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A multi-scale map of cell structure fusing 
protein images and interactions
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Marcus R. Kelly1, Steven M. Blue5,6,7, Fan Zheng1, Michael Chen1, Leah V. Schaffer1, 
Katherine Licon1, Anna Bäckström4, Laura Pontano Vaites3, John J. Lee1, Wei Ouyang4, 
Sophie N. Liu1, Tian Zhang3, Erica Silva1, Jisoo Park1, Adriana Pitea1, Jason F. Kreisberg1, 
Steven P. Gygi3, Jianzhu Ma9, J. Wade Harper3, Gene W. Yeo2,5,6,7, Denis L. J. Lafontaine8, 
Emma Lundberg4,10,11 ✉ & Trey Ideker1,2,7,12,13 ✉

The cell is a multi-scale structure with modular organization across at least four 
orders of magnitude1. Two central approaches for mapping this structure—protein 
fluorescent imaging and protein biophysical association—each generate extensive 
datasets, but of distinct qualities and resolutions that are typically treated 
separately2,3. Here we integrate immunofluorescence images in the Human Protein 
Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of 
human cell architecture. Integration is achieved by configuring each approach as a 
general measure of protein distance, then calibrating the two measures using 
machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), 
resolves 69 subcellular systems, of which approximately half are to our knowledge 
undocumented. Accordingly, we perform 134 additional affinity purifications and 
validate subunit associations for the majority of systems. The map reveals a 
pre-ribosomal RNA processing assembly and accessory factors, which we show 
govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin 
and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of 
imaging while giving protein interactions a spatial dimension, paving the way to 
incorporate diverse types of data in proteome-wide cell maps.

Eukaryotic cells consist of large components, such as organelles, which 
recursively factor into smaller components, such as condensates and 
protein complexes, forming an intricate multi-scale structure6. Fun-
damental techniques for mapping subcellular structure are protein 
imaging and biophysical association, each of which has been exten-
sively automated. In particular, advances in confocal microscopy and 
immunofluorescence have made it possible to scan the distribution of 
proteins in situ within single cells2. By combining these techniques with 
a library of antibodies, the Human Protein Atlas (HPA) has embarked on 
systematic studies to position human proteins into subcellular com-
partments4. As a parallel approach to cell mapping, mass spectrometry 
(MS) has been powerfully combined with affinity purification (AP–MS) 
and proximity-dependent labelling to enable rapid measurement of 
protein–protein associations3. Using AP–MS, the BioPlex project is 
generating comprehensive interaction maps for most human proteins5.

Given these efforts, a key question is how imaging and biophysical asso-
ciation should be combined to inform cell structure. We reasoned that 
the two platforms provide complementary measures of protein location, 

albeit of vastly different characters. Images position proteins relative to 
cellular landmarks such as the nucleus, whereas biophysical associations 
position proteins relative to nearby proteins. In both cases, such position-
ing has become increasingly quantitative due, in part, to the ability of 
machine learning systems to recognize complex patterns in data7,8.

Here we demonstrate a machine learning approach in which protein 
imaging and biophysical association are integrated to create a unified 
map of subcellular components (Fig. 1). First, we use neural networks 
to project proteins into a small number of dimensions on the basis of 
imaging or biophysical association. Once protein coordinates have 
been determined for each platform, pairwise distances among proteins 
are calibrated and combined to reveal assemblies at different scales, 
from the very small (less than 50 nm) to the very large (more than 1 µm).

Protein position and distance in two ways
We assembled a matched dataset of immunofluorescence images from 
HPA4 and AP–MS data from BioPlex5. Both resources are partially based 
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on human embryonic kidney (HEK293-derived) cells, yielding 661 
proteins with compatible imaging (1,451 images including replicates) 
(Extended Data Fig. 1a–c) and biophysical association data (291 proteins 
affinity-tagged as ‘baits’, 370 as interacting ‘preys’) (Supplementary 
Table 1). These proteins covered a wide distribution of subcellular loca-
tions similar to that seen for all human proteins (Extended Data Fig. 1d). 
Other proteins in HPA and BioPlex were measured in differing cell types 
that did not align; thus, we focused on the common HEK293-derived 
context for prototyping our approach.

