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INTRODUCTION: Tumor genome sequencing has
revealed that, beyond a few commonlymutated
genes, most mutations that affect cancer ge-
nomes are rare. To interpret these rare events,
a powerful approach has been to organize mu-
tations by their effects on commonly dysregu-
lated cellular systems.Understanding the cancer
genome in this way requires surmounting two
challenges: (i) Howdowe comprehensivelymap
cancer cell systems? (ii) How do we identify
which systems are under mutational selection?

RATIONALE: To address these questions,weused
proteomic mass spectrometry and data integra-
tion to build a structured map of protein as-
semblies found in human cancer cells. We then
developed a statistical model of mutation, pin-
pointing which assemblies are under strong
mutational selection and inwhich cancer types.
The goal was to interpret the many rare gene
mutations that affect tumor genomes by their
convergence on higher-order entities.

RESULTS:We amassed a large compendium
of cancer protein interactions, combining the

screens in breast cancer (Kim et al., this issue)
and head-and-neck cancer (Swaney et al., this
issue) with multi-omic evidence from 127 pre-
vious studies. Lines of evidencewere integrated
quantitatively to yield a continuous metric of
association for each protein pair (integrated
association stringency, or IAS). This network
of protein associations exhibited clear multi-
scale and modular structure, revealing 2338
robust assemblies of interacting proteins (here-
after “protein systems”) across different strin-
gencies. Systems were organized hierarchically,
with small high-stringency systems (e.g., specific
complexes) combining in larger ones (e.g., pro-
cesses and organelles) as stringencywas relaxed.
We next developed a statistical model, HiSig,

to identify a parsimonious set of systems that
best explains the gene mutation frequencies
observed in tumors. HiSig analysis of 13 tumor
types yielded a map of 395 mutated protein
systems we call NeST (Nested Systems in Tu-
mors, http://ccmi.org/nest/). NeST comprised
numerous small complexes, most mutated
within specific tumor types, organized within
larger systems relevant to most cancers.

Although NeST recapitulated cancer hall-
marks, the majority of systems had not been
previously described or had not been associ-
atedwith cancermutation. Nonetheless, many
were recurrently mutated in independent co-
horts, supporting their significance. Notable
systems included a PIK3CA-actomyosin com-
plex that points to a new mode of phospha-
tidylinositol 3-kinase regulation, as well as
recurrent mutations in collagen complexes
that we found to disrupt the extracellular
matrix, thereby promoting proliferation. Fi-
nally, we identified NeST systems that serve
as biomarkers of cancer outcomes, leading
to 548 genes for potential use in clinical se-
quencing panels.

CONCLUSION: In their classic description of
the “Hallmarks of Cancer,” Hanahan and
Weinberg predicted that the “complexities of
cancer ... will become understandable in terms
of a small number of underlying principles.”
Around the same time, Alberts provided his
seminal perspective of the cell as a collection
of “protein assemblies [interacting] in an elab-
orate network.” By organizing disparate tumor
mutations into underlying principles captured
by amultiscale map of protein assemblies, this
work represents a synthesis of these visions. The
strategies developed here may generalize to
other diseases that are affected by rare genetic
alterations.▪
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A major goal of cancer research is to understand how mutations distributed across diverse genes affect
common cellular systems, including multiprotein complexes and assemblies. Two challenges—how to
comprehensively map such systems and how to identify which are under mutational selection—have hindered
this understanding. Accordingly, we created a comprehensive map of cancer protein systems integrating
both new and published multi-omic interaction data at multiple scales of analysis. We then developed a
unified statistical model that pinpoints 395 specific systems under mutational selection across 13 cancer
types. This map, called NeST (Nested Systems in Tumors), incorporates canonical processes and notable
discoveries, including a PIK3CA-actomyosin complex that inhibits phosphatidylinositol 3-kinase signaling
and recurrent mutations in collagen complexes that promote tumor proliferation. These systems can be used
as clinical biomarkers and implicate a total of 548 genes in cancer evolution and progression. This work
shows how disparate tumor mutations converge on protein assemblies at different scales.

S
ubstantial progress in cataloging the mo-
lecular basis of cancer has come from
genomic, transcriptomic, and proteomic
profiling of thousands of patients by con-
sortia such as The Cancer Genome Atlas

(TCGA) and the International Cancer Genome
Consortium (ICGC). However, very different
patterns of mutations are observed across dif-
ferent tumors and across different cells within
the same tumor (1), hindering the interpreta-
tion of cancer genomes. Although some known
cancer driver genes are mutated frequently in
a statistically significant number of samples,
the importance of themuch greater number of

low-frequency genetic events has remained
largely unclear (2) (Fig. 1A).
A powerful way to interpret the many rare

mutations is to organize them into networks
of genes that participate in commonly dys-
regulated cellular components or processes
(3–5). Alterationsmay be observed infrequent-
ly at the nucleotide or gene level but can be
substantiallymore commonwhen considering
impacts in a larger biological process. For in-
stance, the TCGA analysis of head and neck
squamous cell carcinoma (6) reported genetic
changes to a “cell differentiation pathway” in
64% of human papillomavirus–negative tumors,
combining mutations across four genes that
were each altered more rarely (AJUBA, TP63,
NOTCH1, andFAT1, each individually in 7 to 32%
of patients). Systematic aggregation of mutated
genes in the form of gene sets (7–10) or mo-
lecular networks connecting pairs of function-
ally related genes (11–20) has been very useful
in identifying higher-order systems of genes
under mutational selection in cancer, many
of which would otherwise be missed.
Although this strategy is promising, the real-

ization of a complete systems-level description
of cancer mutations will require overcoming
two challenges in particular. The first is to as-
semble accurate and comprehensive knowl-
edgemaps of dysregulated cellular components
and processes (henceforth called cellular “sys-
tems” for generality). Unlike whole-genome
sequencing, which has provided complete in-
formation on tumor genomes, systematic ef-
forts to map cancer cellular systems are just

beginning (21–28). In this respect, proteomics
efforts have used techniques such as affinity
purification, proximity labeling, co-elution
mass spectrometry, and yeast two-hybrid
assays to create catalogs of human protein
interactions, which have been useful for de-
fining protein complexes and larger cellular
components (29–33). Thus far, however, large-
scale protein interaction surveys have not fo-
cused on cancer proteins in particular, and
experiments have been typically conducted in
model organisms or cell lines chosen for ex-
perimental tractability rather than cancer
relevance. A second challenge is to identify
mutational selection on biological systems
larger than those encoded by single genes.
Cellular components functioning in cancer
can occupy a range of biophysical scales, from
individual residues and domains in proteins
(34–37) to impacts on multiprotein complexes
(38–41), signaling networks (42, 43), and class-
ical and membraneless organelles (44, 45).
Analyzing the incidence of cancer mutations
at only one of these scales misses components
under mutational selection at all others. Ac-
cordingly, it remains largely unclear which
multigene systems and scales represent the
key focal points on whichmutations converge.
To address these challenges, we integrated

existing data resources with a collection of
systematic protein interaction networks cen-
tered on cancer proteins in cancer-relevant
conditions, with an emphasis on breast and
head-and-neck cancers as described in (46, 47).
Using these data, we constructed a structured
map of protein systems, not restricted to one
scale but organized across a hierarchy of cel-
lular components and processes. We then de-
veloped a unified statistical model to identify
systems under mutational selection consider-
ing all scales simultaneously. Together, these
analyses define a compendiumof protein com-
plexes, signaling pathways, and larger assem-
blies with evidence for recurrent mutation in
cancer.

Interaction mapping and integrative analysis
yield a hierarchy of protein systems

We amassed a large compendium of cancer
protein-protein interactions (PPIs) based on
affinity purificationmass spectrometry (AP-MS)
of 61 proteins with established roles in cancer,
combining the separate screens in breast and
head-and-neck tissues described in our two
companion papers (46, 47). In these companion
studies, proteins were epitope-tagged (3×FLAG),
expressed, then purified from a panel of cell
lines representingmalignant and nonmalignant
breast tissues (tumor: MDA-MB-231, MCF-7;
normal: MCF-10A; 40 tagged proteins) and/or
head-and-neck tissues (tumor: CAL-33, SCC-25;
normal: HET-1A; 30 tagged proteins, of which
nine were also investigated in breast; table S1).
Copurified proteins were then identified by
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mass spectrometry using PPI confidence-scoring
algorithms (see materials andmethods). Here,
we combined data across all proteins and cell
lines, yielding a total of 1722 distinct inter-
actions. Approximately 85% of PPIs had not
been reported in previous AP-MS datasets or
in curated databases (30, 48–50), showing that
these experiments had substantially enlarged
the known interactomes of many cancer pro-
teins (table S1).
We integrated these experiments with a

broad collection of human PPI data from pre-
vious studies (29, 30, 49, 51, 52) alongside
four additional types of evidence previously
shown to inform protein physical associa-
tions (Fig. 1B). These additional types were

correlated levels of protein abundance over
many cell lines or tissues (53–55); correlated
mRNA transcript levels overmany cell lines or
tissues (56); genetic codependencies, as re-
vealed by correlated cell growth outcomes for
CRISPR knockdowns performed over many
cell lines (57); and sequence-based associations,
including protein pairs with sequence domains
that frequently interact and protein pairs with
orthologs that interact in model species (58).
For each evidence type, we performed a broad
survey of studies relevant to tumor samples,
tumor cell lines, and human tissues, resulting in
a compendium of 127 datasets in total (Fig. 1B
and table S2). We used an established method
of biological network integration (59), based on

