-

locked, time-domain period that significantly differed 

from baseline were used to guide subsequent time-domain 

source level analysis. Further details of this method and 

our processing pipeline can be found in recent papers  

[6, 11, 36, 38, 39].  

 

MEG source imaging  
 

Cortical oscillatory networks were imaged through the 

dynamic imaging of coherent sources (DICS) 

beamformer [82], which uses the cross-spectral density 

matrices to calculate source power for the entire brain 

volume. These images are typically referred to as 

pseudo-t maps, with units (pseudo-t) that reflect noise-

normalized power differences (i.e., active vs. passive) 

per voxel. Following convention, we computed noise-

normalized, source power per voxel in each participant 

using baseline periods of equal duration and bandwidth 

[83]. MEG preprocessing and imaging used the Brain 

Electrical Source Analysis (Version 6.1; BESA) 

software. Further details of our analysis pipeline can be 

found in Spooner et al., (2020) [39].  

 

Normalized source power was computed over the entire 

brain volume per participant at 4.0 × 4.0 × 4.0 mm 

resolution for the time-frequency periods identified 

through the sensor level analyses. Prior to statistical 

analysis, each participant’s MEG data, which were 

coregistered to native space structural MRI prior to 

beamforming, were transformed into standardized space 

using the transform previously applied to the structural 

MRI volume and spatially resampled. The resulting 3D 

maps of brain activity were averaged across all 

participants and both stimulations to assess the 

neuroanatomical basis of the significant oscillatory 

responses identified through the sensor-level analysis, 

and to allow identification of the peak voxels per 

oscillatory response. 

 

Voxel time series data (i.e., ―virtual sensors‖) were 

extracted from each participant’s data individually using 

the peak voxel from the grand-averaged beamformer 

images. To compute the virtual sensors, we applied the 

sensor weighting matrix derived through the forward 

computation to the preprocessed signal vector, which 

yielded a time series for the specific coordinate in 

source space. Note that virtual sensor extraction was 

done per participant, once the coordinates of interest 

were known. Once the virtual sensor time series were 

extracted, we computed the envelope of the spectral 

power within the frequency range used in the 

beamforming analysis. From this time series, we 

computed the relative (i.e., baseline-corrected) response 

time series of each participant to quantify indices of 

somatosensory processing, including the gating ratio 

(response power to stim 2/response power to stim1) and 

source power in response to both electrical stimulations. 

 

To enhance comparability with previous work,  

source images of the time-domain averaged responses 

were computed using standardized low-resolution 

brain electromagnetic tomography (sLORETA; 

regularization: Tikhonov 0.01%) [84]. The resulting 

whole-brain maps were 4-dimensional estimates of 

current density per voxel, per time sample across the 

experimental epoch. These data were normalized to the 
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sum of the noise covariance and theoretical signal 

covariance, and thus the units are arbitrary. Using the 

temporal clusters identified in the time-domain sensor-

level analysis, these maps were averaged over time 

following each somatosensory stimulation (e.g., 25-125 

ms and 525-625 ms). The resulting maps were then 

grand-averaged across the two stimulations to determine 

the peak voxel of the time-domain neural response to 

the stimuli across participants. From this peak, voxel 

time series were extracted in sLORETA units to 

quantify measures of somatosensory processing (i.e., 

gating ratio, source power). 

 

Blood-based markers of age acceleration 
 

To evaluate levels of biological stress on age-related 

changes in sensory gating, whole blood samples were 

collected from each participant using BD Vacutainer 

EDTA tubes to evaluate methylation metrics based on the 

Hannum, Horvath and consensus models of predicted 

biological age. DNA methylation analyses were 

conducted on the entire data set from a large study of 

aging adults (N > 180) reported in previous publications 

[11, 13, 38, 85–87] and closely aligned with epigenetic 

age estimations established in previous work [35].  

 

Specifically, DNA was purified from whole blood using 

DNeasy blood tissue extraction kits (QIAGEN). 

Methylation analysis was performed using Infinium 

HumanMethylation450 BeadChip Kits (Illumina). 

Following hybridization, BeadChips were scanned 

using the Illumina HiScan System. All data were 

processed through the Minfi R processing pipeline [88]. 

Methylome data were downloaded from Hannum [26] 

and EPIC [89] (GEO: GSE40279 and GSE51032), and 

these data were processed together along with 

methylation data generated from the larger study 

mentioned above. Beta values were extracted and 

quantile normalized using Minfi; cell counts were 

estimated using estimateCellComposition and resulting 

normalized beta values were adjusted for cell types [35, 

90]. All data was then normalized using a modified 

BMIQ procedure provided by Horvath [25]. The gold 

standard was set to the median beta observed in the 

Hannum study [26].  

 

For the current study, the ―consensus model‖ of 

predicted biological age (i.e., both Hannum and Horvath 

predictions) was used, as this has been shown to 

outperform either prediction model in isolation [35]. 

