
RESEARCH ARTICLE SUMMARY
◥

SYSTEMS BIOLOGY

A protein network map of head and neck cancer
reveals PIK3CA mutant drug sensitivity
Danielle L. Swaney, Dana J. Ramms, Zhiyong Wang, Jisoo Park, Yusuke Goto, Margaret Soucheray,
Neil Bhola, Kyumin Kim, Fan Zheng, Yan Zeng, Michael McGregor, Kari A. Herrington, Rachel O’Keefe,
Nan Jin, Nathan K. VanLandingham, Helene Foussard, John Von Dollen, Mehdi Bouhaddou,
David Jimenez-Morales, Kirsten Obernier, Jason F. Kreisberg, Minkyu Kim, Daniel E. Johnson,
Natalia Jura, Jennifer R. Grandis, J. Silvio Gutkind, Trey Ideker*, Nevan J. Krogan*

INTRODUCTION: Genome-sequencing efforts
over the past decade have profiled the genetic
landscape of thousands of tumors and solidi-
fied the concept of cancer as a highly hetero-
geneous disease. Evidence from these efforts
has revealed that thousands of genes are al-
tered in cancer, presenting a high degree of
complexity that can be challenging to translate
into amolecular or clinical understanding. For
example, head and neck squamous cell carci-
noma (HNSCC) is the sixth most common
malignancy worldwide and, despite a wealth
of data detailing the genetic alterations in this
tumor type, few targeted therapies are availa-
ble. Therefore, HNSCC presents an opportunity
to apply network biology approaches to iden-
tify new therapeutic targets and further our
understanding of existing ones.

RATIONALE:Network biology approaches have
been successfully applied to bridge the gap be-
tween genetic alterations and clinical outcomes;
however, such approaches rely heavily upon
existing public databases of molecular inter-
actions. With the growing recognition that
molecular interactions can vary substantially
across cellular contexts, the generation of net-
works in a cancer context represents a critical
approach to interpreting and predicting cancer
biology and its clinical outcomes.

To characterize the protein-protein inter-
action (PPI) landscape of HNSCC, we selected
proteins based on altered molecular path-
ways identified fromThe Cancer Genome Atlas
analysis of HNSCC tumors. Additional pro-
teins were added based on genes with recur-
rent pointmutations or a previously published
association with HNSCC. PIK3CA (the gene
encoding the alpha catalytic subunit of phos-
phoinositide 3-kinase) is the most commonly
mutated oncogene in HNSCC, and although
a few canonical mutations are well studied,
there are many noncanonical mutations that
are less well understood. We conducted af-
finity purification–mass spectrometry (AP-MS)
analysis across three cell lines for 31 genes
frequently altered in HNSCC, as well as 16
PIK3CA mutations. Two of the lines were
HNSCC cell lines with RNA profiles repre-
sentative of HNSCC patients, and one was an
esophageal, non-tumerogenic cell line.

RESULTS: This network analysis uncovered
771 interactions from cancer and noncancer-
ous cell states including wild-type and mu-
tant protein isoforms. We found that 84% of
these interactions had not been previously
reported in public databases, providing a
rich resource of new interactions with can-
cer relevance.

The data reveal a previously unidentified as-
sociationof the fibroblast growth factor receptor
(FGFR) tyrosine kinase 3withDaple, a guanine-
nucleotide exchange factor, resulting inactivation
of Gai and PAK1/2 to promote cancer cell migra-
tion. This signaling pathway and cell migration
can be effectively inhibited by FGFR inhibitors.
Furthermore, AP-MS analysis for 16 PIK3CA

mutations revealed differences in PPIs. PIK3CA
helical domainmutants, themost common in
HNSCC, preferentially interact with the HER3
receptor tyrosine kinase. Analysis of isogenic
xenografts in mice revealed that PIK3CAmu-
tant interaction specificity can determine the
in vivo response to HER3 inhibitors, with
PIK3CA helical domain mutations conferring
sensitivity to HER3 inhibitor treatment with
CDX3379 and the H1047R kinase domain mu-
tation conferring resistance.

CONCLUSION:We outline a framework for elu-
cidating tumor genetic complexity through
multidimensional PPI maps. This framework
is applied to enhance our understanding of
HNSCC and also breast cancer (see Kim et al.,
this issue). These works also suggest that a
vast network of PPIs are left to be discovered.
Such interactions, especially when combined
with datatypes in a hierarchical model (see
Zheng et al., this issue), can reveal newmech-
anisms of cancer pathogenesis, instruct the se-
lection of therapeutic targets, and informwhich
point mutations in the tumor are most likely
to respond to treatment.We anticipate that the
application of this framework will be valuable
to translating genetic alterations into a molec-
ular and clinical understanding of the under-
lying biology of many diseases.▪
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We outline a framework for elucidating tumor genetic complexity through multidimensional protein-
protein interaction maps and apply it to enhancing our understanding of head and neck squamous cell
carcinoma. This network uncovers 771 interactions from cancer and noncancerous cell states, including
WT and mutant protein isoforms. Prioritization of cancer-enriched interactions reveals a previously
unidentified association of the fibroblast growth factor receptor tyrosine kinase 3 with Daple, a guanine-
nucleotide exchange factor, resulting in activation of Gai- and p21-activated protein kinase 1/2 to
promote cancer cell migration. Additionally, we observe mutation-enriched interactions between the
human epidermal growth factor receptor 3 (HER3) receptor tyrosine kinase and PIK3CA (the alpha
catalytic subunit of phosphatidylinositol 3-kinase) that can inform the response to HER3 inhibition in
vivo. We anticipate that the application of this framework will be valuable for translating genetic
alterations into a molecular and clinical understanding of the underlying biology of many disease areas.

G
enome-sequencing efforts over the past
decade have profiled the genetic land-
scape of thousands of patient tumors
and solidified the concept of cancer as
a highly heterogeneous disease (1–8).

Evidence from these efforts has also revealed
that thousands of genes are altered in can-
cer, presenting an overwhelming degree of
complexity that has limited the power of con-
necting individual alterations with cancer pa-
tient phenotypes. To facilitate interpretation,
powerful network biology approaches have
been developed in which protein network
knowledge is used to aggregate individual
tumor mutations and, on the basis of altered

networks, to predict patient survival and re-
sponse to therapy (9–19). Such network-based
approaches rely strongly on existing databases
of molecular interactions. To date, publicly
available human protein-protein interaction
(PPI) networks have been populated primarily
by systematic efforts either without human
cellular context (yeast two-hybrid) (20, 21) or
by affinity purification–mass spectrometry
(AP-MS) (22–24) in workhorse cell lines that
lack cancer context, such as human embryonic
kidney (HEK) 293T cells. With the growing
recognition that such PPIs can vary highly
across cellular contexts (25), the generation
and incorporation of physical and functional
networks in a cancer context likely repre-
sents a critical component to interpreting
and predicting cancer biology and its clinical
outcomes (26).
To explore the utility of PPI maps generated

in a cancer context, we conducted AP-MS ex-
periments to map protein networks in the
context of head and neck squamous cell car-
cinoma (HNSCC) guided by analyses such as
that from The Cancer Genome Atlas (TCGA).
HNSCC is a cancer affecting squamous muco-
sal epithelial cells in the oral cavity, pharynx,
and larynx, and is estimated to be the sixth
most common malignancy worldwide (27).
Despite a wealth of data detailing the genetic
alterations in this tumor type (7), only two types
of targeted therapies are presently available
(27). Therefore, HNSCC presents an opportu-
nity to apply emerging quantitative systems

approaches to both identify new therapeutic
targets and to further our understanding of
existing targets such as PIK3CA. PIK3CA is the
most commonly mutated oncogene in HNSCC
and encodes p110alpha (p110a), the catalytic
subunit of phosphatidylinositol 3-kinase (PI3K).
A hallmark of numerous tumor types, hyper-
activation of PI3K can be directly attributed
to either amplification or mutation of PIK3CA
and results in activation of theAkt/mammalian
target of rapamycin (mTOR) pathway.Although
the function of canonical PIK3CA mutations
(e.g., E542K,E545K, andH1047R) iswell studied,
much remains to be learned about how the
numerous noncanonical mutations regulate
PIK3CA interactions and function (28–30).
Here, we present a comparative AP-MS anal-
ysis across three cell lines for 31 genes fre-
quently altered inHNSCC, including 16PIK3CA
mutations.