supervisedmachine learning, to quantitatively
weigh and combine all evidence to create a
single integrated association stringency (IAS)
score for each pair of human proteins (Fig. 2A
and fig. S1A; 19,035 proteins and 1.8 × 108 scored
protein pairs; see materials andmethods). This
integration system was trained for the ability
to interconnect proteins in the same cellular
component or biological process recorded in the
Gene Ontology reference database (60). PPIs
were the most informative evidence type for
this task, followed by sequence similarity and
protein coexpression (fig. S1, B and C). The re-
sulting IAS network (Fig. 2B) has been made
available for download, browsing, and query
(http://ccmi.org/nest; data S1).
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Fig. 1. Rationale for a multiscale map of cancer systems and overview of
its assembly. (A) Cancer genes missed by single-gene mutation analysis can
be recovered by identification of significantly mutated systems. In the
distribution of gene mutation frequencies in colorectal adenocarcinoma (top),
analysis of significantly mutated genes (pink, TCGA pan-cancer atlas) (37)
misses a number of known colorectal cancer driver genes (blue, COSMIC
Cancer Gene Census) (72). Representative genes from both categories are
labeled. When evaluating mutation significance in a hierarchy of protein
systems (middle), driver genes missed in the single-gene analysis can be

recovered within significantly mutated systems (bottom, pink). (B) Pipeline for
assembly of the cancer systems map. (i) Generate cancer protein interactions
using affinity purification mass spectrometry (AP-MS). (ii) Collect previous
protein association evidence of five major data types. (iii) Integrate all evidence
to derive an integrated association stringency (IAS) score network for all
pairs of 19,035 human proteins. (iv) Identify a hierarchy of protein systems
by multiscale community detection. (v) Identify recurrently mutated systems
in the hierarchy by HiSig, defining a cancer systems map, which is validated in
independent cohorts and functional studies.
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Because the IAS score forms a continuous
metric of physical association, robust assem-
blies of interacting proteins can be identified
at specific IAS thresholds (Fig. 2C). To catalog
these assemblies over the entire range, we
performed a hierarchical community detec-
tion analysis (materials and methods). By this
procedure, the IAS threshold was initialized
to its maximum (most stringent) value and
then iteratively relaxed to lower (more permis-
sive) values; at each step, progressively larger
and less stringently associated protein as-
semblies were detected. Small assemblies of
strongly associating proteins were subsumed
within larger assemblies as the IAS thresh-
old decreased, creating a hierarchy. For ex-
ample, four homologous recombination (HR)

proteins—BRCA1, BRCA2, RAD51, and BLM—
associated under a stringent IAS threshold,
reconstituting a variant of the BRCC complex
(61) (which we called the “BRCC/BLM com-
plex”). As the IAS threshold decreased, this
complex expanded to encompass a larger group
incorporating BARD1, BUB1B, FANCD2, PLK1,
RAD51C, and TP53 (the “extended BRCC com-
plex”), which then consolidated with a distinct
assembly containing BRCA1, BLM, TOP2A,
CHEK1, and CLSPN (“CHEK1 activation”) and
other proteins to form a supercluster of 20 pro-
teins broadly involved in HR (Fig. 2D). Rather
than merely supply an inventory of HR fac-
tors, however, the hierarchical analysis reveals
how larger protein assemblies are organized
from smaller ones.

When applied to the entire IAS network, hier-
archical community detection resulted in iden-
tification of a total of 2338 protein assemblies
(data S2). Notably in this analysis, proteins
were allowed to cluster in multiple distinct
assemblies when such affiliation was sup-
ported by the interaction data. For example,
b-catenin (CTNNB1) has well-established plei-
otropic functions, with separate roles in the
b-catenin destruction complex and adherens
junction (62); accordingly, its interaction pat-
terns placed it in distinct assemblies corre-
sponding to each of these two aspects (fig. S1,
D and E). Because small assemblies tended to
correspond to protein complexes and signal-
ing scaffolds while larger groups more close-
ly represented broad cellular processes, we
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Fig. 2. Integration and multiscale organization of protein networks.
(A) Types of network evidence are combined in a machine learning framework
(random forest) to determine an integrated association stringency (IAS)
score among protein pairs. (B) Visualization of overall IAS network structure
highlighting major large-scale systems (text labels and dashed circles).
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system; edge colors (yellow, orange, gray) indicate decreasing stringencies
of association.
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adopted the general name “protein systems”
to describe entities at any scale.

Identifying recurrently mutated systems at
multiple scales

We next sought to identify which systems
were under pressure for recurrent mutations
in cancer. Given a list of systems, each con-
sisting of a set of proteins, a straightforward
analysis might be to test for statistical enrich-
ment of mutations within each system indi-
vidually (63). However, for overlapping or
nested systems, such tests are confounded
because mutations that affect one system
create correlated enrichments in other sys-
tems with overlapping components. Our goal
was to determine whether the gene mutation
frequencies in a cancer cohort were best ex-
plained by separate selection pressures on in-
dividual genes, or more parsimoniously by
pressure on a small set of systems. For this
purpose, we developed a unified statistical
model of mutation, called HiSig, to determine
a set of systems that optimally explains the

observed mutation pattern for all genes while
seeking to minimize the number of systems
required for such explanation (Fig. 3A and
fig. S2). The HiSig model accounts for overall
mutation burden, protein length, and other
factors when analyzing mutation patterns to
arrive at an expected mutation frequency but
does not attempt tomodel phenotypic impacts
of mutation (materials and methods). The sig-
nificance of mutational enrichment was eval-
uated using permutation testing at a fixed false
discovery rate (FDR) (materials and methods).
As an example of mutational analysis at the

systems level, we again turned to HR and its
subsystems as discussed above. HR defects can
be caused by driving loss-of-functionmutations
in BRCA1, BRCA2, and related proteins in an
effect that has been called “BRCAness” (64, 65).
Consistent with this expectation, HiSig identi-
fied significant mutational pressure on the
“BRCC/BLM complex” and “extended BRCC
complex” in breast and ovarian carcinomas,
two tumor types for which BRCAness had been
well studied (64, 65) (Fig. 3B). Although muta-

tions in individual genes encoding the BRCC/
BLM complex were rare and failed to achieve
strong statistical significance, with <3% for each
gene inbreast tumors (66),mutations in the four
BRCC/BLM genes converged for an aggregate
mutation frequency of 7%, exceeding random
expectation [95% of confidence interval (CI):
0.4 to 3.6%; P = 0.0008, log-normal distribu-
tion]. Thus, the systems-level analysis was able
to recognize evidence of a well-known systems-
level effect, BRCAness, despite the lack of
strong signals from individual genes.
HiSig also identified mutational selection

for the same HR systems in bladder urothelial
carcinoma (Fig. 3B, 18%, versus 95% of CI of
random expectation: 1.2 to 11.1%; P = 0.0029,
log-normal distribution), a tumor type for
which significant mutation rates of individual
BRCAness genes had not previously been
identified (67), perhaps because this cancer
has a higher backgroundmutation burden. To
corroborate this finding, we performed CRISPR-
Cas9 disruptions to genes encoding the “ex-
tended BRCC complex” in bladder cancer cells
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and scored each for sensitivity to olaparib or
cisplatin, which are phenotypes indicative of
HR deficiency and thus BRCAness (68). Six
gene disruptions to this system caused sensi-
tization to one or both drugs, whereas none of
a control set of gene disruptions produced sig-
nificant sensitization (Fig. 3C).

A cancer systems map integrating
13 tumor types

We used HiSig to analyze somatic mutation
patterns from 6251 exomes, representing 13
tumor types with sufficient sample numbers
and mutation burdens (37): bladder urothelial
carcinoma (BLCA), breast invasive carcinoma
(BRCA), colorectal adenocarcinoma (COAD),
glioblastoma (GBM), head and neck squamous
cell carcinoma (HNSC), kidney renal clear cell
carcinoma (KIRC), liver hepatocellular carci-
noma (LIHC), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), ovarian
serous cystadenocarcinoma (OV), skin cuta-
neous melanoma (SKCM), stomach adenocar-
cinoma (STAD), and uterine corpus endometrial
carcinoma (UCEC). HiSig analysis identified
319 systems with evidence for mutational se-
lection in one or more cancer types. To unify
these systems into a pan-cancer hierarchy, we
added sufficient higher-order systems to link
them, yielding a final map of 395 protein sys-
tems that we called NeST (Nested Systems in
Tumors, http://ccmi.org/nest/; Fig. 4A anddata
S3). Systemswere named by a team of in-house
curators using a combination of expert knowl-
edge, literature analysis, and gene set enrich-
ment (materials andmethods). In general, NeST
organizes numerous small systems with tissue-
specific mutation patterns within a few large
systems relevant to greater numbers of tumor
types (e.g., cell cycle progression, immune sys-
tems, and transcription; Fig. 4A), providing a
systematic reconstruction of hallmark processes
altered in cancer (69).
To systematically validate the collection of

recurrently mutated NeST systems, we exam-
ined whole-exome sequencing data from inde-
pendent patient cohorts representing nine
tumor tissue types, for a total validation set of
4077 tumor exomes (materials and methods).
Per tissue type, we observed that 37 to 66%
of NeST systems were also recurrently mu-
tated in the tissue-matched validation cohorts
(Benjamini-Hochberg FDR < 0.1 by HiSig; Fig.
4B, fig. S3A, and table S3). This range of valid-
ation percentages was comparable to that of
validating individual mutated genes and was
significantly better than achieved if the tissue
types used for discovery and validation were
decoupled and randomized (e.g., pairing a
BRCA validation cohort with the mutated sys-
tems discovered for LUSC; fig. S3A).
The number of recurrently mutated systems

in each cancer type ranged from 11 (SKCM) to
84 (BLCA) and was anticorrelated with the