We next used deep neural networks to embed each protein on the 
basis of its immunofluorescence and AP–MS data. An embedding is a 
low-dimensional representation of a complex input, in which each data 
point (here a protein) is assigned coordinates in the reduced dimen-
sions. Much machine learning research has focused on creating a good 
embedding, in which similar inputs (here proteins with similar subcel-
lular distributions or interactions) are close in the embedded space9. For 
image embedding we used DenseNet7, a convolutional neural network 
with superior performance in capturing protein locations relative to 
counter-stained cellular landmarks (Extended Data Fig. 2a–c). Simi-
larly, the node2vec neural network8 was used to embed each protein 
using its extended AP–MS interaction neighbourhood (Extended Data 
Fig. 2d–g).

We then computed protein–protein distances for all protein pairs, 
separately in immunofluorescence and AP–MS embeddings. The closest 
pairs measured by one technique were enriched for pairs close in the 
other, showing that imaging and AP–MS share substantial information 
(Extended Data Fig. 3a, b). To calibrate distances in the embeddings to 
physical distances in cells, we assembled a reference set of subcellular 
components with known or estimated diameters, from protein com-
plexes of less than 20 nm to organelles of more than 1 µm (Extended 
Data Fig. 3c, Supplementary Table 2, Supplementary Methods). With 
these curated diameters as training labels, we taught a supervised 
machine learning model (random forest regression) to estimate the 
distance of any protein pair directly from its coordinates in the immu-
nofluorescence and AP–MS embeddings (Extended Data Fig. 3d, e).
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Fig. 1 | Overview of data fusion strategy. Protein images and interaction data 
are analysed to generate neural network embeddings for each protein. These 
embeddings reveal communities of proximal proteins at multiple resolutions 
to create a multi-scale integrated map of the cell. DNN, deep neural network.

Chromosome
organization

complex family

Large ribosomal
subunit subcomplex 3

Negative
regulation of RNA

biosynthetic
process

Nuclear
body

Nuclear
transcriptional

speckle
DNA

metabolic
assembly

Chromatin
regulation
complex

Nucleus

Chromatin
organization

complex family

Cytoplasm

Catalytic
step 2

spliceosome

Cell

Subgroup of
spliceosomal

complex family

Nuclear
lumen

Cytoplasmic
organelles

Ribosomal
complex 1

Nucleolus

Ribosomal
complex 3

Subgroup of
cytoplasmic
organelles

Subgroup of
metabolic
organelles

Cotranslational
protein targeting to
membrane system

Ribonucleoprotein
complex family

Ion transmembrane
transport system

Pre-catalytic
spliceosome

Mitochondrion

Transmembrane
transport systems

Splicing
regulatory
complex

Metabolic
organelles

RNA
processing
complex 2

U2-type
spliceosomal

complex family

Secretory
organelles

RNA processing
complex family

U2
snRNP

Nucleic
acid binding

complex

Nuclear
splicing
speckle

Pre-mRNA
splicing

complex 1

Ribosome biogenesis
community

Ribosomal
complex 4 RNA splicing

complex 1

Ribosome

Transcriptional
regulation

complex family

RNA splicing
complex family

Chromatin
regulation
assembly

Mito-cyto
ribosomal

cluster

Nucleo-
plasm 2

RNA splicing
complex 3

Large
ribosomal subunit

subcomplex 2

RNA processing
complex 1

Ribosomal
subunit

Nucleo-
plasm 1

Large ribosomal
subunit

subcomplex 4

RNA splicing
complex 2

Large
ribosomal
subunit

subcomplex 1

RNA splicing via
transesteri�cation

reactions

Mitochondrial
large ribosomal

subunit

Ribosomal
complex 2 NuA4 HAT

complex

Polysomal
ribosome
complex

U1 snRNP

Pre-catalytic
spliceosome

subcomplex 1

Pre-rRNA
processing
assembly
(PRRPA)