Mapping of the HNSCC interactome

To characterize the PPI landscape of HNSCC,
we selected proteins on the basis of altered
molecular pathways identified from the TCGA
analysis of HNSCC tumors (Fig. 1A) (7). Ad-
ditional proteins were added based on genes
with recurrent pointmutations or a previously
published association with HNSCC (31–34).
In total, we selected 33 protein baits, of which
31were experimentally tractable (see themate-
rials and methods and table S1). Ninety-nine
percent of HNSCC patients harbor an altera-
tion in one or more of these proteins (Fig. 1A).
For those baits with recurrent point muta-

tions, both the wild-type (WT) and mutant
forms of the protein were tagged, purified,
and analyzed. Each bait was expressed as a
3xFLAG-tagged protein under the control of
a doxycycline-inducible promoter in biological
triplicate in three separate cell lines (Fig. 1B).
We selected twohumanpapillomavirus (HPV)–
negativeHNSCC cell lines (SCC-25 and CAL-33)
that harbormany genetic alterations present
in the HNSCC patient population (Fig. 1A) and
that have previously been shown to have RNA
profiles highly correlatedwith those ofHNSCC
patients (Spearman correlation = 0.66 and
0.69 for CAL-33 and SCC-25, respectively)
(7, 32, 34, 35). Additionally, an immortalized
nontumorigenic cell line, HET-1A, was used
from a similar anatomical location (esophagus)
for comparison. A previously described AP-MS
workflow was then used to identify PPIs from
these three cell lines (Fig. 1B) (36). We elected
to report a conservative and high-confidence
PPI (HC-PPI) map by requiring PPIs to pass
stringent criteria by two complementary
PPI scoring algorithms: SAINTexpress and
CompPASS (see the materials and methods)
(22, 37, 38). Using this workflow, a total of 771
HC-PPIs were identified involving 654 proteins
(Fig. 1B; fig. S1, A and B; and data S2 and S3),
for an average of 25 PPIs per bait gene.
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We and others have shown that alteration
profiles in cancer are organized intomolecular
networks in which the interaction partners of
frequently altered proteins incur a higher rate
of alteration than a random selection of genes
(9, 10, 39, 40). Thus, we tested whether our
HNSCC HC-PPI set was enriched for different

types of alterations measured in the HNSCC
TCGA cohort (see the materials andmethods).
Our dataset was indeed highly enriched for
preys with point mutations; however, this en-
richment was not observed for alterations in
mRNA expression or for chromosomal rear-
rangements (Fig. 1, C to E). Despite the overall

lack of enrichment for generic mRNA alter-
ations, we did find that PPIs from each cell
linewere significantly enriched inproteinswith
mRNA expression profiles that were prognostic
in TCGA for HNSCC (fig. S1C).
Of the 771 HC-PPIs detected, the majority

(84%) had not been previously reported in
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Fig. 1. Experimental design and workflow. (A) Alteration frequencies from the
HNSCC TCGA provisional dataset (n = 530 patients) for the 31 experimentally
tractable genes selected as AP-MS baits in this study. Proteins analyzed in this
study are listed, along with the percentage of patients with an alteration in
that gene/protein. Each patient is represented by a gray box colored based on
the occurrence and type of alteration(s) observed in that patient. Both the WT
and mutant protein sequence(s) were analyzed for the genes highlighted in
yellow. The genetic alteration types in the two cancer cell lines CAL-33 and
SCC-25 are also displayed. (B) Experimental workflow in which each bait was
expressed in biological triplicate in three cell lines and subjected to AP-MS
analysis. (C to E) Permutation test illustrating the frequency of CNVs (C), mRNA
alterations (D), and mutations (E) from randomly selected genes in the HNSCC

TCGA data. The white circle indicates the median of the random sampling, and
the gray bar represents ±1 SD. The frequency of alterations found in the prey
retrieved in this PPI dataset is indicated by the black circle. (F) Percentage of
HC-PPIs identified in a panel of public PPI databases [CORUM, BioPlex 2.0,
or BioGRID low-throughput and multivalidated, and IMEX (23, 85–87)].
(G) Clustering analysis of all HC-PPIs (n = 771) based on their PPI score,
which is an average of the confidence scores reported from SAINTexpress
and CompPASS (see the materials and methods for details). A PPI score of
1.0 represents the highest confidence in a PPI. (H) Venn diagram illustrating the
overlap in HC-PPIs among the three cell lines. For this analysis, only those
PPIs passing the HC-PPI filtering criteria by both SAINTexpress and CompPASS
were classified as an HC-PPI within an individual cell line.
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public PPI databases (Fig. 1F). This high per-
centage of new interactions likely reflects the
fact that there are differences across cellular
contexts for PPIs and that nearly all systematic
PPI analyses to date have been performed in
only HEK293T or HeLa cell lines (22–24). This
large number of new interactions, presumably
due to cell-type specificity, is also supported by
the observation that significant differences in
PPIs are observed even across the cell lines in
this study (Fig. 1G), with only 24HC-PPIs being
conserved across all cell lines analyzed (Fig.
1H and fig. S1D). Many well-studied cancer
proteins are included in the new interactions.
For example, in SCC-25 cells, we observed phys-
ical interactions between theproto-oncoprotein
MYC and each of two DNA repair proteins,
PARP1 and TOP1. MYC has previously been
shown to regulate PARP1 activity (41). The
MYC:PARP1 interaction is supported by pre-
vious studies reporting MYC:TOP1 (42) and
PARP1:TOP1 interactions (43).
Similarly, purification of tagged KEAP1 in

SCC-25 cells revealed an interaction with
AJUBA, a scaffolding protein involved in the
regulation of numerous cellular processes, in-
cluding negative regulation of Wnt/b-catenin
signaling (44). Until recently, AJUBA was not
associated with HNSCC; however, tumor ge-
nome analysis revealed that it is inactivated
in 7% of HPV-negative tumors (7). The KEAP1:
AJUBA interaction was further supported by
our identification of a physical connection in
HET-1A cells between KEAP1 and SQSTM1, a
known AJUBA interactor (45–48).