genome-wide mutation burden of each type
(Spearman r = –0.59, P = 0.03; fig. S3B), reflec-
ting the difficulty of demonstrating significant
mutation rates in very highly mutated cancers
(70). Notably, the size distribution of recur-
rently mutated systems (as determined by
HiSig) was similar to that of all systems (Fig.
4C), which suggests that selective pressures
operate at all scales of cell biology rather than
at one resolution only, such as protein com-
plexes or narrowly defined pathways. Appli-
cation of HiSig to alternative hierarchies of
human protein systems curated from literature
(GeneOntology; fig. S3C) identified significantly
fewermutated systems, demonstrating the spe-
cific value and relevance of NeST as a resource
for the study of cancer. We also repeatedHiSig
analysis on the IAS-derived hierarchy systems,
considering transcription-altering copy num-
ber alterations (CNAs) rather than point mu-
tations and indels (see supplementary text).
This analysis found 20 additional systems en-
riched for CNAs (table S4), including a cyclin-
containing system containing CDKN2A (p16/
ARF) and a transcriptional regulator complex
containing EP300 and CREBBP (fig. S4).
Comparing NeST to our recent comprehen-

sive literature survey of published cancer path-
ways (71), we saw that 40% of significantly
mutated systems (129/319) recapitulated an
established cancer mechanism (Fig. 4D and
table S5). Examples of these 129 established
systems included “PIK3-cyclin signaling,”which
integrated mutations in subunits of the PI3K
holoenzyme (PIK3CA, PIK3R1, PIK3R2) with
mutations in the downstream oncoprotein
cyclin D1 (CCND1), as well as “SMAD-TGFb sig-
naling,” a system encompassing mutations to
SMAD transcription factors, the TGFb recep-
tor TGFBR1, and functionally related proteins.
Although both of these complexes contained
individual cancer proteins with highmutation
rates (PIK3CA, SMAD4), mutations in other
proteins in these complexes (PIK3R1, SMAD3)
had been too rare to meet the significance
thresholds of previous analyses (37) despite
having functionally validated roles in cancer (72).
Among the remaining 60% of systems (190/

319), 75 recapitulated well-known cellular com-
ponents that had not been previously associ-
ated with recurrent cancer mutations, whereas
115 were best described as novel protein assem-
blies (materials andmethods). Below, we inves-
tigate several of the discoveries in greater detail
with biophysical and functional assays, exem-
plifying the use of NeST to generate biological
hypotheses and inform their investigation.

A PIK3CA-actomyosin assembly regulating the
PI3K/AKT pathway

HiSig identified recurrent mutations in a novel
variant of the actomyosin complex, a cyto-
skeletal component regulating cell shape, mo-
tility, and membrane organization (73, 74).

Multiple direct physical interactions from the
AP-MS data newly linked actomyosin proteins
with the p110a subunit (PIK3CA) of phospha-
tidylinositol 3-kinase (PI3K), forming a system
we named the “PIK3CA-actomyosin complex”
(Fig. 5A). This system was under significant
mutational pressure in five cancer types (BLCA,
36%; BRCA, 38%; COAD, 42%; HNSC, 29%;
STAD, 32%), integrating frequent mutations in
PIK3CA with less common mutations in nu-
merous actomyosin proteins including non-
muscle type II myosins (NM2 proteins MYH9
and MYH10; Fig. 5B). This mutation pressure
was seen to validate in BRCA and COAD inde-
pendent cohorts (fig. S5A and table S3; large
secondary cohorts were unavailable for BLCA,
HNSC, or STAD). Although cytoskeletal remod-
eling is a downstream effect of PI3K/AKT sig-
naling (75, 76), actomyosin proteins had not
been previously shown to physically associ-
ate with PIK3CA, nor had their mutations in
cancer been widely studied.
In support of the physical association, we

found that actomyosins bind specifically to
PIK3CA and generally not to other cancer pro-
tein baits assayed by our AP-MS experiments
(Fig. 5C). We were also able to validate the
association by proximity ligation assay, dem-
onstrating that PIK3CA and MYH9 colocalize
in CAL-33 cells (Fig. 5D). To determine more
precisely where this colocalization occurs, we
performed superresolution microscopy and
found that both molecules associated in small,
membrane-proximal puncta (Fig. 5E and fig. S5C).
We next investigated the functional conse-

quences of PIK3CA-actomyosin physical inter-
action by assaying canonical readouts of PI3K
signaling, phosphorylation of AKT (pAKT) and
of ribosomal protein S6 (pS6), in response to
NM2 inhibition by blebbistatin (77). Blebbistatin
treatment increased the levels of pAKT and pS6
in CAL-33 cells, but this effect was suppressed
by additional treatment with alpelisib, an FDA-
approved PIK3CA inhibitor (Fig. 5F andmate-
rials and methods). Conversely, in SCC-25 cells,
where PIK3CA-actoymosin interactions were
not observed, blebbistatin treatment did not
affect either readout (fig. S5D). PIK3CA inhibi-
tion by NM2 was further supported by reverse-
phase protein array (RPPA) data for 899 cell
lines from the Cancer Cell Line Encyclopedia
(CCLE) (78), which showed that cells harboring
MYH9 orMYH10mutations have significantly
elevated pAKT relative to cells lacking such
mutations (Fig. 5G). Furthermore, genomic
alterations inMYH9 and PIK3CA were mutu-
ally exclusive, a sign of functional dependency
(P < 0.05; Fig. 5H). Together, these results
suggest that the actomyosin complex directly
inhibits PIK3CA signaling.
Beyond the example of the PIK3CA-actomyosin

complex, we noted thatmany of the systems in
NeST were driven by new protein interactions
from our AP-MS screens (112 systems; fig. S6A
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and table S6). For example, new AP-MS exper-
iments showedmitogen-activated protein kinase
(MAPK) proteins copurifying with HLA-A to
form a new protein system (fig. S6B), which

suggests that known crosstalk between the
MAPK pathway and major histocompatibility
complex internalization may be mediated by
directMAPK-HLA interaction (79). Enrichment

for the new interactionswas greatest in systems
mutated in BRCA (31 systems) and substantial
in HNSC tumors (25 systems), the two tumor
types used for AP-MS data generation; such
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enrichment was also observed in other tu-
mor types (fig. S6C).

Destabilizing mutations in collagen systems
promote tumor progression

HiSig detected selection pressure on a system
consisting of 11 fibrillar collagen proteins in
seven cancer types, with particularly high mu-
tation frequencies for SKCM(71%), LUSC (49%),
and LUAD (49%) (Fig. 6, A to C). Recurrent
mutations in this system were validated in
independent cohorts of lung cancers (fig. S7B
and table S3). Fibrillar collagens are the most
abundant proteins of the extracellular matrix
(80,81), the structure and composition ofwhich
can promote a tumor microenvironment con-
ducive to invasive growth (82, 83). Although
differential expression of collagen proteins be-
tween tumor and normal tissues had been re-
ported (84), thus far somatic mutations in
collagens had not been associated with cancer,
save for very rare tumor types (85, 86).
Collagen proteins contain helical repeat re-

gions rich in glycine and proline residues (Fig.
6D), and these domains are critical for proper
folding of collagen into trimeric bundles (80).
In SKCM and LUAD, we found that nonsilent
mutations in collagens significantly tend to
modify these glycine or proline codons, even
when correcting for the abundance of C or G
transversions in these cancers (87) (Fig. 6E).
Computational modeling (88) predicted that
the specific mutations observed in tumor sam-
ples strongly destabilize collagen proteins
(Fig. 6F).
We therefore hypothesized that mutations

of collagens may promote tumor progression
by disrupting protein folding and thus orga-
nization of the extracellularmatrix. To test our
hypothesis,we allowed fibroblastswith orwith-
out G/S mutations in collagen genes (Tu To or
HFF-1 cell lines, respectively; see supplemen-
tary text) to deposit matrix in culture vessels.
After decellularizing this matrix, we seeded it
with A549 LUAD cells and observed expres-
sion of Ki67, a standard marker of cell prolif-
eration (Fig. 6G and materials and methods).
We found greatly increased cell proliferation
specifically in the collagen-mutantmatrix,which
suggests that collagen mutations can perturb
the cellular environment to favor tumor growth
(Fig. 6, H and I). We also compared matrix
deposited by HFF-1 fibroblasts that were engi-
neered to overexpress COL1A1 with and with-
out the G281S mutation, and we similarly
observed increased proliferation of A549 cells
on the mutant matrix (fig. S7, B and C). In yet
further supporting analysis, we found that col-
lagen mutations are associated with increased
metastasis in mouse xenograft models (89)
(Fig. 6J and fig. S7D). Together, these data
support a role for collagen mutations in dis-
rupting the tumor microenvironment to favor
cancer progression.