Ribosomal
complex

5

 Ribosome
biogenesis
assembly

Zinc �nger
protein complex

Spliceosomal
complex

family

Transcriptional
regulation complexes

Ribosomal
complex 6

 Ribosome
biogenesis

subcomplex

snRNP
complex family

HAT
complex family

9,000Size ladder (nm):

3,000

4,000

2,000

1,000

800

500

200

50

100

10

5

100

Number of
proteins:

50

20

10

Putative
systems

Known
systems

32 38

Total system
counts

Fig. 2 | The multi-scale integrated cell. Nodes indicate systems; arrows 
indicate containment of lower system by upper. Node size, number of system 
proteins. Node colour, known (gold) versus novel (purple). Teal boxes denote 

systems detailed in the text and figures. Elevation of system (size ladder) 
determined by predicted diameter.



Nature | www.nature.com | 3

A multi-scale map of subcellular systems
We analysed all distances among the 661 proteins to identify commu-
nities of proteins in close mutual proximity, suggesting distinct com-
ponents (Fig. 2). Communities were identified at multiple resolutions, 
starting with those that form at the smallest protein–protein distances, 
then progressively relaxing the distance threshold (multi-scale com-
munity detection10Extended Data Fig. 4a, Supplementary Methods). 
Communities at smaller distances were contained, in full or part, inside 
larger communities as the threshold was relaxed, yielding a structural 
hierarchy (Fig. 3a). The sensitivity of community detection was tuned 
for best concordance with two independent datasets: protein interac-
tions reported in the Human Cell Map11 using proximity biotinylation, 
also in HEK293 cells; and patterns of gene co-essentiality in the Cancer 
Cell Dependency Map12. Significant agreement with independent data-
sets was observed for a wide range of community detection parameters 
and for both small and large communities (Extended Data Fig. 4b, e). 
The final hierarchy, MuSIC 1.0, contained 69 protein communities 

representing putative subcellular systems organized by 87 hierarchi-
cal containment relationships (Fig. 2, Supplementary Table 3). Six-
teen systems were contained within multiple larger ones, suggesting 
multiple subcellular locations or pleiotropy. Approximately 46% had 
a substantial overlap with cellular components documented in Gene 
Ontology; we annotated the remaining 54% as putatively novel (Fig. 2).

Physical sizes of MuSIC systems were estimated from their pairwise 
protein distances (Fig. 2) and compared to known diameters of nine 
well-characterized cellular components not used earlier in calibration 
(Fig. 3b, Supplementary Table 4). One of these was the pre-catalytic 
spliceosome, for which support from both immunofluorescence and 
AP–MS data (Fig. 3c–f) had induced a protein community of 48 nm (95% 
prediction interval [26, 90]), in agreement with its published diameter 
of 42 nm13,14 (Fig. 3a, g). Within this community, the analysis resolved 
smaller U1 and U2 subunits (U1: 8 nm, 95% prediction interval [4, 15]; 
U2: 33 nm, 95% prediction interval [17, 61]), again in agreement with 
the arrangement and distances measured by cryo-electron micros-
copy (Fig. 3g). For all nine components, estimated diameters were very 
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close to actual measurements from the literature (Fig. 3b), validating 
that MuSIC captures and sizes biological systems across a wide range 
of scales.

MuSIC needs and informs both data types
We found that the majority of systems were robust to minor disrup-
tions in data (Fig. 4a, jackknife resampling, Supplementary Methods). 
By contrast, alternative MuSIC maps constructed with only one data 
type dropped numerous systems. Immunofluorescence-only maps 
tended to identify large systems such as organelles but falter for small 
subcomponents such as protein complexes, whereas AP–MS maps had 
the opposite behaviour (Fig. 4b–d). Notably, 30% of AP–MS interac-
tions fell within focused systems of fewer than 100 proteins (Fig. 4e), 
validating and providing location context for the interaction. Such 
context also increases the sensitivity of interaction detection: focusing 
on protein pairs not reported to interact in the previous BioPlex study5, 
pairs in smaller systems nonetheless had stronger AP–MS scores than 
pairs in larger systems (P < 0.0001; Fig. 4f), suggesting new bona fide 
physical interactions.