A statistical approach to evaluate cell-type
specificity of interactions

To identify interactions with relevance to can-
cer biology, we sought to compare PPIs across
cell lines and prioritize those that are seem-
ingly cancer enriched; i.e., those that exist in
both CAL-33 and SCC-25, the two HNSCC can-
cer cell lines, but are absent in the HET-1A
nontumorigenic cell line. However, a simple
overlap analysis of the sets of HC-PPIs iden-
tified by each cell line does not faithfully rep-
resent whether a PPI is shared. For example, a
PPI might erroneously appear to be specific for
a single cell line when it passes the threshold
for HC-PPIs in that cell line (i.e., a true posi-
tive) while falling slightly below the threshold
(i.e., false negative) in a second. Accordingly,
we developed a method for calculating dif-
ferential interaction scores (DISs) for each
PPI, with associated Bayesian false discov-
ery rates (BFDRs). This method is based on
the SAINTexpress score (37), which reports
on the probability of a PPI in a single cell
line given the AP-MS data. Here, quantitative
SAINTexpress probabilities were combined
across the three cell lines to generate the DIS
(see the materials and methods), allowing for
the stratification of PPIs that are enriched in

the two cancer cell lines or the noncancer-
ous cells.
Application of the DIS method to our HC-

PPIs identified interactions enriched inHNSCC
cells as well as those enriched in the HET-1A
nontumorigenic background (Fig. 2, A and
B, and data S4). For example, the interaction
profile for cyclin D1 was substantially re-
wired between HNSCC and HET-1A (Fig. 2C).
Cyclin D1, encoded by the CCND1 gene, is one
of the most commonly altered oncogenes in
HNSCC, being amplified in 31%ofHPV-negative
HNSCC tumors (7). Cyclin D1 interacted with
the cyclin-dependent kinase inhibitorsCDKN1A
(p21) and CDKN1B (p27) in all three cell lines,
but preferentially interacted with multiple
cyclin-dependent kinases (CDKs) only in
HNSCC cells. This interaction preference was
not unexpected because CCND1:CDK4/6 in-
teractions are known to be essential for cell
proliferation and thus can contribute to un-
controlled cell cycle progression in cancer cells
(49). Consistent with these findings, we ob-
served that theHNSCC cell lines had increased
growth rates compared with HET-1A (fig. S2A).
We also found a previously uncharacterized

interaction of cyclin D1 with components of
the PI3K complex (PIK3CA and PIK3R1/2) ex-
clusively detected by AP-MS in HET-1A cells,
an interaction that was further validated by a
proximity ligation assay in HET-1A cells ex-
pressing FLAG-tagged CCND1 (fig. S2, B to D).
Finally, we evaluated the cellular localization
of the interaction because cyclin D1 is usually
associated with the nucleus, whereas PI3K is
primarily associated with the cytoplasm and
plasma membrane. We observed the interac-
tion to be 80% cytoplasmic in localization (fig.
S2E), indicating a noncanonical localization of
cyclin D1, which has been observed previously
in certain cell types (50). The cell-type enrich-
ment of this particular interaction, along with
several others, is further supported by targeted
proteomic analysis (fig. S3A).We also eval-
uated the relationship between cell-type PPI
enrichment and both bait and prey expression
levels (fig. S3, B to D). In general, we found
virtually no correlation between these factors,
suggesting that a diversity of factors likely in-
fluences PPI cell-type specificity.

Identification of a new FGFR3:Daple
interaction that regulates Gai-mediated
migratory signaling

To uncover cancer-enriched interactions, we
ranked PPIs by their DIS (Fig. 2D), focusing on
those PPIs with greatest enrichment (DIS >
0.5) or depletion (DIS < –0.5) in the HNSCC
cell lines (Fig. 2E). This analysis prioritized a
previously unknown interaction between fi-
broblast growth factor receptor 3 (FGFR3)
and CCDC88C, which was observed in both
CAL-33 and SCC-25 cells but not in HET-1A
cells (Fig. 3A). FGFR3 is a receptor tyrosine

kinase (RTK) that recognizes FGF and medi-
ates cellular proliferation, survival, and differ-
entiation. CCDC88C, also known as Daple, is a
228-kDa scaffolding protein with roles in me-
diating both canonical and noncanonical Wnt
signaling (51–54). Daple regulates Wnt through
its interactionwith the proteinDisheveled (Dvl)
(51) and it can also interact with RTKs, includ-
ing enhanced growth factor receptor (EGFR)
and ERBB2 [also known as human epidermal
growth factor receptor 2 (HER2)] (52), leading
to its phosphorylation and dissociation from
Dvl (52). Upon this dissociation, Daple trans-
locates from the cytoplasm to the plasmamem-
brane, where it functions as a GEF to activate
G proteins (Gai) and promote Akt signaling,
cell migration, and invasion (Fig. 3B) (55). We
detected the previously characterized ERBB2:
Daple interaction (52) in CAL-33 cells, in ad-
dition to the FGFR3:Daple interaction which
we hypothesizedmay function to promote Gai
activation in an FGFR3-dependent manner.
To test this idea, we used a split luciferase

assay (Gai NanoBiT) in which signal is lost
upon activation of Gai and dissociation from
Gbg (Fig. 3C). As a control, we first transfected
an engineered Designer Receptor Exclusive-
ly Activated by Designer Drugs (DREADD)
receptor and stimulated the resulting cell
populationwith theDREADD ligand clozapine-
N-oxide (CNO). We observed robust Gai activa-
tion and corresponding loss of luciferase signal
in both the CAL-33 and HET-1A cell lines (fig.
S4A). Next, we observed that in the CAL-33
cells, where we had detected the interaction
between FGFR3 and Daple, FGF stimulation
similarly induced Gai activation; however, no
such activation occurred in HET-1A cells (Fig.
3D). Using small interfering RNA (siRNA)
knockdowns, we found that Gai activation in
CAL-33 cells was dependent on both FGFR3
and Daple (Fig. 3, D and E, and fig. S4B). FGF
also rapidly induced ERK phosphorylation in
both CAL-33 and HET-1A cells, consistent
with canonical RTK signaling (fig. S4C). FGF-
mediatedGai activation in CAL-33 cells results
in downstreamphosphorylation of p21-activated
protein kinase 1/2 (PAK1/2), an event not ob-
served inHET-1A (Fig. 3F), and this increased
phosphorylation was dependent upon both
FGFR3 and Daple (fig. S4, D and E). PAK1/2
activity is known to promote cell migration
and invasion and is associated with aggressive
tumor behavior and poor patient prognosis in
HNSCC (56). Thus, we also evaluated whether
FGF stimulation promoted cell migration, and,
indeed, a statistically significant increase was
observed (fig. S4, F and G). The FGF-induced
migration was not blocked by mitomycin C
treatment, suggesting that the effects of FGF
promoted cellmigration andwere independent
of growth factor–stimulated proliferation.
Next, we evaluated whether this pathway

could be inhibited by the FGFR inhibitor
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infigratinib. We found that infigratinib pre-
vented PAK1/2 phosphorylation upon FGF
stimulation (Fig. 3G and fig. S4H) and also
prevented cell migration (Fig. 3, H and I)
in CAL-33 cells. To determine whether these

observations may be more broadly applicable
in more cell types, we first looked at FGFR3
and Daple expression in all upper airway and
esophageal cell lines using DepMap (57). We
found that both cancer cell lines in which we

detected the FGFR3:Daple interaction had
above average Daple expression (Fig. 3J).
Stratification of cell lines by high and lowDaple
expression revealed that cell lines with high
Daple expression were more sensitive to a pan
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Fig. 2. DIS analysis of the HNSCC-enriched and -depleted interactome.
(A) Interactome of the union of all HC-PPIs detected across all cell lines. Edges are
colored based on their DIS, with pink edges representing PPIs that are enriched in
HNSCC (both SCC-25 and CAL-33) compared with HET-1A cells and teal lines
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Fig. 3. An HNSCC-enriched FGFR3:Daple interaction mediates activation
of cell migratory proteins. (A) Differential scoring analysis of the FGFR3
interactome highlighting CCDC88C (Daple) as an HNSCC-enriched interaction
partner to both FGFR3 and ERBB2 (HER2). (B) Activation of RTKs can disrupt
the interaction between Dvl and Daple, allowing Daple to function as a GEF for
Gai. GTP binding causes dissociation of the G protein, leaving Gbg subunits
free to activate migratory signaling through Rac and PAK. (C) NanoBiT
biosensor measures Gai activation through dissociation of the luciferase split
between Ga and Gbg. CNO mediates canonical GPCR signaling through the
synthetic Gai-coupled DREADD receptor. FGF mediates HNSCC-specific
signaling through FGFR3 and Daple. (D) Luminescence measured in CAL-33
and HET-1A cells transfected with Gai NanoBiT and siRNA (control, FGFR3, or
Daple) and stimulated with FGF (10 ng/ml) (*P < 0.05 compared with the
vehicle-treated group). (E) Immunoblot analysis of CAL-33 cells subject to
siRNA knockdown. (F) PAK1/2 autophosphorylation measured by immunoblot
analysis over a time course of FGF stimulation (0, 5, 10, 30, and 60 min) in