Protein systems as clinical biomarkers
We examined the extent to which NeST sys-
tems could serve as prognostic biomarkers,
nominating those systems in which several
criteria were met: (i) HiSig identifies the sys-
tem as under mutational selection in a given
tumor type; (ii) significant differences in sur-
vival are observed between patients with mu-
tations in the system and those without; and
(iii) the survival association cannot be trivially
explained by mutations in any single gene in
the system. By these criteria, and with addi-
tional correction formutational burden (mate-
rials and methods), we identified a total of
25 prognostic associations (FDR < 0.3; Fig. 7A
and table S7). Among the prognostic systems,
we observed poor prognoses in GBM tumors
associated with mutations in a system inte-
grating PI3K components (PIK3CA, PIK3R1,
PIK3CB) with GRB2 and its binding partner
GAB1 [“proximal receptor tyrosine kinase (RTK)
signaling”; Fig. 7, B and C]. Althoughmutations
in PIK3CA and PIK3R1 were each weakly as-
sociatedwith the progression-free survival time,
integrating these mutations resulted in a
stronger prognostic effect (Fig. 7C). Another
prognostic system, representing histone func-
tions in the DNA damage response, brought
together 15 proteins that individually had low
mutation frequencies (<3.5%) and no prognos-
tic association.However, integrating all of these
mutations led to an unexpectedly high rate of
mutation (14.3%) with poor prognosis in COAD
tumors (Fig. 7, D and E).
The preceding analyses demonstrate the ad-

vantagesof interpretingcancergenomes through
a map of protein systems. However, lists of
cancer genes remain very useful for clinical
applications, such as the design of diagnostic
gene panels. In this respect, we considered
that the recurrently mutated systems identi-
fied in NeST might include many genes not
implicated in current cancer gene panels or
databases (37, 72, 90, 91). The designation of a
NeST system requires mutations in multiple
constituent genes that cannot be better ex-
plained by any other system (HiSig approach;
materials and methods). Thus, we conserva-
tively nominated two genes per system having
the highest relativemutation frequencies, yield-
ing a nonredundant catalog of 548NeST cancer
genes (table S8). This NeST systems gene cat-
alog covered 101 of 179 significantly mutated
genes (SMGs) reported in previousTCGAcancer-
driver analyses for the 13 tissues studied (37);
the remaining 78 SMGs were not components
of a larger system under selection. Moreover,
our analysis nominated 447 genes not previ-
ously associated with cancer by their somatic
mutations (Fig. 7F). As an ensemble, muta-
tions in NeST cancer genes were predicted as
less deleterious thanmutations in TCGASMGs,
while significantly more deleterious than mu-
tations in background genes not in either

category (fig. S8). Conversely, NeST cancer
genes were differentially expressed between
tumor and normal samples to a greater ex-
tent than previously reported SMGs (Fig. 7G)
and, individually, their expression levels of-
fered greater prognostic value (Fig. 7H). Ad-
ditionally, orthologs of both NeST genes and
SMGs were significantly enriched for tumor
growth effects in transposon-based forward
genetic screens inmice (Fig. 7I andmaterials
and methods).

Discussion

In their original description of the “Hallmarks
of Cancer,”Hanahan and Weinberg (92) pre-
dicted that “complexities of cancer, described
in the laboratory and clinic, will become under-
standable in terms of a small number of under-
lying principles.” Independently, in his seminal
vision regarding the future ofmolecular biology
(93), Alberts described the cell as a “collection
of protein machines” where “each of these pro-
tein assemblies interacts with other large com-
plexes of proteins in an elaborate network.”
Our joint study, which includes the accom-
panying manuscripts (46, 47), represents a sys-
tematic effort to combine these two visions:
organizing the diverse mutation patterns of
cancer into underlying principles represented
by a multiscale map of complexes and larger
protein machines. This map, NeST, derives
from an end-to-end data generation and analy-
sis pipeline consisting of protein network col-
lection, multi-omics integration, structural and
predictive modeling, and model visualization
(Fig. 1B). It serves not only as a useful abstrac-
tion for understanding cancer cell biology, but
as a tool to discover new protein systems and
their association with cancer.
Defining a collection of biological systems

requires recognizing physical and functional
boundaries between these entities, a process
with inherent ambiguities. Even when assign-
ing mutations to genes, the gene boundary
might or might not include introns, alterna-
tively spliced exons, promoters, or enhancers.
Likewise, the systems in NeST are defined on
the basis of evidence that the proteins are
densely connected by interactions of a certain
stringency. One source of ambiguity concerns
the parameters used for community detection.
In constructing NeST, we optimized these pa-
rameters with respect to the ability of systems
to explainmutation rates, although othermeans
of defining systems boundaries could be ex-
plored. Nonetheless, we found that most sys-
tems could be validated by mutation patterns
in second cohorts (Fig. 4B) and many of the
associated genes had independent functional
evidence (Fig. 7, G to I), supporting the rele-
vance of the current pipeline.
Comprehensive interaction screens directed

to a panel of 61 cancer proteins inmultipleBRCA
and HNSC cell lines (46, 47) contributed greatly
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to the discovery of protein systems in this
study. In general, physical protein interac-
tion strongly informed IAS scores (fig. S1,
A and C), and the specific baits chosen for
AP-MS were known cancer proteins expressed
in cancer cells. The new interaction data also
contributed to protein systems mutated in
other cancer types besides HNSC and BRCA
(fig. S6). Similar observations have emerged
from projects such as ENCODE and others,
in which analysis of selected cell lines has

defined transcriptional regulatory networks
with broad relevance across tissues and dis-
eases (94, 95). These findings suggest that
additional interaction screens in a modest
number of cellular contexts might achieve rea-
sonable coverage of protein complexes driving
most cancer types.
Beyond recapitulating known cancer mech-

anisms, the NeST map identifies a number of
recurrently mutated systems that do not over-
lap significantly with previously published

cancer pathways (71) (Fig. 4D and table S5).
Such systems might be newly identified for
one or more of the following distinct aspects
of the present study: (i) the expanded content
and scope of protein-protein associations in
the input network, which integrates new AP-
MS experiments targeting cancer protein
interactions with a compendium of diverse
multi-omics data; (ii) the explicit identifica-
tion of distinct protein assemblies in the net-
work (systems) over a continuum of scales;
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Fig. 6. Destabilizing mutations in collagen systems promote tumor pro-
gression. (A) Interactions defining the fibrillar collagen system and the context
of this system in the NeST hierarchy. (B) Mutation frequencies of this system
across TCGA tumor cohorts in which the system was identified by HiSig.
(C) Mutation frequencies per collagen protein in TCGA melanoma (SKCM) and
lung adenocarcinoma (LUAD) cohorts. (D) Amino acid sequence tendency of
the collagen triple-helix repeats. Image was created on the basis of the PFAM
domain PF01391. (E) Analysis of collagen mutations in SKCM and LUAD
cohorts. Error bars denote 95% CI based on a binomial distribution according to
the background mutation rates of collagen genes. (F) Protein stability change

upon point mutations on the glycine/proline positions (G/P) versus other
positions in the triple-helix repeats, predicted by FoldX 5.0 (materials and
methods) (88). (G) Schematic of matrix deposition assay. (H) Immuno-
fluorescence images of A549 cells on matrix deposited by the indicated cell lines.
Scale bars, 100 mm. (I) Quantification of immunofluorescence across three
biological replicates (points) for each condition. Error bars indicate 95% CI.
For HFF-1, N = 445, 860, 774; for Tu To, N = 2316, 2114, 1810. *P < 0.05 (one-tailed
Student’s t test). (J) Associations between fibrillar collagen mutation status and
the metastatic penetrance of cancer cell lines (89) (N = 146, 123, 219). **P < 0.01
(Wilcoxon rank sum test).
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and (iii) the scoring of mutation significance
at the level of systems rather than genes, in a
manner that is distinct from approaches such
as network propagation or gene set enrichment.
NeST serves as a resource for tumor genome

interpretation and prognosis. The search for a
well-defined and interpretable set of causative

mutations and prognostic markers has been
hindered by the “long tail” of cancermutations
(1) (Fig. 1A). This distribution of mutations
across genes simultaneously makes candidate
mutations numerous and statistical tests to
assert their significance underpowered. By ra-
tionally consolidating mutations into fewer

classes that maintain functional association,
fewer statistical tests are required and each
class contains more samples. Indeed, we are
able to identify more prognostic systems than
prognostic gene-level mutations (Fig. 7A). As
interactome-mapping and patient-sequencing
efforts continue over the next years, we expect
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Fig. 7. Protein systems inform clinical markers and lists of cancer genes.
(A) Significance of prognostic association between biomarker status (mutated/
unmutated) and progression-free survival (PFS). Red points represent systems;
gray points represent genes. Observed P values are plotted versus those
expected when performing the same number of tests at random. The dashed line
indicates a cutoff of FDR = 0.3. The relevant tissue type for each association
is shown in parentheses. (B to E) Selected NeST systems associated with
prognosis. [(B) and (C)] NeST:298, “Proximal RTK signaling.” [(D) and (E)]
NeST:158, “Histone modification in DNA damage response.” Kaplan-Meier curves
[(B) and (D)] stratify tumors according to the mutation status of each system.

Bar charts [(C) and (E)] indicate significance of association (log-rank test)
between mutation status and PFS for systems (black bars) versus individual genes
in those systems (gray bars). Numbers on the right indicate the percentage of patients
in that cohort with mutations in the indicated gene. (F) Venn diagram showing the
common and distinct genes identified by significantly mutated systems in NeST (pink)
versus TCGA PanCancer analysis (gray) (37). (G to I) Functional support for NeST
cancer genes: (G) RNA-seq tumor-normal differential expression in TCGA (128).
(H) Prognostic value of mRNA expression in TCGA (129). (I) Number of times a gene
has been identified in independent cancer genetic screens in mice (130). Whisker
plots show means ± SE. *P < 0.05 (one-sided Wilcoxon rank sum test).
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to improve our identification of protein sys-
tems and their associations with cancers.
Finally, although this study has focused on

the analysis of the cancer genome, cancer is
by no means the only disease in which diverse
mutations converge on a narrower set of
common processes and phenotypes. The con-
cept of a hierarchy of protein systems, like-
wise, is not specific to cancer cells or their
cell types of origin. The analysis presented
here thus serves as a model to understand the
large array of other diseases influenced by
complex genetic alterations to somatic cells
or to the germline.