Global validation of MuSIC by new AP–MS
Of the 661 MuSIC proteins, 370 had not yet been affinity-tagged as baits 
in AP–MS experiments. Rather, they had appeared in the list of prey 
proteins isolated by another affinity-tagged protein. As an immediate 
means of validating candidate systems, we affinity-tagged 134 former 
prey proteins and performed AP–MS, resulting in the identification of 

339 physical interactions (Supplementary Table 1). Forty-four MuSIC 
systems were specifically enriched for new interactions (64%; false 
discovery rate (FDR) < 0.1) (Fig. 5a), including 23 putative candidates.

Ribosomal systems at multiple scales
Among candidates validated by the additional AP–MS data was a 
seven-protein assembly with an estimated diameter of 81 nm (95% 
prediction interval [43, 151]). We tentatively named this system 
‘pre-ribosomal RNA processing assembly’ (PRRPA) on the basis of estab-
lished pre-rRNA roles for two of its proteins15,16 (NVL, RPL13A), support 
from genetic screens17 (KRI1, NOC2L) and orthology to a pre-rRNA fac-
tor in yeast18 (REXO4). These proteins formed a system due to image 
similarity, with nucleolar localizations, and similarity of AP–MS network 
neighbourhoods (Fig. 5b, c, Extended Data Fig. 5a). Our new affinity 
purifications targeted five PRRPA proteins, and recovered interacting 
partners highly specific to this system (Fig. 5c, Extended Data Fig. 5b). 
To explore the function of PRRPA in pre-rRNA processing, we used small 
interfering RNAs (siRNAs) to knock down each protein; all knockdowns 
perturbed ribosomal RNA maturation to some extent (Extended Data 
Fig. 5c–i). We then used RNA immunoprecipitation and quantitative 
PCR (RIP–qPCR) to find that these proteins bind 45S pre-rRNA, again 
supporting a pre-rRNA processing role (Fig. 5d).

We also examined the larger-scale system containing PRRPA, ‘ribo-
some biogenesis community’ (347 nm, 95% prediction interval [186, 
646]). This system contained additional proteins not associated 
with ribosome biogenesis (Extended Data Fig. 6a), seven of which we 
knocked down with targeted Dicer-substrate siRNAs (DsiRNAs). All 
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seven had effects on pre-rRNA processing, stratified by the specific 
pre-rRNA affected (Fig. 5e, Extended Data Fig. 6b, c). Three of these 
proteins were targeted in our new AP–MS experiments (LIN28B, PRR3, 
ZNF689); each was shown to bind a substantial number of proteins 
within this same community (Extended Data Fig. 6d).

Another notable finding within ribosomal systems was abun-
dant cross-talk between cytoplasmic and mitochondrial ribosomes 
(‘mito-cyto ribosomal cluster’; 20 nm, 95% prediction interval [11, 38]) 
(Extended Data Fig. 6e–h). Several of these proteins were tagged in the 

new AP–MS experiments (two cytoribosomal, two mitoribosomal), 
recovering four new physical interactions between cytoplasmic and 
mitochondrial factors (Extended Data Fig. 6i). Such cross-talk may 
have a role in mitoribosome biogenesis, a poorly understood process19.

Chromatin and splicing
SRRM1 is an established splicing factor20 that, in addition to its canonical 
placement in ‘RNA splicing complex 3’ (71 nm, 95% prediction interval 
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qPCR normalized to DMAP1 (n = 2 stable cell lines). e, Heat map summarizing 
northern blot analysis of intermediate RNA products during pre-rRNA 
processing (rows), under DsiRNAs targeting candidate genes (columns). Heat 
map colour shows the percentage of pre-rRNA versus non-targeting scramble 
silencer control. UTP18 is a known ribosome biogenesis positive control. 