CAL-33 and HET-1A cells. (G) PAK1/2 autophosphorylation measured by
immunoblot analysis in CAL-33 cells stimulated with FGF (10 ng/ml) and/or
treated with a 0.5 mM concentration of the pan FGFR inhibitor infigratinib
(*P < 0.05 compared with the vehicle-treated group). (H and I) A vertical scratch
was introduced to fibronectin-plated CAL-33 cells and cells were stimulated
with FGF (10 ng/ml) and/or treated with 0.5 mM infigratinib. Replicate scratch
closures were quantified [*P < 0.05, **P < 0.01 compared with the vehicle-
treated group; (H)] and images were taken 0 and 24 hours after FGF stimulation
(I). Scale bar, 250 mm. (J) Daple and FGFR3 expression plotted for all upper
airway and esophageal cell lines in DepMap (57), with the two cancer cell lines
used in this study highlighted in red. (K) Sensitivity of cell lines with high or
low Daple expression to either a FGFR1 inhibitor (sorafinib) or a FGFR1/2/3
inhibitor (AZD4547) as quantified by area under the curve (AUC) (*P < 0.05).
Cell lines were selected from (J), and for those with corresponding drug
sensitivity data, the top five Daple-expressing cells (High Daple) or the bottom
five Daple-expressing cells (Low Daple) were used.
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Fig. 4. PIK3CA mutant interactome. (A) Overview of the PIK3CA-signaling
pathway, which is often stimulated by RTKs that interact with PIK3CA to
stimulate RAS/Raf– or Akt/mTORC1–mediated downstream signaling.
(B) Analyzed PIK3CA mutants and their frequency in HNSCC tumors from
TCGA. Asterisk (*) denotes mutations annotated as oncogenic in OncoKB
(88). Graph bars corresponding to each mutation are color coded to indicate
their localization within the p110a domain (as indicated in the legend in the
top right corner). (C) Selected PIK3CA mutations were mapped on the

structure of PI3K [Protein Data Bank (PDB) identifier: 4L23] (89) by
highlighting the mutated residues as red spheres. (D) Quantification of PPIs
for all PIK3CA HC-PPIs detected in the SCC-25 cell line (all cell lines are
displayed in fig. S5). (E) Diagram of a magnified view of PI3K illustrating a
salt bridge formed between K11 and E81 (PDB: 4L23). (F) Magnified view
depicting interactions made by G1007 in PI3K (PDB: 4L23). (G) Diagram
of different mutation-induced PI3K activation mechanisms and their
respective HER3-binding preferences.
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FGFR inhibitor (FGFR1/2/3) than those with
low Daple expression (Fig. 3K). There was no
difference in sensitivity to inhibition of FGFR1
among cells with high and low Daple expres-
sion, suggesting that the inhibition of FGFR3
may be particularly important for cells with
high Daple expression. In total, these results
support a mechanism for regulating Gai activ-
ity through FGFR3 and Daple, resulting in
increased PAK1/2 activation and cell migra-
tion signaling that can be effectively inhibited
using FGFR inhibitors.

Quantitative analysis of the mutant
PIK3CA interactome

PI3K is a multiprotein kinase complex con-
sisting of a p110alpha (p110a) catalytic subunit
that is encoded by the PIK3CA gene and a
p85-regulatory subunit. Engagement of the
SH2 domains of p85 with phosphorylated YxxM
motifs is essential for PI3K signaling by releas-
ing p110a autoinhibition andmediating recruit-
ment of PI3K to the plasma membrane (58).
Upon activation, PI3K becomes a potent medi-
ator of cellular signaling, interactingwith both

intracellular small GTPases (e.g., RAS pro-
teins) as well as receptor kinases (e.g., EGFR)
to regulate downstream signaling primarily
through the Akt/mTOR pathway (Fig. 4A).
We selected 16 different PIK3CA mutations
observed inHNSCC patients and quantitatively
assessed their effects on p110a interaction part-
ners (Fig. 4B, fig. S5, and data S5). These muta-
tions were distributed across multiple domains
within the p110a protein (Fig. 4C).
Examining the PPI profiles of WT PIK3CA

and the corresponding mutants in SCC-25 cells
revealed a high similarity in interaction pat-
terns for five of the PIK3CAmutants, E110DEL,
V344G, E542K, E545G, and E545K (Fig. 4D),
driven by a strong increase in interaction of
these mutants with three proteins, ERBB3
(HER3), GAB1, and IRS1. All of these prey
proteins contain multiple YxxM motifs, repre-
senting consensus binding sites for the two
SH2 domains (nSH2 and cSH2) located in the
PI3K p85-regulatory subunit (59). The inter-
action between phosphorylated tyrosine YxxM
motif and the SH2 domain serves to release
the PIK3CA autoinhibition and recruit it to the

plasma membrane to enable PIP2 phospho-
rylation. The helical domain mutants (E545K,
E545G, and E542K) are poised to disrupt the
interaction of p110a with its autoinhibitory
p85 subunits, making the p85 nSH2 domain
more readily available for interaction with
phosphorylated YxxMmotifs. Outside of this
primary cluster ofmutations, we also observed
other mutation sites (e.g., K111E and G1007R)
with a strong increase in HER3 binding. In
these cases also, mutations are expected to
compromise the p85-imposed inhibition of the
p110a catalytic module, either by disruption
of the ABD domain relative to the inhibitory
iSH2 module of p85 (K111E; Fig. 4E) or by dis-
ruption of a hydrophobic cluster coordinat-
ing amino acids frommultiple p110a domains
(G1007R; Fig. 4F).
HNSCC tumors display a high preference

for PIK3CA helical mutations compared with
kinase domain mutations (Fig. 5A). Our results
suggest that PIK3CA mutations that disrupt
the autoinhibition of PI3K (e.g., helical domain
mutations) may rely on upstream signals that
presentmultiple phosphorylated YxxM sites for
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Fig. 5. In vivo targeting of HER3 in the context of different PIK3CA
mutants. (A) Bar chart representing the ratio of helical domain (E545 and
E542) mutations compared with kinase domain mutations (H1047) across
TCGA PanCancer Altas studies represented in cBioPortal (90). Line graph
shows the mRNA expression (RSEM) for NRG1 across the same studies.
(B) Correlation of Log2 HER3 interaction levels from AP-MS experiments
and Log2 HER3 Y1197 phosphorylation levels from immunoblot analysis.
All values are normalized by FLAG-PIK3CA levels in their respective
experiments. Mutations marked in red were selected for in vivo experiments.
(C and D) CAL-27 cells expressing inducible PIK3CA variants were
transplanted into athymic nude mice. Mice were fed with doxycycline to