Materials and methods
Targeted interrogation of cancer protein
networks by AP-MS

Experimental acquisition of AP-MS data for
61 cancer proteins (baits) is described in (46, 47).
Briefly, protein spectral counts were deter-
mined by MaxQuant (96) and used for PPI
confidence scoring by two complementary
algorithms, SAINTexpress (97) and CompPASS
(98, 99). Outputs of these two algorithms were
combined into a unified metric called the PPI
score. We retained interactions above a PPI
score cutoff (0.8 for breast cell lines, 0.9 for
head and neck cell lines), resulting in 1722 non-
redundant interactions discovered in one or
more of six cell lines (table S1).

Acquisition of network data in major categories
of experimental features

In addition to the new AP-MS data, we con-
sidered major types of protein pairwise asso-
ciations recorded in public databases: physical
protein-protein interaction, mRNA coexpres-
sion, protein coexpression, codependence, and
sequence-based relationships. Data obtained
under each of these feature categories resulted
in a total of 127 individual features on human
protein pairs (table S2), described below. As
the namespace for human proteins, we used
the symbols of protein-coding genes in the
HUGO Gene Nomenclature Committee data-
base (HGNC) (100), yielding 19,035 distinct pro-
teins. We converted gene and protein names
from other namespaces (Ensembl, Entrez,
Uniprot) to HUGO nomenclature during the
preprocessing of networks.
Physical protein-protein interaction (PPI)

networks. PPI networks were drawn from
five recent data-driven studies: (i) BioPlex 2.0,
based on immunoprecipitation of tagged pro-
teins followed by detection of interactors by
mass spectrometry (MS) (30, 98); (ii) a net-
work based onMS that considers interaction
stoichiometry and cellular abundances of in-
teractors (52); (iii) hu.Map, based on protein
cofractionation followedbyMS (29); (iv)Human
Reference Interactome (the “HI-II-14” data-
set), a comprehensive yeast two-hybrid network
(51); and (v) BioGRID, a literature-curated PPI

database (49), restricted to high-confidence
PPIs (the “multi-validated” category) and ex-
cluding entries based on high-throughput tech-
niques to reduce redundancy with the other
four networks. Each PPI network was sparse,
with direct interaction relationships for a mi-
nority of protein pairs. However, two proteins
that fall in the same network neighborhood
may be associated with one another through
network proximity, even if they are not direct-
ly connected by physical interaction. Thus,
each of the five networks mentioned above
was processed using a network embedding
algorithm, node2vec (101), which represents
the network neighborhood of each node (i.e.,
protein) as a high-dimensional vector and cal-
culates the Euclidean distance between these
vectors for each node pair. We specified 32
node2vec dimensionswith all other parameters
set to default. Each PPI network thus con-
tributed one sparse feature (the original net-
work) and one dense feature (the embedded
pairwise distances), for 10 features in this
category in total.
mRNA coexpression networks. Because

the amount of available mRNA coexpression
data is currently higher andmore diverse than
for other types, we split these datasets into
three categories: coexpression in cell line col-
lections (36 features), coexpression in human
tumor samples (28 features), and coexpression
in healthy human tissues (28 features). RNA
expression levels in cell lines were obtained
from the CCLE (Cancer Cell Line Encyclopedia)
and GDSC (Genomics of Drug Sensitivity in
Cancer) projects (102, 103). RNA expression
levels for human tumor samples were ob-
tained from TCGA studies documented in the
cBioPortal repository (104). RNA expression
levels for healthy human tissue samples were
obtained from the GTEx (Genotype-Tissue Ex-
pression) data portal (105). Genes with very
low expression levels (median TPM ≤ 1) in these
data sets were excluded. Pearson correlation
coefficients of expression were calculated for
all remaining gene pairs across all samples in
a collection, and also across subsets of samples
from the same tissue of origin if the subset size
was larger than 40.
Protein coexpression networks. In parallel

to RNA expression, protein expression levels
were obtained from CPTAC studies of breast
and ovarian tumor samples (54, 55) and a
study of breast cancer cell lines (53). Pearson
correlation coefficients were calculated for
all pairs of characterized proteins.
Codependency networks. For each human

gene, we accessed its gene dependency pro-
file, the vector of fitness scores resulting from
CRISPR knockdown of that gene across a
panel of 485 cell lines. These data were ob-
tained from DepMap project release 18Q3
(https://depmap.org/portal/) (106). We used
these data to compute a codependency score

for each gene pair as the Pearson correlation
of the two corresponding gene dependency
profiles. A global correlation profile over all
cell-line tissue types as well as correlation pro-
files per tissue of origin were generated. We
focused on seven tissues with more than
20 cell lines, resulting in a total of eight features.
Sequence-based relationships. For features

based on sequence relationships, such as pro-
tein domain co-occurrence and interactions
of orthologous genes in other organisms, we
used the log-likelihood score for each evi-
dence code documented in HumanNet 1.0
(58) including CE-CX, CE-GT, CE-LC, CE-YH,
DM-PI, HS-DC, HS-GN, HS-PG, SC-CX, SC-GT,
SC-LC, SC-MS, SC-TS, and SC-YH (defined in
www.functionalnet.org/humannet/HumanNet.
v1.evidence_code.txt).

Using network features to formulate the
integrated association stringency (IAS) score

AP-MS interaction data and the 127 additional
network features were used as inputs to a two-
stage random forest regression model, trained
to best recover the proximity of protein pairs
in the Gene Ontology (GO). To compute this
proximity we used the GossTo tool (107) to cal-
culate the Resnik semantic similarity score
(108) for all protein pairs, based on the GO
Biological Process (BP) and Cellular Compo-
nent (CC) branches as of May 2017. Only evi-
dence codes related to experimental support
were used (evidence codes IDA, IPI, IMP, IGI,
IEP, TAS, IC) considering “is_a” and “part_of”
relationships. This procedure resulted in ap-
proximately 9.5 × 107 protein pairs with se-
mantic similarity values, which were used as
training data. In the first model stage, multiple
random forest predictors were trained, each
representing one category of network features
(see above), each with 640 decision trees. In
the second model stage, the predictions of
the regression models were used as input fea-
tures and trained again against semantic
similarity values to produce a final model out-
put. Outputs of both stages used out-of-bag
(OOB) predictions, a standard approach for
random forest models (109). We also explored
standard fivefold cross-validation and did not
observe a significant difference in prediction
performance versus the OOB procedure. New
AP-MS interactions identified for protein pairs
(see above) were incorporated by setting the
physical interaction PPI feature of that pair to
the maximum in the input of the second-stage
random forest.
The output of this model was taken as the

unified IAS score for each protein pair (1.8 ×
108 pairs, which also included protein pairs
not used in the training). Random forestswere
implemented using the Scikit-learn Python
package (110) with “max_tree_depth” set to 20.
This settingwas determined to be near-optimal
for most feature categories when sweeping
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over max_tree_depths of 5, 10, 15, …, 35, 40.
Comparison between the OOB accuracy and
training accuracy showed that the OOB pro-
cedure did not cause overfitting (fig. S1A).
The parameter “max_features”was set to 1 for
categories with fewer than 10 features (protein
coexpression and codependence) and to 0.5
otherwise. Other parameters were set to de-
fault. Network featureswere set to 8-bit signed
integer arrays (NumPy data type “int8”) dur-
ing the training to reduce running time. The
two-stage random forestmodel performed sim-
ilarly to an alternative procedure of training
on all 127 features simultaneously in terms of
correlation to the GO proximity score (fig. S1B).
However, the two-stage approach enabled an
analysis of the contribution of features by their
broad categories (fig. S1C).

Multiscale protein network community detection

Hierarchical protein community detection was
based on the CliXO clique detection algorithm,
which was revised for bug fixes, redesigned
parameters, and code optimization (111). CliXO
inputs a weighted network and outputs a hier-
archy of communities detected in that net-
work as the threshold of edge weight (here,
the IAS score) is lowered (Fig. 2, C and D).
The new version of CliXO (v1.0) had better
performance than the previous version (v0.3)
in a benchmark task, in which algorithms were
used to recover a ground-truth GO hierarchy
from an input weighted network reflecting the
Resnik semantic similarity scores defined by
the same hierarchy (fig. S2A; see also supple-
mentary text).
The algorithm consists of three parameters:

a, b, and m. The parameter a reflects the step
size by which network stringency (threshold
IAS score) is lowered for progressive cycles of
clique detection; a smaller a tends to generate
a deeper hierarchy, in which the differences
between parent and child communities tend
to be smaller. b reflects the stringency ofmerg-
ing overlapping cliques; a higher b tends to
merge cliques less frequently, resulting in a
broader hierarchy with more sibling systems
with larger overlaps. Finally, each community
is assigned a score adapted from theNewman-
Girvanmodularity (112), and thosewith amod-
ularity score less than m (i.e., communities
that aremore likely to emerge by chance) are
rejected from the hierarchy (fig. S2B).
This CliXO algorithm was applied to iden-

tify protein communities at moderate-to-high
interaction stringency thresholds (IAS ≥ 0.3),
which captured the vast majority of protein
associations driven by physical interaction (fig.
S1C). Below this threshold, the integrated net-
work had a much higher edge density, leading
to impractical run-time requirements. Instead,
we used HiDeF, a scalable community detec-
tion method we recently developed (113), to
efficiently extract large-scale protein systems

at low stringency (IAS < 0.3; see supplemen-
tary text).