Independent silencers (#1–3) were highly consistent. f, Two-dimensional 
projection (spring embedding) of distances among proteins in chromatin 
regulation and splicing complexes. g, Pie charts categorize significant eCLIP 
peaks by genomic region (coloured slices). CDS, coding sequence; miRNA, 
microRNA; UTR, untranslated region. h, Clustering of RPS3A eCLIP profile 
(dashed line) with 223 eCLIP profiles25. Proteins robustly clustering with RPS3A 
(1,000 jackknife resamplings) enrich for splicing regulators (hypergeometric 
test, Benjamini–Hochberg correction). Colour consistent with g. RBP, 
RNA-binding protein.
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[38, 133]), participated in additional systems that were unexpected. 
‘Chromatin regulation complex’ (211 nm, 95% prediction interval [113, 
393]) included three histone acetyltransferases (HATs) (DMAP1, JAZF1 
and MORF4L121) and SATB1, which remodels chromatin through HAT 
recruitment22 (Fig. 5f, Extended Data Fig. 7a, b). These functions sug-
gested that SRRM1 and FAM120C, the remaining proteins in this system, 
also regulate chromatin. In support of this, we found that SRRM1 and 
FAM120C strongly associate with chromatin by in situ fractionation 
(Extended Data Fig. 7c).

Returning to RNA splicing complex 3, this system brought SRRM1 and 
other splicing factors (SNRNP7023, U2AF224) together with a ribosomal 
protein that was not previously associated with major RNA splicing 
(RPS3A21) (Extended Data Fig. 7d, e). However, analysis of published 
transcriptomic profiles25 indicated that knockdown of RPS3A had very 
similar transcriptional effects to knockdown of these splicing factors 
(Extended Data Fig. 7f, g). To test for a role in splicing, we subjected 
RPS3A to an enhanced ultraviolet cross-linking and immunoprecipita-
tion assay26 (eCLIP, Extended Data Fig. 7h), which identifies and char-
acterizes RNA transcripts bound by a protein. Indeed, RPS3A bound 
to many intronic RNA sequences (601 eCLIP peaks) (Supplementary 
Table 5) with a pattern very similar to that of canonical splicing regula-
tors (Fig. 5g). Moreover, when clustering the RPS3A profile with 223 
eCLIP profiles from the public domain25, RPS3A robustly clustered with 
canonical splicing regulators (92% recovery in jackknife resampling) 
(Fig. 5h), providing further support for an alternative role of this protein 
in splicing regulation.

Discussion
In classical image analysis, protein proximity is measured by fluores-
cently labelling multiple proteins in the same image27, a combinatorial 
process that is difficult to scale. Here we have developed a systematic 
means of measuring proximity through neural network embeddings 
of each protein. In turn, systematic accumulation of protein proximi-
ties moves us from a fixed list of predefined subcellular components 
to an open approach in which components are defined by inherent 
structure in the imaging data. Such analysis also integrates with other 
types of information, demonstrated here with AP–MS, and recovers 
components at multiple scales (Fig. 3b), including novel systems that 
can be physically and functionally validated (Fig. 5). Although imaging 
research is accustomed to thinking about physical sizes and intracel-
lular distances, the notion that protein interactions provide a com-
plementary measure of intracellular distance is, to our knowledge, 
new to this study.

Although nearly a third of AP–MS interactions link proteins within 
a focused system of fewer than 100 proteins, more than two thirds do 
not (Fig. 4e, Extended Data Fig. 8a). Such discrepancies may indicate 
transient protein interactions. Alternatively, discrepancies might derive 
from errors or biases, such as the fact that immunofluorescence detects 
endogenous proteins whereas AP–MS detects overexpressed tagged 
proteins. Some disagreement between data types can be tolerated, such 
as the correct assignment of GEMIN7 and SNRNP70 to the U1 snRNP 
(Fig. 3g), despite only a partial overlap in their images (Extended Data 
Fig. 8b). Here, correct assignment was facilitated by physical interac-
tion from AP–MS.