induce PIK3CA expression. When tumor volumes reached ~100 mm3, mice
were treated with vehicle (PBS) or CDX3379 (10 mg/kg, twice a week) for
~15 days, as indicated. Shown are tumor growth curves (C) and representative
tumor images (D), (****P < 0.0001 compared with the control-treated
group). (E) Quantification of immunoblot analysis of signaling events in
the same CAL-27 cells in vitro. PIK3CA variant expression was induced by
doxycycline (1 mg/ml in culture medium), cells were treated with CDX3379
(1mg/ml for 1 hour), and lysates were analyzed by immunoblotting as
indicated. Densitometry analysis of Western blots was performed using
ImageJ. Data are represented as mean ± SEM, with n = 3 in each group.
(*P < 0.05 compared with the control-treated group).
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signaling (Fig. 4G). In HNSCC, this signal is
likely to be an activated HER3 receptor. In
support of this synergy, HNSCC tumors
have the highest mRNA levels for the HER3-
activating ligand neuregulin-1 (NRG1) across
TCGA PanCancer studies with PIK3CA muta-
tions (Fig. 5A). In vitro analysis of the SCC-25
mutant PIK3CA cell lines also demonstrated a
strong positive correlation between the inter-
action of individual PIK3CA mutants with
HER3, as measured by AP-MS, and HER3
activation, as measured by immunoblotting
of Y1197 phosphorylation (r = 0.75; Fig. 5B
and fig. S6A). Furthermore, the increased
interaction between helical domain PIK3CA
mutants and HER3 was conserved across
several additional cell lines tested (fig. S6, B to
D). By contrast, kinase domain mutations are
known to innately associate with the mem-
brane and therefore to be less dependent on
other proteins for membrane recruitment
(60). Indeed, we observed low levels of HER3
interaction and phosphorylation (Figs. 4D and
5B and fig. S6, B toD)with theH1047Rmutant,
suggesting that it might drive oncogenesis in
a HER3-independent fashion. We therefore
hypothesized that HNSCC tumors harboring
PIK3CA helical domain mutations may be
selectively sensitive to HER3 inhibitor treat-
ment, whereas the kinase domain mutation
(H1047R) may confer resistance to HER3 in-
hibition in vivo.
To test this hypothesis, we generated iso-

genic CAL-27 cell lines overexpressing WT,
E542K, E545K, or H1047R mutant isoforms
of PIK3CA. CAL-27 cells were used because
they are diploid for WT PIK3CA. We injected
these engineered lines into the flanks of athymic
nude mice (see the materials and methods) and
then treated themicewith either saline (control)
or the HER3 monoclonal inhibitor CDX3379
over the course of 15 days. Tumor size was
monitored, and, as expected, tumors harboring
theH1047Rmutant were resistant to CDX3379.
Unexpectedly, both the helical domainmutants
E542K and E545K and WT PIK3CA were sen-
sitive to CDX3379 treatment, resulting in almost
complete inhibition of tumor growth (Fig. 5,
C and D, and fig. S6E). From these results, we
hypothesize that even in the presence of WT
PIK3CA, low levels of HER3 binding andHER3
phosphorylation are sufficient and represent
an essential mechanism for the recruitment
of PIK3CA to the membrane and subsequent
PI3K activation. These results underscore that
only HNSCC patients carrying PIK3CA variants
that are still dependent on association with
HER3 (WT and helical domain mutants) will
likely benefit fromHER3-targeted therapeutics.
To further investigate the mechanisms re-

gulating these in vivo phenotypes, we assessed
the levels of phosphorylatedAkt, a downstream
mediator of PI3K signaling, in CAL-27 cells.
For mutants in which CDX3379 treatment in-

hibited tumor growth in vivo, in vitro treat-
ment resulted in significant down-regulation
of phosphorylated Akt levels, whereas no
such decrease was observed for the CDX3379-
resistant H1047R-expressing cells (Fig. 5E and
fig. S6F).

Discussion

To truly understand the complexities of the
cell, it has been hypothesized that one would
need a list of the protein machines, or com-
plexes, that perform all of its functions (61).
Obtaining such a map would be instrumental,
not only for understanding how a healthy
cell functions, but also for understanding how
mutations affect these machines and the path-
ways in which they function (62) in disease
states such as cancer. Using this premise as a
motivation, in this study, we examined the
physical landscape of PPIs targeting genes
genetically linked to HNSCC, revealing hundreds
of new PPIs. We observed that these inter-
actions were highly specific to the cell line of
study and that mutations in key cancer genes
affected PPI interactions in ways that can
provide important mechanistic insight and
inform response to targeted treatments. In
support of previous observations (25) and
our accompanying manuscript (63), these
results suggest the exciting premise that there
remains a vast network of PPIs left to discover
beyond the thousandsannotated fromHEK293T
and HeLa cells (22–24). We anticipate that
developments in high-throughput protein
complex determination, such as coelution (64),
proximity labeling (65, 66), and cross-linking
MS (67), will enable the rapid advancement of
systematic PPI mapping in a diverse array of
cancer cell contexts.
An important goal of cancer therapy is to

identify drug targets that are applicable across
many patients and that achieve high speci-
ficity for cancer cells among a heterogeneous
tumor cell population. In the context of PPIs,
this goal requires moving beyond simply
cataloging PPIs toward robust comparative
analysis of PPIs across cellular contexts. For
this purpose, we have created and demon-
strated the value of a DIS to statistically com-
pare PPIs across contexts, which will aid in
understanding the underlying biology behind,
not just HNSCC but also that of other cancers
and disease in general, as evidenced by our
application of this approach for breast cancer
(63). Although the DIS revealed a subset of
interactions to be cancer enriched in the three
cell lines used in our study, future analysis in
additional cell lines would be beneficial to
further support these observations.
One interaction uncovered by our DIS ap-

proach was a connection between the FGFR3
receptor tyrosine kinase and the GEF Daple,
which was seen exclusively in the cancer cell
lines. Our findings build upon previous work

by demonstrating that FGF stimulation can ac-
tivate Gai in a Daple- and FGFR3-dependent
manner, which results in activation of PAK1/2
kinases and cell motility. PAK1 expression is
highly correlated with aggressive tumor behav-
ior and poor patient prognosis in HNSCC
(56, 68). Our work becomes increasingly im-
portant as FGFR inhibitors progress toward
the clinical setting. Phase II clinical trials with
rogaratinib, an FGFR inhibitor, are under-
way for HNSCC patients with FGFR1/2/3
mRNA overexpression (
www.clinicaltrials.gov NCT03088059) after
phase I trials demonstrated a 67% objective
response rate for solid tumors with FGFR
mRNA overexpression (69). Additionally, a
complete response was observed in a meta-
static HNSCC tumor with multiple FGFR
amplifications, including FGFR3, when
treated with a pan-FGFR inhibitor (70). Fur-
ther workmay determine whether the FGFR3:
Daple interaction results in frequent coupling of
FGFR and PAK1/2 activity in HNSCC patients
and if other cancer types also exploit this
signaling mechanism. More direct studies are
necessary to determine the extent to which
FGFR and PAK1/2 activity contribute to clin-
ical outcomes, and PAK1/2 activity could serve
as an additional biomarker of patients ben-
efiting from FGFR-targeted therapy.
Our results pertaining to PIK3CA also high-