HiSig: Identification of recurrently mutated
cancer systems

Given a set of partially overlapping and/or
nested systems, each consisting of a set of pro-
teins, we developed a unified statistical model
of mutation to precisely pinpoint the systems
with strong evidence for mutational selection.
This model, HiSig, was inspired by the tech-
nique of overlapping group lasso regression
(114), albeit with a different mathematical for-
mulation. HiSig code is available online (115).
A comprehensive list of exome-wide somatic

mutations identified in the 13 TCGA tumor
cohorts considered in this study (BLCA, BRCA,
COAD,GBM,HNSC,KIRC, LIHC, LUAD, LUSC,
OV, STAD, SKCM, UCEC) was obtained from
the NCI Genomic Data Commons as a MAF
(MutationAnnotationFormat) file (116) (https://
gdc.cancer.gov/about-data/publications/mc3-
2017). We considered the following types of
somaticmutation events: “Missense_Mutation,”
“Nonsense_Mutation,” “Frame_Shift_Del,” “Frame_
Shift_Ins,” “Splice_Site,” “Splice_Region,” and
“Nonstop_Mutation”; we removed others, such
as silent mutations. We did not opt to incor-
porate any model of phenotypic impact from
mutations into HiSig, given the model’s com-
plexity and the general lack of consensus
about which method of phenotypic prediction
is optimal. For each cohort and gene, we re-
corded the number of tumors in that cohort in
which that gene was observed to have at least
one somatic mutation event (Ng,obs). This ob-
served number was compared to the expected
number of mutations for that gene and cohort
(Ng,exp), computed using MutSigCV 1.4 with
default settings (https://software.broadinstitute.
org/cancer/cga/mutsig_download) (36). The ex-
pected mutation value accounts for covariates
of mutation tendency, including gene length,
mRNA expression level, replication timing, and
trinucleotide context of the mutation, which
are integral parts of the MutSigCV statistical
model (36). Note that Ng,exp is an internal var-
iable not included in the MutSigCV output,
requiring a trivial code modification to access
its value. We then defined the corrected muta-
tion count of each gene g as

Mg ¼ log max Ng;obs � Ng;exp; 0
� �þ e

� �

with e = 5 as a pseudocount to avoid taking the
logarithm of zero. The vector of corrected mu-
tation counts for all m genes, denoted y, was
fit using the following model of mutation pres-
sure, illustrated graphically in Fig. 3A:

y ¼ Iw þHv

In this model, H is an m × n matrix repre-
senting the assignment of m genes to n sys-
tems, in whichHij = 1 if gene i is a member of
system j and 0 otherwise. I is an m × m iden-

tity matrix. The vectors w and v model the
positive selection pressures on genes and sys-
tems, respectively, that have given rise to the
mutation counts in y. Values for these vectors
were solved by linear regression with L1 lasso
regularization using the R package glmnet (117)
with parameters lambda.min = 10–4, nlambda =
500, standardize = False, and lower.limit = 0.
These settings produce a family of optimal solu-
tions to w and v under different strengths of
regularization l. Large l tends to select a few
large systems (zerow, sparse v), whereas small
l tends to select every gene as a model of its
own mutation counts (dense w, zero v). Each
system t, among the set of systems T, was
assigned a selective pressure S over all regu-
larization penalties:

S tð Þ ¼ max
l

vt lð ÞX
t ′∈T

vt ′ lð Þ þ
X

g∈G
wg lð Þ

For each l, this equation calculates the frac-
tion of the weight of a system t among all
weights in the linear equation; the maximum
fraction attained is returned as S(t). An em-
pirical P value was calculated by comparing
S(t) of the actual hierarchy against 10,000 ran-
dom hierarchies in which the hierarchy struc-
tureH is permuted with respect to gene labels
(i.e., permuting the rows in H). The FDR is
calculated using the Benjamini-Hochberg pro-
cedure with the Python package statsmodels
(v0.9). In this study, we defined systems with
FDR < 0.25 as recurrently mutated.
To optimize the hierarchical structure for

HiSig analysis, we scanned the CliXO param-
eters (a, b,m; see above), yielding an ensemble
of systems hierarchies of varying size and com-
plexity (fig. S2, F and G). The HiSig procedure
was applied to each of these hierarchies to
determine recurrentlymutated systems in each
tumor type. Notably, a higher overall number
of systems in a hierarchy did not necessarily
imply that more of these systems would be
scored as under mutation pressure, because
larger hierarchies alsomust testmore systems,
adversely affecting the FDR. Among this en-
semble, we chose the parameters a = 0.07, b =
0.5, m = 0.005, as the hierarchy generated
under these parameters was an optimal trade-
off between the model parsimony and the
power of detectingmore significantly mutated
systems (fig. S2, F andG).We used this param-
eter set for all subsequent analyses.

Naming of NeST systems

NeST systemswere namedby a teamof in-house
curators, based on expert knowledge, literature
analysis, and GSEA analysis. Where possible,
names were chosen to agree with existing lite-
rature about the functional relationship be-
tween systems’ substituent genes. The naming
process had no influence on the composition of
these systems or their inclusion in NeST, which
remains a truly data-driven construct.
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Independent cancer cohorts for validation
For validation of NeST systems in indepen-
dent tumor cohorts, we selected 13 tumor co-
horts with sufficient whole-exome sequencing
data (>100 samples per cohort) that were in-
dependent of the TCGA cohorts used to define
NeST. The validation cohorts include a total of
4077 tumor samples from three ICGC (Inter-
national Cancer Genome Consortium) datasets
(breast, liver, lung; samples from TCGA studies
were removed), seven CPTAC (Clinical Proteo-
micTumorAnalysisConsortium)datasets (brain,
breast, colon, lung, kidney, ovary, uterus), and
two datasets from focused studies (colon, liver).
MAF files recording the somatic mutations of
these studies were obtained from ICGC data
portal release 27 (https://dcc.icgc.org/releases/
release_27), CPTAC data portal at the Genomic
Data Commons (https://portal.gdc.cancer.gov/),
and the cBioPortal (104), respectively. TheMAF
files of ICGC samples were processed by the
icgcSimpleMutationToMAF function in the
maftools package (118). MAF files were then
used as input to MutSigCV 1.4 and followed
by HiSig analysis, similar to the procedure
described above for analysis of TCGA data.
Each validation cohort was paired with the

TCGAdiscovery cohort ofmatching tissue type
(Fig. 4B). For each of these pairwise compar-
isons, systems identified by HiSig as recur-
rently mutated in the discovery cohort (see
above) were examined for significance in the
validation cohort; if HiSig FDR< 0.1, the system
was marked as “validated.” FDR was computed
from the HiSig P value using the Benjamini-
Hochberg procedure, with the number of mul-
tiple tests equal to the number of recurrently
mutated systems in the discovery cohort. To
provide a reference for this analysis, we per-
formed similar analyses for individual genes
identified by MutSigCV, and for systems across
cohorts of mismatched cancer types (fig. S3A).

Evaluation of the novelty of NeST systems

Overlap between NeST and known cancer
pathways was determined according to 241
literature-curated pathways collected in our
previous survey (71). NeST systems with sig-
nificant overlap with any of these pathways
(at least two overlapping genes and P < 0.05 by
hypergeometric test adjusted by Bonferroni
correction) were marked as having “overlap
with cancer pathways.” Remaining systems
were tested for significant overlap with 16,064
gene sets in Gene Ontology (including terms
in Cellular Component, Biological Process, and
Molecular Function), and those with signif-
icant overlaps (same statistical definition as
above) were marked as “overlap with other cell
biology entities” (Fig. 4D and table S5).

CRISPR-Cas9 screen for determination of BRCAness

The protocol for arrayed CRISPR-Cas9 screen-
ing was adapted from previous work (119). To

obtain reliable cell counts for cell proliferation,
SW1710 bladder cancer cells were RFP-labeled
using the Incucyte NucLight Red Lentivirus
Reagent (cat. no. 4476), and transfected cells
were selectedusing puromycin (3mg/ml). Three
different crRNAs were obtained for each gene
from Dharmacon. crRNA:tracrRNA duplexes
were formed by initially incubating 4 ml of
crRNA (160 mM)with 4 ml of tracrRNA (160 mM)
for 45 min at 37°C. Duplexes were incubated
with 8 ml of Cas9-NLS protein (40 mM) at 37°C
for 15 min. These crRNPs were then aliquoted
(4 ml) into 96-well V-bottom plates in arrayed
format in a randomorder tomitigate potential
positional effects. Nucleofection of crRNPs into
cells was conducted using the SE cell line
4D-nucleofector kit (Lonza, cat. no. V4SC-1960);
200,000 SW1710 RFP-labeled cells per well
were resuspended in 20 ml of supplemented
SE buffer and mixed with crRNPs. Cells were
nucleofected on the Amaxa 4D-Nucleofector
System, using program CM-137.
Afternucleofection, 80ml of prewarmedmedia

was added and the cells were recovered at
37°C. Nucleofected cells from 96-well plates
were then transferred to a 384-well plate such
that each well has four technical replicates
of ~500 cells. After 24 hours of recovery, the
initial cell counts were measured using an
ArrayScan (Thermo Fisher Scientific). Imme-
diately after obtaining the initial cell counts,
cells were treated with olaparib (10 mM) or
cisplatin (600 nM). The selected doses were
those resulting in 80% cell death compared to
no treatment in wild-type cells based on dose-
response curves determined inprescreens. Final
cell counts weremeasured after ~6 days, when
the wells nucleofected with nontargeting con-
trol were confluent.
As a control, BRCA1 (cat. no. CM-003461-02,

Dharmacon) was tested to have a gene-editing
efficiency of 87.6% under these conditions
through TIDE analysis (120). Phenotypic anal-
ysis was conducted by normalizing the cell
proliferation in drug-treated conditions to the
cell proliferation in the no-treatment condi-
tion. This approach eliminated potential rela-
tive cell growth defects in the no-treatment
condition as a result of individual gene knock-
outs. Differential drug sensitivity was determined
by comparison of the mean cell proliferation
of 24 total replicates per gene to the mean
value obtained fromnontargeting control. The
statistical significance of the phenotypic effect
(Fig. 3C) was determined by a paired-sample
t test.