Systems in MuSIC reside at multiple scales, bridging and exceeding 
the ranges of immunofluorescence and AP–MS (Fig. 4a–d).   Here the 
scale of a component is determined by the estimated nanometre prox-
imities among its members; this measurement of scale only partially 
correlates with the component’s number of proteins. Analysis of protein 
proximities at broad scale identified the pre-catalytic spliceosome, 
whereas decreasing the distance threshold recovered smaller sub-
components, the U1 and U2 snRNPs (Fig. 3a, g). As physical proximity 
increases, one would expect the same for functional association. To this 
point, gene co-essentiality—a measure of joint function28—was strongest 

among genes in the same small systems, weaker within larger systems 
that contain them and near zero for unrelated genes (Extended Data 
Fig. 8c, d). Components at different scales map naturally to different 
types of assays for functional exploration. For example, we used 28S/18S 
rRNA ratio as a general readout affected by proteins in the ribosome 
biogenesis community. More specific probes implicated specific sub-
functions, such as the binding of a protein to 45S pre-rRNA (suggesting 
early-stage ribosome biogenesis) (Fig. 5d) or changes in 34S pre-rRNA 
that result from protein knockdown (suggesting maturation defect 
associated with small-subunit processome17) (Fig. 5e). We expect future 
validation of MuSIC systems to draw from a range of functional assays 
at the molecular, pathway and cellular level.

As the map is developed to cover all human proteins, key questions 
relate to cellular heterogeneity and dynamics; for example, whether it 
is preferable to work towards a unified map of subcellular components 
or to create separate maps cataloguing different cell types and states. 
An attractive middle road may be to create a small library of reference 
maps for major cell types, with context-specific differences indicated as 
annotations. Here, we focused on HEK293-derived cells, a widely used 
model for gaining general biological insights4,5,11. Previous studies have 
shown that approximately 70% of proteins have consistent localization 
across cell lines4 and about 50% maintain their physical interactions29; 
thus, we expect that the current map will partially generalize to other 
contexts, with attention paid to communities prone to dynamics. Nota-
bly, the proteins of many MuSIC systems are co-regulated in expression 
across diverse cell types (Extended Data Fig. 8e), suggesting that these 
systems are indeed relevant to other contexts.

Finally, we note the synergy achieved in integrating HPA and BioPlex, 
two large-scale mapping efforts that might have progressed indepen-
dently. Such coordination should continue and encompass collabora-
tive dataset design; for instance, by adopting common cell lines and 
proteins targeted across projects. Furthermore, new protein systems 
might arise with the inclusion of additional data modalities, such as 
proximity-dependent labelling, cross-linking mass spectrometry or 
cryo-electron microscopy. It will be interesting to explore synergies 
among these platforms, all of which might be calibrated to measure 
molecular distances and, in turn, contribute to maps of the multi-scale 
cell.
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Extended Data Fig. 1 | Characterization of image data used in this study.  
a, Histogram showing distribution in number of antibodies per protein over 
661 proteins included in MuSIC. b, Histogram showing distribution in antibody 
quality scores over antibodies used in this study. c, Immunofluorescence 
images for alternative antibodies (columns) targeting the same protein (rows). 

Colours represent immunostained protein (green), cytoskeleton (red), or 
nucleus (blue). Images show high reproducibility for different antibodies 
against the same protein. d, Comparison of localizations for proteins in MuSIC 
(HEK293 cells, red) versus all proteins assayed by HPA in any cell line (grey). 
Localizations as defined by the HPA project4.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Embedding immunofluorescence images and AP–MS 
data. a, Embedding immunofluorescence (IF) images using DenseNet. The 
1024-dimension feature vector for each IF image was extracted from a 
DenseNet-12131 model trained to classify the IF image into one or several of 28 
pre-defined protein localization classes from HPA. b, Two-dimensional 
visualization (UMAP, n_neighbours = 5) for the 1,451 image embeddings 
associated with the 661 proteins in MuSIC. c, Ability of different image 
embedding methods (coloured curves) to generate image-image similarities 
(cosine similarity) in agreement with protein-protein interactions in BioPlex 
2.0. d, Node2vec8 workflow. The feature vector generated by node2vec 
captures the pattern of interaction neighbourhood for the respective node in 
input network. e, Embedding AP–MS data using node2vec. The input network 
to node2vec was constructed by treating each protein as a node and assigning 