light that oncogenicmechanisms of individual
mutations in cancer genes can be reflected
in their differences in the corresponding PPIs
and that these differences can be exploited
for therapeutic benefit. We postulate that
the mechanism for the selectivity that we
uncovered using PIK3CA mutants lies in the
dependence on HER3 signaling that the
helical domain mutations maintain. These
features of PI3K mutants seemingly contra-
dict previous studies showing that addition
of the phosphorylated YxxMmotif–containing
peptides increases the in vitro catalytic activity
of the H1047R mutant but not that of the
helical domain mutants (71). However, we
hypothesize that phosphorylated RTK tails are
necessary, not for activation of the helical
domain PI3Kmutants, but for their recruitment
to the plasma membrane, where they need to
interact with RasGTP for full activation (60).
This strong dependence renders cells with such
mutations sensitive toHER3 inhibition.We also
identified a number of other PI3K mutants
that share HER3-binding features with the
helical domain mutants, and we predict that
their oncogenic potential will also be HER3
dependent (Fig. 4G). Our data also indicate
that upstream PI3K activators with a high den-
sity of tyrosine phosphorylation sites, represented
by theYxxMconsensusmotifs, suchasHER3and
IRS1/2, will be particularly efficient in synergizing
with the PI3K helical domain mutants.
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Clinical inhibition of HER3 in HNSCC
patients is currently being pursued in phase II
clinical trials with the monoclonal antibody
CDX3379 (
www.clinicaltrials.gov identifier
NCT03254927) (72). This drug locks the
HER3 extracellular domain in an inactive
configuration (73) and prevents not only
dimerization with coactivating RTKs (e.g.,
HER2) but also activation of HER3 by
neuregulins (e.g., NRG1). These properties
make HER3 a particularly promising target
because NRG1 is expressed at higher levels
in HNSCC than in any other tumor type (74).
The results presented here further suggest
that HER3 inhibitors present an opportunity
to potently target specific PIK3CA mutant
tumors, a utility that has not been evaluated
previously. This is important because PIK3CA
is one of the most commonly mutated
oncogenes in HNSCC (7), but direct targeting
of PIK3CA in the clinical setting has been
limited by toxicity (75), likely because of its
pleiotropic roles in cancer and maintenance of
normal cell states. In light of our findings,
patient preselection, such as exclusion of PIK3CA
H1047Rmutation carriers and inclusion of those
harboring helical domain mutants, may be a
valuable consideration as future phases of
clinical trials proceed.
In summary, this study and the accom-

panying papers in this issue (63, 76) outline a
framework for elucidating genetic complexity
through multidimensional maps of cancer cell
biology. They also demonstrate that such maps
can reveal mechanisms of cancer pathogenesis,
instruct the selection of therapeutic targets,
and inform which point mutations in the
tumor are most likely to respond to treatment
(26, 77). Therefore, we anticipate that the gen-
eration and incorporation of cancer-specific
physical and functional networks may rep-
resent a critical component to interpret and
predict cancer biology and its clinical outcomes.
Finally, the framework described here applies
not only to cancer but also to many other
genetically defined disease areas as well.

Materials and Methods
Reagents and resources

Catalog numbers for all key reagents and re-
sources are listed in table S8.

Bait cloning

Baits were cloned using the Gateway Cloning
System (Life Technologies) into a doxycycline-
inducible N-term or C-term 3xFLAG-Tagged
vectormodified to beGateway compatible from
the pLVX-Puro vector (Clontech) by theKrogan
laboratory (see data S6). Point mutant baits
were cloned through site-directedmutagenesis.
All expression vectors were sequence validated
(Genewiz).

Cell culture, lentivirus production, and stable
cell line generation

HEK293T (ATCC, CRL-3216) and CAL-33 were
maintained in Dulbecco’s modified Eagle’s
medium (DMEM;Corning) supplementedwith
10% fetal bovine serum (FBS; Invitrogen) and
1% penicillin-streptomycin (Corning). HET-1A
was maintained in broncho-epithelial cell
grownmedium (Lonza), consisting of broncho-
epithelial basal medium with the additives
of the Bullet kit except GA-1000 (gentamycin-
amphotericin B mix). SCC-25 was maintained
in DMEM/F12 (Corning) with 10% FBS (Invi-
trogen), 1% penicillin-streptomycin (Corning),
and400ng/ml hydrocortisone (Sigma-Aldrich).
HET-1A cells were obtained from American
Type Culture Collection and SCC-25 was ob-
tained from Thomas Carey (University of
Michigan). CAL-33 cells were provided by
G. Milano (University of Nice, Nice, France).
All cells weremaintained in a humidified 37°C
incubator with 5% CO2. Stably transduced
HET-1A, SCC-25, and CAL-33 cell lines were
maintained in puromycin (2, 2.5, and 0.7 mg/ml,
respectively). Bait expression was induced
by 1 mg/ml doxycycline for 40 hours. All cell
lines were authenticated by the University of
California–Berkeley Cell Culture Facility.
Lentivirus was produced for each bait by

packaging 5 mg bait vector, 3.33 mg of Gag-
Pol-Tat-Rev packaging vector (pJH045 from
J. Hultquist), 1.66 mg of VSV-G packaging
vector (pJH046 from J. Hultquist) with 30 ml
of PolyJet (SignaGen). After incubating at room
temperature for 25 min, DNA complexes were
added dropwise to HEK293T cells (15-cm plate,
~80% confluency). Lentivirus-containing super-
natant was collected after 72 hours and filtered
through a 0.45-mm polyvinylidene difluoride
(PVDF) filter. Lentivirus particles were pre-
cipitatedwith PEG-6000 (8.5% final) andNaCl
(0.3 M final) at 4°C for 4 to 8 hours. Particles
were pelleted by centrifugation at 2851g for
20 min at 4°C and resuspended in Dulbecco’s
PBS for a final volume of ~800 to 1000 ml.
Stable cell lines were generated by trans-
ducing a 10-cm plate (~80% confluency) with
200 ml of precipitated lentivirus for 24 hours
before selecting with puromycin for a mini-
mum of 2 days.

Affinity purification

One 10-cm plate of cells (~80% confluency)
was washed with ice-cold Dulbecco’s PBS and
lysed with 300 ml of ice-cold lysis buffer con-
taining 50 mM Tris, pH 7.4, 150 mM NaCl,
1 mMEDTA, 0.5%NP40, 1 mMdithiothreitol
(DTT), 1× protease inhibitor cocktail (Roche,
complete mini-EDTA free), and 125 U of
benzonase/ml. Lysates were flash-frozen
on dry ice for 5 to 10 min, followed by a 30 to
45 s thaw in 37°C water bath with agitation
and rotation at 4°C for 15 min. Lysate was

clarified by centrifugation at 13,000g for 15min
at 4°C.A30-ml lysate aliquotwas saved for future
bicinchoninic acid assay and Western blot.
For FLAG purification, 25 ml of bead slurry

(Anti-Flag M2 Magnetic Beads; Sigma-Aldrich)
was washed twice with 1 ml of ice-cold wash
buffer (50 mM Tris, pH 7.4, 150 mM NaCl,
1 mM EDTA), and all of the remaining lysate
was incubated with the anti-FLAG beads at
4°C with rotation for 2 hours. After incuba-
tion, flow-through was removed and beads
were washed once with 500 ml of wash buffer
with 0.05% NP40 and twice with 1 ml of wash
buffer (no NP40). Bound proteins were eluted
by incubating beads with 15 ml of 100 ug/ml
3xFLAG peptide in 0.05% RapiGest in wash
buffer for 15 min at room temperature with
shaking. Supernatants were removed and elu-
tionwas repeated. Eluates were combined and
10 ml of 8 M urea, 250 mM Tris, 5 mM DTT
(final concentration ~1.7 M urea, 50 mM Tris,
and 1 mMDTT) was added to give a final total
volume of ~45 ml. Samples were incubated at
60°C for 15 min and allowed to cool to room
temperature. IODO was added to a final con-
centration of 3 mM and the mixture was in-
cubated at room temperature for 45min in the
dark. DTT was added to a final concentration
of 3 mM before adding 1 mg of sequencing-
grade trypsin (Promega) and incubating at
37°C overnight. Samples were acidified to 0.5%
trifluoroacetic acid (TFA, pH<2)with 10%TFA
stock and incubated for 30minbefore desalting
on C18 stage tip (Rainin).