Analysis of the PIK3CA-actomyosin system

Proximity ligation assay. CAL-33 cell lines
were fixed in 4% paraformaldehyde (in PBS)
for 15 min at room temperature, and then
washed in PBS. Cells were permeabilized
with 0.25% Triton X-100 (in PBS) for 10 min at
room temperature. Unspecific binding sites

were blocked by incubating cells in block-
ing solution included in the Duolink In Situ
Red Starter Kit Mouse/Rabbit (Sigma-Aldrich
DUO92101). Primary antibody incubation was
performed at 4°C overnight. The different com-
binations of primary antibodies used were:
anti-PIK3CA (Invitrogen MA5-17149) diluted
at 1/400, anti-FLAG (Cell Signaling Technol-
ogies 14793S) diluted at 1/800, and anti-MYH9
(ThermoFisher PA-29673) diluted at 1/500.
Primary antibodies were diluted in Duolink
Antibody Diluent. Detection was performed
according to the manufacturer’s protocol. Brief-
ly, after probe incubation for an hour at 37°C,
a ligation-ligase solution was added to each
sample for 30 min at 37°C, and then washed
twice for 2 min with 1× Duolink In Situ Wash
Buffer A. An Amplification-Polymerase solu-
tion was added for 100 min at 37°C, and then
washed twice for 10 min with 1× Duolink In
Situ Wash Buffer B. The slides were mounted
using Duolink In Situ Mounting Medium with
DAPI. Protein-protein interactions appear as
red spots.
Samples were imaged on a Nikon Ti2-E

(Nikon) microscope equipped with a CREST
X-Light spinning disk confocal (Crest Optics),
Celeste Light Engine (Lumencor), Piezo stage
(Mad City Labs), and a Prime 95B 25mmCMOS
camera (Photometrics) using a Plan Apo VC
100×/1.4 Oil (Nikon). The red PLA dye was
measured by exciting with 561-nm laser and
capturing with 607/36-m filter. Nuclei/DAPI
were excitedwith a 405-nm laser and captured
with 450/50-m filter. Z stacks were set to cap-
ture the height of all cells in the field of view
and images were taken to capture >150 cells
per condition. PLA spots in cells were seg-
mented in 3D and counted using GA3 analysis
in NIS Elements (v. 5.30.01 build 1541, Nikon).
Cell culture and immunostaining. CAL-

33 cells were maintained in Gibco DMEM
(ThermoFisher, 11995073) supplemented with
10% fetal bovine serum (Fisher Scientific, 26-
140-079) and 1% penicillin-streptomycin (Corn-
ing, Cat# 30-002-CI), and incubated at 37°C
with 5% CO2. For superresolution imaging ex-
periments, cells were cultured in a poly-L-lysine–
coated (Sigma-Aldrich, P9155) Lab-Tek II 8-well
chambered coverglass (ThermoFisher, 155360).
Doxycycline (Clontech, 631311) was added to
each well at 1 mg/ml at the time of cell plating
to induce 3×FLAG-PIK3CA expression. After
36 to 48 hours, the cells reached 60 to 70%
confluency and were fixed and stained using
the same protocols as described (121). Briefly,
fixation was done with 3.7% paraformaldehyde
(PFA) in 1× PHEMbuffer at room temperature
for 20min.After three quickPBS (ThermoFisher,
14190144) washes, the sample was quenched
with fresh 0.1% sodium borohydride in PBS for
7 min, washed with PBS (3×), and permeabi-
lized with 0.3% saponin (Sigma-Aldrich, 47036)
in PBS for 30 min. The sample was then rinsed
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with PBS and blocked with Image-iT FX sig-
nal enhancer (ThermoFisher, I36933) at room
temperature for 30 min. After three quick
rinses with PBS, the sample underwent a
second blocking in PBS with 3% goat serum
(Abcam, ab7481) and 5% salmon sperm DNA
(ThermoFisher, AM9680) for 30minwith gentle
rocking. The sample was then incubated with
a mouse monoclonal anti-FLAG M2 antibody
(Sigma-Aldrich, F1804, dilution ratio 1:1000)
and a rabbit anti-Myosin IIA antibody (Sigma-
Aldrich, M8064, dilution ratio 1:150) in the
same BSA and Salmon DNA blocking buffer at
room temperature on a rocker for 90min. The
sample was then rinsed with PBS (3×, 5 min
each) before incubating with DNA-conjugated
donkey anti-rabbit IgG (H+L) (Jackson Immuno
Research, 711-005-152, dilution ratio 1:100) and
donkey anti-mouse IgG (H+L) (Jackson Immuno
Research, 715-005-150, dilution ratio 1:200) in
blocking buffer. Here, the anti-mouse and anti-
rabbit secondary antibodieswere pre-conjugated
withdifferentDNAoligos,namelyDS1 (sequence:
5′-TATACATCTAAATACATCTAAT) andDS2 (se-
quence: 5′-TTATCTACATATATCTACATAT), re-
spectively, using a procedure reported in (121).
The incubation also took place on a rocker
at room temperature for 1 hour, followed by
thorough PBS rinses. The sample was then
post-fixed with 3.7% PFA and 0.1% glutaralde-
hyde in a PHEM buffer at room temperature
for 10 min. Of note, this post-fixation step is
critical to subsequent DNA-PAINT imaging.
DNA-PAINT imaging. All superresolution

fluorescence data were taken on a custom-
built single-molecule imaging system used in
our previous work (121). For multicolor imag-
ing, the targets were imaged sequentially with
exchange-PAINT using our modified protocol
(121, 122). Gold nanorods (50 nm, BBI Solu-
tions, EM. GC50/4) added to the samples were
used as fiduciary markers for both stage drift
correction and image registration. All imaging
was performedusingAtto643 (Atto-tec, AD643)
labeled imager strands IS1 (sequence: 5′-TTAG-
ATGTAT) or IS2 (sequence: 5′ ATATGTAGAT)
in imaging buffer C (1× PBS with 500 mM
NaCl) containing 10 to 15% ethylene carbonate
(EC) (Sigma-Aldrich, 676802). For each target,
typically 40,000 frames of raw DNA-PAINT
image data were acquired at 50-ms exposure
time using micromanager (123). Image anal-
ysis, including single-molecule localization
and subsequent coordinate filtering, sorting,
and rendering, was performed using in-house
Matlab scripts as described (124). For local-
ization sorting, events that appeared within
a defined number of frames (typically 5) and
distance (typically 85 nm or 0.5 pixel on our
setup) were combined into a single event with
averaged coordinates. The assorted localizations
were then used for final image rendering, and
the rendered imageswere exported as TIF files
for further analysis and annotations in Fiji (125).

Signaling assay. Serum-starved cells from
head-and-neck cancer cell lines (CAL-33, SCC-
25) were treated with a combination of 0.5 mM
alpelisib (MedChemExpress HY-15244) and/or
10 mM (–)-blebbistatin (Selleckchem S7099)
with the appropriate vehicle control for 30 min.
Cells were lysed and subsequently cleared by
centrifugation. After normalization of protein
concentrations, sampleswere boiled in Laemmli
sample buffer (BioRad) and subjected to im-
munoblot analysis. Antibodies (Cell Signaling
Technologies) were used at the indicated dilu-
tions: p-AKT Ser473 (cat. no. 4060, 1:5000),
AKT (cat. no. 9272, 1:1000), p-S6 Ser235/236
(cat. no. 2211, 1:5000), S6 (cat. no. 2317, 1:1000),
GAPDH (cat. no. 2118, 1:10,000). Results were
quantified using ImageJ using the ratio of
phosphorylated/total signal normalized to the
vehicle control of each replicate (N = 3, Fig. 5F
and fig. S5D).
Association of mutation status with RPPA

data.Reverse-phase protein array (RPPA) quan-
tifications of phosphorylated/total proteins
in each of 899 cancer cell lines, (CCLE_RPPA_
20181003.csv), along with the mutation pro-
files of these cell lines, (CCLE_DepMap_18q3_
maf_20180718.txt), were downloaded from the
CCLEdataportal (https://portals.broadinstitute.
org/ccle/data) (78). Synonymous mutations and
mutations outside of protein-coding regions
were excluded from this analysis.