Importantly, our measure of relative age acceleration 

(i.e., acceleration or deceleration in biological age 

relative to chronological age) was computed using the 

residuals from a regression of the consensus model of 

predicted biological age on chronological age for the 74 

participants eligible for the current study.  

Definition of allostatic load  
 

To index relevant markers of allostatic load (i.e., life 

stress) in the current sample, we conducted an 

exploratory factor analysis (EFA) to define a latent 

variable of allostatic load using a compilation of metrics 

that are known to contribute to overall life stress and 

health. We began with a set list of seven measurements 

and progressively removed individual variables based 

on poor loadings (λ > .20), and overall model fit. 

Criteria for good model fit included a non-statistically 

significant chi square, a root mean squared error of 

approximation (RMSEA) < .06, a comparative fit index 

(CFI) > .95, and a standardized root mean squared 

residual (SRMR) < .08 based on standards in the 

literature [91]. The best-fitting model was used to 

define a latent variable for which an allostatic load 

score was extracted per participant. Modeling was 

completed using Mplus (Version 8.1). 

 

We began by fitting a latent variable defined by alcohol 

use (Alcohol Use Disorders Identification Test—

Composition Score (AUDIT-C)), relative age 

acceleration, depression (Beck Depression Index total 

score), number of self-reported declines in activities of 

daily living (ADL), body mass index (BMI), household 

income, and years of education. Briefly, alcohol use 

was defined using the AUDIT-C [92], which contains 

items that reflect the amount and/or frequency of 

current and past alcohol use during the past year. Thus, 

participants with higher scores are defined as heavy 

alcohol users with scores of four or more for men and 

three or more for women being considered clinically-

relevant heavy alcohol use. In regard to depression 

symptom severity, we used the Beck Depression 

Inventory-II (BDI-II [93]), which requires participants 

to answer questions regarding the presence of 

depressive symptoms within a two-week period, with 

higher scores indicative of greater symptom severity. 

Regarding ADL, these scores were determined based on 

self-report declines in the participant’s ability to carry 

out daily tasks (e.g., dressing, eating, personal hygiene, 

etc.). Similar to our other measures, higher ADL scores 

reflected greater perceived decline in performance of 

daily tasks. Income and education were reverse-coded 

such that increasing values reflected lower education 

and income, and thus were indicative of greater stress 

risk. Importantly, all measures included in the EFA 

were treated as continuous variables of potential life 

stress. The resultant latent variable yielded allostatic 

load scores in which higher values indicated more 

allostatic load (i.e., greater life stress). The initial EFA 

based on all seven life stress factors indicated a single-

factor solution with excellent fit (χ
2
(14) = 14.92,  

p = .38; RMSEA = .03, 90% CI [.00, .12]; CFI = .96; 

SRMR = .06). However, AUDIT-C, relative age 
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acceleration, and income all loaded poorly onto the 

factor (λ’s = -.009 to .032). Excluding these three 

variables yielded a superior EFA solution, still yielding 

a single factor (λ’s = .22 to .80) with excellent overall 

model fit (χ
2
(2) = 2.03, p = .36; RMSEA = .01, 90% CI 

[.00, .23]; CFI = .99; SRMR = .04). Thus, our 

empirically-defined sample-specific quantification of 

allostatic load was comprised of depression symptom 

severity, total years of education, perceived declines in 

ADL, and BMI, with higher values indicative of greater 

current life stress (Figure 1). An allostatic load score 

was extracted per participant using the structure of this 

final EFA solution. 

 

Statistical analyses  

 

To evaluate the predictive capacity of life and biological 

markers of stress on age-related declines in somato-

sensory gating, we conducted a series of regressions 

with allostatic load (i.e., life stress), relative age 

acceleration (i.e., biological stress) and their interaction 

(i.e., cumulative stress; allostatic load score x relative 

age advancement) as predictors of the gating ratio 

derived from oscillatory and time-domain source 

imaging techniques, separately (Figure 1). In addition, 

we conducted follow-up analyses to examine the 

mechanism of action by which life and biological stress 

modulated the age-related decline in sensory gating. 

Specifically, we examined whether life and biological 

stress differentially predicted the neural response power 

to the first and second stimulation in our paired-pulse 

paradigm using structural equation modeling in Mplus 

(Version 8.1). Finally, we aimed to examine whether 

stress-induced changes to bottom-up sensory gating 

were predictive of higher order cognitive function 

assessed outside of the scanner using an extensive 

neuropsychological battery. Essentially, we computed a 

predicted gating ratio per participant accounting for 

levels of allostatic load, relative age acceleration and 

their interaction (i.e., using the regression equation 

described above), with higher values indicative of worse 

suppression of redundant sensory input. Next, we 

conducted a series of linear regressions of predicted 

gating ratios on six cognitive domains and global 

cognitive function (Z-scores). Of note, we used 

unadjusted Z-scores to compute domain-specific 

composites rather than demographically-normed ones 

due to the fact that age and years of education were 

important variables comprising our measures of relative 

age acceleration and allostatic load, respectively. 
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