MS data acquisition and analysis

For AP-MS experiments, samples were resus-
pended in 15 ml of MS loading buffer (4%
formic acid, 2% acetonitrile) and 2 ml was
separated by a reversed-phase gradient over
a nanoflow 75-mm internal diameter × 25-cm
long picotip column packed with 1.9 mM C18
particles (Dr. Maisch). Peptides were directly
injected over the course of a 75-min acquisi-
tion into a Q-Exactive Plus mass spectrometer
(ThermoFisher Scientific) or over the course
of a 90-min acquisition into an Orbitrap Elite
mass spectrometer. RawMS data were searched
against the Uniprot canonical isoforms of the
human proteome (downloaded 21 March 2018)
using the default settings inMaxQuant (version
1.6.2.10), with a match-between-runs enabled
(78). Peptides and proteins were filtered to 1%
FDR in MaxQuant, and identified proteins
were then subjected to PPI scoring. To quantify
changes in interactions betweenWT andmutant
baits, we used a label-free quantification ap-
proach in which statistical analysis was per-
formed using MSstats (79) from within the
artMS Bioconductor R package. All raw data
files and search results are available from the
Pride partner ProteomeXchange repository
under the PXD019469 identifier (80, 81).
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DetailedMS acquisition andMaxQuant search
parameters are provided in table S7.

Targeted proteomic analysis

Targeted proteomic analysis of AP-MS sam-
ples was performed on a Thermo Q-Exactive
Plusmass spectrometer using the same high-
performance liquid chromatography condi-
tions as described for the original AP-MS
experiments. All peptide and fragment ion
selection and quantitative data extraction were
performed using Skyline (82). Quantitative
values were then imported into PRISM ver-
sion 8 software to perform normalization
by bait abundance and statistical testing (two-
tailed, unpaired t test).

PPI scoring

Protein spectral counts as determined by
MaxQuant search results were used for PPI
confidence scoring by both SAINTexpress
(version 3.6.1) (37) and CompPASS (version
0.0.0.9000) (22, 38). All PPI scoring was
performed separately for each cell line. For
SAINTexpress, control samples in which bait
protein was not induced by addition of doxy-
cyclinewere used. For CompPASS, a stats table
representing all WT baits was used. After
scoring, the CompPASS WD and Z-score were
normalized within a given bait for each cell
line. The total list of candidate PPIs was
filtered to those that met the following criteria:
SAINTexpress BFDR <0.05, WD percentile
by bait ≥0.95, and Zscore percentile by bait
≥0.95. PPIs passing all three of these criteria
were considered to be HC-PPIs. To enable
visualization and analysis of PPIs by confi-
dence score among these three criteria, we
also calculated a PPI score as follows: [(WD
percentile by bait + Z-score percentile by bait)/
2) + (1 – BFDR)]/ 2. This score places both
the PPI confidence from SAINTexpress and
CompPASS on a 0 to 1 scale, with 1 being
the highest confidence, and then takes the
weighted average of these confidence scores.

Permutation test

A permutation test was performed in which
genes were drawn from the list of all genes
detected in the global protein abundance
analysis of the parental cell lines. The null
distribution of the average number of samples
with variation was learned from 10,000 random
gene lists of equal size to the set of interacting
partners. This permutation test was performed
individually for mutations (excluding silent
mutations), copy number variations (CNVs),
and mRNA expression. The information for
observed variation of each gene is collected
from the TCGA head and neck cancer cohort
(firehose legacy; downloaded from
cbioportal.org/datasets).

Differential interaction scoring

To compare PPIs across cell lines, we de-
veloped a method for calculating a DIS and a
corresponding FDR using AP-MS data across
multiple cell lines. This approach uses the
SAINTexpress score (38), which is the prob-
ability of a PPI being bona fide in a single cell
line. Here, we let Sc(b,p) be the SAINTexpress
score of a specific PPI denoted as (b,p) in a cell
line c. Given that PPIs are independent events
across different cell lines, we computed the
DIS for each PPI (b,p) as the product of the
probability of a PPI being present in both can-
cer cell lines but absent in the HET-1A normal
cell line as follows for each PPI:
DIScancer(b,p) = SCAL-33(b,p)SSCC-25(b,

p)[1 – SHET-1A(b,p)]. This DIS highlights
PPIs that are strongly conserved across two
cancer cell lines but not shared by the normal
cell line. Additionally, we can highlight PPIs
that are present in the control HET-1A cell line,
but depleted in both cancer cell lines as follows:
DISnormal(b,p) = [1 – SCAL-33(b,p)][1 – SSCC-25(b,

p)]SHET-1A(b,p). We further merged these two
DIS scores to define a single score for each
PPI, where if DIScancer > DISnormal, the DIS is
assigned a positive (+) sign, whereas if
DIScancer < DISnormal, the unified DIS is
assigned a negative (–) sign. In this way,
the DIS for each PPI is represented by a con-
tinuum in which negative DIS scores represent
PPIs depleted in HNSCC, whereas positive
DIS scores represent PPIs enriched in HNSCC.
Additionally, for all DISs that we calculated,
we also computed the BFDR estimates at all
possible thresholds (p*) as follows:
FDR(p*) = i,i(1 – DIS(pi,pj))I{DIS(pi,pj) >

p*}i,jI{DIS(pi,pj)> p*}, where I{A} is 1 when
A is true and 0 otherwise. Although these
scores were used for comparison across three
cell lines, it can also be used more simply to
compare between any two cell lines. Such a
comparison is calculated as follows where
DISLineA/LineB results in PPIs specific to cell line
A have a positive DIS value, whereas PPIs spe-
cific to cell line B results in a negativeDIS value:
DISCAL-33/HET-1A(p1,p2) = SCAL-33[(p1,p2)

(1 – SHET-1A(p1,p2)] or
DISSCC-25/HET-1A(p1,p2) = SSCC-25[(p1,p2)

(1 – SHET-1A(p1,p2)] or
DISSCC-25/CAL-33(p1,p2) = SSCC-25[(p1,p2)

(1 – SCAL-33(p1,p2)].

NanoBiT Gai1 dissociation assay

The NanoBiT G-protein dissociation assay,
based on a split-luciferase system, was per-
formed as previously described with some
modifications (83). All DNA constructs were
provided by A. Inoue (Tohoku University,
Japan). NanoBiT plasmids (pCAGGS) include
Gai1-LgBiT, Gb1-native, and SmBiT-Gg2 (CAAX
C68S mutant). Gai-DREADD (pcDNA3.1) was
used as a synthetic Gai-coupled GPCR. Briefly,
CAL-33 and HET-1A cells were seeded on
poly-D-lysine–coated (Sigma-Aldrich, catalog

no. P7280), opaque,white 96-well plates (Falcon,
catalog no. 353296). The following day,
cells were transfected with NanoBiT and
receptor plasmids using Lipofectamine 3000
(ThermoFisher Scientific, catalog no. L3000008)
according to manufacturer recommendations
for a 12-well scale (10 ml of transfection mixture
to each well). The NanoBiT plasmids were
mixed at a ratio of 100 ng of Gai1-LgBiT, 500 ng
of Gb1, 500 ng of SmBiT-Gg2, and 200 ng of
receptor if needed. For gene knockdown experi-
ments, 10pmol of pooled siControl (Dharmacon,
catalog no. D-001810-10-20), siFGFR3 (Mission
siRNA, catalog no. SIHK0780, SIHK0781,
SIHK0782), or siDaple (Dharmacon, catalog
no. L-033364-01-0005) was included in the
plasmid mixture. The medium was changed
the following day. Two days after transfec-
tion, media were aspirated from each well
and washed once with Hank’s buffered salt
solution (HBSS). Cells were incubated inHBSS
with a final concentration of 5 mM native
coelenterazine (Biotium, catalog no. 10110-1)
for 30 min at room temperature protected
from light. Basal luminescence was read and
ligand prepared for final concentrations of
10 ng/ml human basic FGF (bFGF; Roche,
catalog no. 11123149001) and 10 mM CNO
(Cayman Chemical, catalog no. NC1044836).
After ligand addition, luminescence was read
in kinetic loops (each well ~every 30 s) for
60 min total (Tecan Spark). Raw luminescent
values were normalized to the corresponding
basal value for each well and subsequently to
the mean vehicle ratio (raw/basal) at time 0.
Significance was calculated using a one-way
ANOVA at the 60-min time point.