Analysis of collagen mutations

dN/dS analysis. To analyze mutational se-
lection on collagen complexes, we considered
the most prominent collagen mutation types
for SKCM and LUAD, i.e., C → T or G → A
transitions for SKCM, and transitions and
transversions on C/G nucleotides for LUAD.
Background mutation rates were calculated
by examining the silent positions of the col-
lagen genes in the analyzed systems. Triple-
helical regions of collagenproteinsweredefined
using annotations in the Uniprot database.
Statistical significance and 95% CIs (Fig. 6E)
were calculated based on a one-tailed bino-
mial test.
Structure-based stability analysis. All point

mutations in the trimeric helix region were
considered. A crystal structure of collagen I
trimeric helix region (PDB ID: 1BKV) was used
as a template, which contains three identical
polypeptide chains, each with 10 trimeric re-
peats. For each point mutation, nine resi-
dues surrounding themutated position were
threaded onto the middle of the template
(fourth to sixth repeats). Two structuremodels
representing the wild-type and the mutant
were created (differing by one residue at the
mutated position) and scored by the FoldX
5.0 suite (88) with the “BuildModel” command.
The change of protein stability upon point
mutation (DDG) was defined as the “total en-
ergy” of themutantmodel subtracted by that of

the wild-type model. Because the magnitude
of destabilization is often nonphysiological,
and because of the fixed backbone structures
in this type of analysis, we set the maximum
of DDG to 8.0 kcal/mol when displaying re-
sults (Fig. 6F).
Association of mutation status with meta-

static phenotypes. Metastatic potential and
penetrance of 488 cancer cell lines were ob-
tained from the MetMap 500 dataset (https://
depmap.org/metmap/data) (89). Mutation pro-
files of these cell lines (CCLE_DepMap_18q3_
maf_20180718.txt) were downloaded from the
CCLE data portal (https://portals.broadinstitute.
org/ccle/data) (78). Synonymousmutations and
mutations outside of protein-coding regions
were excluded from this analysis.
Cell lines and plasmids. HFF-1 (ATCC

SCRC-1041), Tu To (ATCC CRL-1298), and A549
cells (ATCC CCL-185) were obtained from
the American Type Culture Collection (ATCC).
pEGFP-N2-COL1A1was a gift fromDStephens
(Addgene plasmid #66602; http://n2t.net/
addgene:66602; RRID:Addgene_66602).
pMD2.G was a gift from D. Trono (Addgene
plasmid #12259; http://n2t.net/addgene:12259;
RRID:Addgene_12259). pCMV-dR8.2 dvprwas a
gift fromB.Weinberg (Addgene plasmid #8455;
http://n2t.net/addgene:8455; RRID:Addgene_
8455). The COL1A1 ORF was introduced into
pLenti CMV Blast DEST (706-1), which was a
gift fromE. Campeau and P. Kaufman (Addgene
plasmid #17451; http://n2t.net/addgene:17451;
RRID:Addgene_17451). With pCMV-dR8.2 dvpr
and pMD2.G, IT was used to stably introduce
CMV-COL1A1 into HFF-1 cells via standard lenti-
viral packaging and infection protocols as de-
scribed (28). Site-directedmutagenesis was used
to introduce the G281S mutation into COL1A1
as described (28).
Whole-exome sequencing of Tu To. All cells

were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% (v/v) fetal
bovine serum (FBS; Corning) and 0.1% gen-
tamicin (Gibco Thermofisher). These cells
were harvested to isolate their genomic DNA
using aWizard Genomic DNA Purification Kit
(Promega), following the manufacturer’s in-
structions. The isolated genomic DNA was se-
quenced utilizing an Illumina NovaSeq 6000.
We used Terra (https://terra.bio/), a cloud com-
puting platform for genomics, to performgerm-
line mutation calling of Tu To. Paired-end
FASTQ files of Tu To whole-exome sequenc-
ing were used as the input, and we used the
“Sequence-Format-Conversion/Paired-FASTQ-
to-Unmapped-BAM” and “Exome-Analysis-
Pipeline/ExomeGermlineSingleSample”
workflows to identify the germline variants.
Fibroblast-derived matrix experiments.

Wild-type andmutant fibroblast-derivedmatri-
ces were generated following the basic pro-
tocol outlined in (126) with adaptations. Media
was supplementedwith dextran sulfate sodium
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salt from Leuconostoc spp., MW ~ 500,000 g/
mol (D8906, Sigma-Aldrich) as described in
(127) with a concentration of 100 mg/ml in-
stead of the addition of ascorbic acid. Thick-
ness of each matrix was measured using a
Nikon TiE microscope with a 10× objective
as the z-distance of the cell layer focal plane
from the dish bottom focal plane. Once the
fibroblast-derived matrix thickness reached
20 to 30 mm, the matrices were decellularized
following the protocol in (126) including the
addition of DNase I (Thermo Fisher Scientific
Baltics, Vilnius, Lithuania). After decellu-
larization, A549 cells were seeded on top of the
matrices at a density of 30,000 cells/ml and
incubated for 25 hours. The cells were then
fixed using 4% paraformaldehyde (15710-s,
Electron Microscopy Sciences, Hatfield, PA)
for 30 min at room temperature. The fixed
samples were stained with primary antibody
against Ki67 (1:400 dilution, 8D5, Cell Sig-
naling Technology) and secondary antibody
Alexa Fluor 546 goat anti-mouse (1:2000 dilu-
tion; A11003, Life Technologies). DAPI (1:1000
dilution; 4083, Cell Signaling) was used to
counterstain the nuclei. Fluorescent images
were obtained using a Nikon TiE inverted mi-
croscope (Nikon Instruments Inc., Melville,
NY)with a 10× objective lens. The imageswere
observed and taken in NIS Elements Software
(Nikon).

Clinical analysis of protein systems

Each NeST system was tested for association
between themutation status of the system and
the progression-free patient survival (PFS)
time. Associations were tested only in the tu-
mor type(s) for which the system was recur-
rentlymutated (HiSig). Clinical data fromTCGA
patients (Pancancer Atlas), including PFS,
were downloaded from the cBioPortal (104).
Statistical significance was evaluated by log
rank test, with P values adjusted by the
Benjamini-Hochberg procedure. We noted
that PFS time is significantly associated with
the overall mutation burden in several tumor
types (BLCA, OV, STAD, UCEC); thus, we used
a multivariable Cox proportional-hazards mod-
el for all analysis, using the mutation status
and the total number of mutations in the sam-
ple (log10-transformed) as independent var-
iables. The P values assigned tomutation status
by this model considered the statistical asso-
ciation after removing the confounding effects
of mutation burden. This process identified
a total of 38 associations (FDR < 0.3) between
a system and PFS. Next, we tested the asso-
ciation of PFS with the mutation status of
individual genes defined as cancer drivers by
the TCGA Pancancer Atlas (37) for each of the
13 analyzed tumor types. From all combina-
tions of single genes and tumor types, nine
significant prognostic associations (i.e., gene/
PFS) were detected (FDR < 0.3; table S7). We

then excluded any PFS-associated system con-
taining a gene which was (i) determined to be
prognostic in that same tumor type and (ii)
accounted for more than 80% of tumor cases
with mutations in that system. After subtract-
ing these systems, a total of 25 (system, tumor
type) associations were found remaining, i.e.,
associations which could not be attributed to
mutations within only a single gene.

Survey of cancer genes based on
systems-level analysis

To create a catalog of cancer genes based on
systems in the NeST map (table S8), we con-
servatively selected the top two genes with the
highest mutation rates per system, adjusted
for pleiotropic genes included in multiple
systems. Raw gene mutation frequency is not
a suitable metric to rank the importance of a
gene to a system, because a pleiotropic gene
with highmutation frequency (e.g., TP53)would
be ranked first for every system in which it
participates, despite contributing to many dif-
ferent systems. Rather, we distributed the total
mutation count of a gene across the systems in
which it participates, proportioned accord-
ing to the weights assigned to each system by
HiSig (v vector; see HiSig method above). In
particular, we translated Mg, the total muta-
tion counts for gene g, to Mgs, the mutation
counts for gene g ascribed to system s, ac-
cording to the following function:

logMgs ¼ vs

wg þ
X

s′∈SðgÞvs′
log Mg

where wg and vs are the weights given to gene
g and system s in the regression model by
HiSig. Thus, for each system s, the genes were
ranked by their values ofMgs, which penalized
genes with high pleiotropy. The resulting
NeST gene catalog was analyzed against three
types of validation as follows:
Differential expression in tumors. For each

gene, we examined differential expression
between tumor and normal samples in nine
TCGA cohorts, which each had >40 normal
samples (BRCA, HNSC, KIRC, LIHC, LUAD,
LUSC, PRAD, THCA, COAD). Differential ex-
pression was evaluated using a Kolmogorov-
Smirnov (KS) test, by comparing the percentile
rankings of gene RSEM values downloaded
from the UCSC Xena platform (128) (https://
xenabrowser.net/datapages/). A summary sta-
tistic (Fig. 7G) was derived by summing up
the negative log of the P values across these
cohorts.
Prognostic value of gene expression. For

each gene and tissue type, we examined log-
rank P values scoring the significance of as-
sociation between mRNA expression level
and patient survival, usingKaplan-Meier analy-
sis. These P values were obtained from the
Human Protein Atlas (HPA) (129) for each of

the 13 TCGA cohorts analyzed in our study
(www.proteinatlas.org/about/download). A
summary statistic (Fig. 7H) was derived by
summing up the negative log of the P values
across these cohorts.
Mouse genetic screens. We used the Can-

didate Cancer Gene Database (CCGD) (130)
(http://ccgd-starrlab.oit.umn.edu, downloaded
on 4 June 2019), which contains literature-
curated evidence from transposon-based for-
ward genetic screens in mice. The number of
studies in which a gene was disrupted by
transposon insertional mutagenesis in mice
tumors was used as the summary statistic
(Fig. 7I).
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Mapping protein interactions driving cancer
Cancer is a genetic disease, and much cancer research is focused on identifying carcinogenic mutations and
determining how they relate to disease progression. Three papers demonstrate how mutations are processed through
networks of protein interactions to promote cancer (see the Perspective by Cheng and Jackson). Swaney et al. focus
on head and neck cancer and identify cancer-enriched interactions, demonstrating how point mutant–dependent
interactions of PIK3CA, a kinase frequently mutated in human cancers, are predictive of drug response. Kim et al.
focus on breast cancer and identify two proteins functionally connected to the tumor-suppressor gene BRCA1 and
two proteins that regulate PIK3CA. Zheng et al. developed a statistical model that identifies protein networks that are
under mutation pressure across different cancer types, including a complex bringing together PIK3CA with actomyosin
proteins. These papers provide a resource that will be helpful in interpreting cancer genomic data. —VV
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