edges between protein pairs that were identified as physically interacting in 
the AP–MS data. The two-dimensional visualization (UMAP, n_neighbours = 5) 
for AP–MS embeddings associated with 661 proteins in MuSIC is shown at right. 
f, Network showing all proteins (grey) that physically interact with SNRPC and 
SNRPB2 (blue) in BioPlex 2.0. SNRPC and SNRPB2 do not physically interact, 
but the cosine similarity of their embedded features is 0.93 due to shared 
interaction neighbourhood. In many cases of two proteins with high node2vec 
similarity but without direct interaction in AP–MS data, we found that neither 
protein had yet been tagged as bait for an affinity purification experiment. In 
these cases, the node2vec embedding suggests gaps in existing AP–MS data.  
g, Ability of different AP–MS embedding methods to generate protein-protein 
similarities (cosine similarity) in agreement with protein pairwise similarities 
computed from HPA images.
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Extended Data Fig. 3 | Fusing protein distances from immunofluorescence 
and affinity purification. a, b, Protein pairs ranked by similarity in AP–MS 
embedding enrich for the most similar protein pairs in IF (a), and vice versa (b). 
c, Calibrating physical diameter, D, of subcellular components against the 
number of proteins, C, assigned to the corresponding Gene Ontology (GO) 
terms. d, Supervised model (random forest) estimates physical proximity (nm) 

of all pairs of proteins from their IF and AP–MS embeddings. e, Performance of 
model in recovering protein-protein distances in GO in five-fold cross 
validation (red, Pearson’s r). Equivalent calculation for random feature sets 
(grey). Statistics calculated using two-sided paired t-test. Data are presented as 
mean values +/- standard deviation.



Extended Data Fig. 4 | Selection of parameters for community detection.  
a, Using multi-scale community detection, protein systems of increasing sizes 
are discovered as the threshold for protein-protein distance is progressively 
increased. b, CliXO community detection has four parameters (depth 𝛼, y-axis; 
breadth β, x-axis; minimum modularity m and modularity significance z, red 
circle backslash) that affect the sensitivity with which communities are 
identified and thus the size of the hierarchy. c, d, Dot plots in which each dot is a 
community hierarchy generated with a particular set of parameters. The 

selection for MuSIC is highlighted in red. This selection was among several that 
were optimal based on enrichment for protein-protein interactions in Human 
Cell Map (c) and co-essentialities from DepMap (d). Examples of other 
parameter sets are shown in blue. e, Map from Fig. 2 with system colour 
showing enrichment for co-essentialities among protein pairs that are specific 
to that system. Enrichment of each system is assessed empirically, using 1,000 
randomized hierarchies, followed by Benjamini–Hochberg multiple test 
correction to obtain FDR (orange gradient).
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Extended Data Fig. 5 | Supporting analyses for PRRPA. a, Distributions of 
protein-protein distance z-scores among the seven proteins in the PRRPA 
system for IF (top, red) or AP–MS (bottom, blue) modalities, calibrated to all 
such distances, respectively (grey). Statistics calculated using one-sided 
Mann–Whitney U test. b, Specific recovery of new AP–MS interactions within 
PRRPA is shown (dark blue bar), in comparison to interactions between 
proteins in PRRPA and other proteins organized under the same parent systems 
(“Ribosome” and “Ribosome biogenesis assembly”, light blue bar), or between 
proteins in PRRPA and those organized elsewhere in MuSIC (grey bar).  
c, Mature 28S/18S rRNA ratio under siRNAs targeting each PRRPA protein 

(green) versus scrambled siRNA (grey), n = 3 biological replicates. FDR from 
two-sided t-test with Benjamini–Hochberg correction. Data are presented as 
mean values +/- standard deviation. d–i, Western blot analysis (d, e, Simple 
western assay; f–i, SDS–PAGE) of target protein abundance after treating 
HEK293T cells with respective siRNA for 72 h (Supplementary Tables 6, 7). The 
siRNAs highlighted in red were selected to assess the perturbation of mature 
rRNA ratio (28S/18S rRNA) when knocking down target protein, with protein 
knockdown efficiency confirmed using western blot in three additional 
biological replicates. For source data, see Supplementary Fig. 1 (gel; d–i) 
and Supplementary Fig. 2 (total RNA profiles; c).