Scratch migration assay

CAL-33 cells were seeded on 12-well plates
coated with 10 mg/ml fibronectin in PBS (Sigma-
Aldrich, catalog no. F2006-1MG). Once cells
reached confluence, a vertical scratch was
made with a pipette tip and washed well
with PBS before adding serum-free medium.
Cells were stimulated with vehicle, 10 ng/ml
bFGF, or 1% serum for 24 hours. Images were
taken at the 0- and 24-hour time points (2×
magnification), and the scratch area was
quantified using ImageJ. Percentage scratch
closure was calculated for each well and signi-
ficance was assessed using a one-way ANOVA.

Phosphorylated PAK, ERK, and siRNA
knockdown confirmation immunoblots

CAL-33 and HET-1A cells were seeded on
poly-D-lysine–coated six-well plates. Cells were
transfected with siRNA using Lipofectamine
RNAiMAX (Thermo Fisher Scientific, catalog
no. 100014472) according tomanufacturer re-
commendations. After overnight serum starva-
tion, cellswere stimulatedwith vehicle, 10ng/ml
bFGF, or 10 mM CNO. Cells were washed once
with PBS and lysed in
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radioimmunoprecipitation assay (RIPA)
buffer (50 mM Tris-HCl, pH 6.8, 150 mM
NaCl, 1% NP-40, 0.5% sodium deoxycholate,
0.1% SDS) with protease and phosphatase
inhibitors (Bimake, catalog no. B14001,
B15001-A/B). Lysates were briefly soni-
cated and cleared by centrifugation before boil-
ing in Laemmli sample buffer (Bio-Rad
catalog no. 1610747). After separation on 10%
acrylamide gels and transfer to PVDF mem-
branes, membranes were blocked with 2%BSA
in Tris-buffered saline with Tween-20 (TBST)
before incubating with antibodies. Primary
antibodies against phospho-PAK1(S199/204)/
PAK2(S192/197) (1:1000, Cell Signaling Tech-
nology, catalog no. 2605), PAK1 (1:2000, Cell
Signaling Technology, catalog no. 2602), PAK2
(1:2000, Cell Signaling Technology, catalog no.
2608), pERK (1:2000, Cell Signaling Technology,
catalog no. 9106), ERK (1:2000, Cell Signaling
Technology, catalog no. 9102), FGFR3 (1:2000,
OriGene, catalog no. TA801078), Daple (1:1000,
Millipore EMD, catalog no. ABS515), andGAPDH
(1:10000, Cell Signaling Technology, catalog
no. 2118) were used. After washing with TBST,
membranes were incubated in secondary goat
anti-rabbit HRP (1:20000, Southern Biotech,
catalog no. 4010-05) and goat anti-mouseHRP
(1:20000, Southern Biotech, catalog no. 1010-05)
antibodies for chemiluminescencedevelopment.

CDX3379 treatment: in vivo and in
vitro experiments

All the animal studies using HNSCC tumor
xenografts were approved by the University
of California–San Diego Institutional Animal
Care and Use Committee under protocol ASP
S15195. All mice were obtained from Charles
River Laboratories (Worcester, MA). To estab-
lish tumor xenografts, HNSCC cells were trans-
planted into both flanks (2 million per tumor)
of female athymicmice (nu/nu, 4 to 6weeks of
age and weighing 16 to 18 g). Mice were fed
with doxycycline food (6 g/kg) from Newco
Distributors (Rancho Cucamonga, CA, USA)
to induce PIK3CA expression. When average
tumor volume reached 100 mm3, the mice
were randomized into groups and treated by
intraperitoneal injection with vehicle (PBS) or
CDX3379 (10mg/kg, twice aweek) for ~15 days.
Themice were sacrificed at the indicated time
points (or whenmice succumbed to disease,
as determined by the ASP guidelines).

Phosphorylated HER3 immunoblots

WT or mutant PIK3CA with FLAG-tag were
expressed by lentiviral transduction in SCC-
25 cells. Collected cells were washed with ice-
cold PBS twice and then lysed with RIPA lysis
buffer (150 mM Tris, pH 7.4, 100 mM NaF,
120 mM NaCl, 100 mM sodium orthovanadate)
with one tablet of protease inhibitor cocktail
(Roche 31075800) and one tablet of phospha-
tase inhibitor cocktail (Roche 04906837001)

added. Lysates (30 mg) were resolved by
SDS-PAGE, transferred to PVDF membranes
(Bio-Rad, catalog no. 1620177), and incubated
with primary antibodies (1:1000) at 4°C over-
night. Membranes were then washed and
incubated with goat anti-rabbit lgG(H+L)-
horseradish peroxidase (HRP)–conjugated
secondary antibodies (1:5000) (Bio-Rad, cata-
log no. 170-6515) for 1 hour at room temper-
ature, followed by washing four times with
TBST. Antibodies against P-HER3-Y1197 (cat-
alog no. 4561) and HER3 (catalog no. 12708)
were from Cell Signaling Technology, and
anti-B-tubulin (catalog no. ab6276) was from
Abcam. Blots were quantified with ImageJ
software, and the intensity of P-HER3-Y1197 sig-
nal was normalized to FLAG-PIK3CA intensity.

IAS background network

The integrated associated stringency (IAS)
network was derived from integration of five
major types of protein pairwise relationships
recorded in public databases: (1) physical PPI,
(2) mRNA coexpression, (3) protein coexpres-
sion, (4) codependence (correlation of cell line
growthupongeneknockouts), and (5) sequence-
based relationships. A broad survey created a
compendium of 127 network features used as
inputs to a random forest regression model,
trained to best recover the proximity of protein
pairs in the Gene Ontology (GO) resource. The
final IAS score, ranging from 0 to 1, quantifies
all pairwise associations among 19,035 human
proteins. In this study, we displayed stringent
protein interactions with IAS > 0.3 when the
IAS network was used in figures. More details
are described in the companion paper (76).

Data analysis

Instant Clue software was used for the gen-
eration and statistical analysis of some figures
(84). Heatmapswere generatedwithMorpheus
(
https://software.broadinstitute.org/morpheus).
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A protein network map of head and neck cancer reveals PIK3CA mutant drug
sensitivity
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Mapping protein interactions driving cancer
Cancer is a genetic disease, and much cancer research is focused on identifying carcinogenic mutations and
determining how they relate to disease progression. Three papers demonstrate how mutations are processed through
networks of protein interactions to promote cancer (see the Perspective by Cheng and Jackson). Swaney et al. focus
on head and neck cancer and identify cancer-enriched interactions, demonstrating how point mutant–dependent
interactions of PIK3CA, a kinase frequently mutated in human cancers, are predictive of drug response. Kim et al.
focus on breast cancer and identify two proteins functionally connected to the tumor-suppressor gene BRCA1 and
two proteins that regulate PIK3CA. Zheng et al. developed a statistical model that identifies protein networks that are
under mutation pressure across different cancer types, including a complex bringing together PIK3CA with actomyosin
proteins. These papers provide a resource that will be helpful in interpreting cancer genomic data. —VV
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