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Supporting analyses for ribosomal systems.  
a, Categorization of proteins in “Ribosome biogenesis community” by whether 
they have been previously identified in human ribosome biogenesis. Excludes 
PRRPA proteins described in Fig. 5b–d. b, Structure of human pre-rRNA and 
probes used for northern blot. In eukaryotes, 3 out of 4 mature rRNAs (18S, 
5.8S, and 28S rRNAs) are produced from a single long polycistronic precursor 
(47S) synthesized by RNA polymerase I. The mature rRNAs are interspersed 
with the 5′ and 3′ external transcribed spacers (ETS) and internal transcribed 
spacer (ITS) 1 and 2. The probes used in the northern blot (5′-ETS, ITS1, and 
ITS2) are indicated and colour-coded. c, Total RNA extracted from the 
indicated cell line, which was transfected with a DsiRNA specific to the target 
protein for 72 h and analysed by northern blotting with probes specific to the 
5′-ETS, ITS1, and ITS2 sequences (Supplementary Table 8). As controls, cells 
were either untreated, transfected with a scrambled silencer, or transfected 
with a silencer targeting UTP18 (positive control involved in small ribosomal 
subunit biogenesis). Heat map colour shows the percentage of each pre-rRNA 
species with respect to the scramble control. For gel source data, see 
Supplementary Fig. 1. d, For protein baits in new AP–MS experiments (x axis), 

fraction of interacting preys that fall within the Ribosome biogenesis 
community (blue bars) versus elsewhere (grey bars). Only new AP–MS 
interactions are considered for this analysis. RNPS1 does not belong to 
Ribosome biogenesis community and serves as a negative control. e, IF images 
showing similar cytoplasmic staining for proteins in “Mito-cyto ribosomal 
cluster.” Cytoplasmic staining is dim for MRPS9, MRPS14 and MRPS31 
compared to their predominant mitochondrial locations. Colours represent 
immunostained protein (green), cytoskeleton (red) and nucleus (blue).  
f, g, Corresponding distributions of protein-protein distance z-scores for IF  
(f, red) or AP–MS (g, blue), calibrated to all such distances, respectively (grey). 
Statistics calculated using one-sided Mann–Whitney U test. h, Two-
dimensional projection of proteins in Mito-cyto ribosomal cluster, as in Fig. 5f. 
Proteins coloured according to known affiliations to cytoplasmic ribosome or 
mitochondrial ribosome. i, Validated AP–MS interactions in Mito-cyto 
ribosomal cluster. Note that only one out of seven proteins was previously 
tagged as bait in BioPlex 2.0 (light blue node), thus most physical associations 
(dark blue edges) among protein pairs were newly identified in this study.



Extended Data Fig. 7 | Supporting analyses for chromatin regulation and 
splicing systems. a, IF images showing similar nucleoplasm and nuclear 
speckles signals among proteins in the “Chromatin regulation complex.” 
Colours represent immunostained protein (green) and cytoskeleton (red).  
b, Distributions of pairwise protein distance z-scores among the proteins in the 
Chromatin regulation complex for IF (top, red) or AP–MS (bottom, blue) 
modalities, calibrated to all such distances, respectively (grey). Statistics 
calculated using one-sided Mann–Whitney U test. c, Immunofluorescent 
proteins (rows) imaged in HEK293 cells, untreated (left) or treated (right) with 
in situ fractionation to remove soluble cytoplasmic and loosely held nuclear 
proteins. Chromatin-binding proteins remain after treatment. Blue, nucleus; 
other colours as in a. For image source data, see Supplementary Fig. 3. d, IF 

images showing similar nucleoplasm signals among proteins in “RNA splicing 
complex 3.” e, Similar display for RNA splicing complex 3 as in b. f, Comparison 
of 500 top differentially expressed mRNAs (absolute fold change) resulting 
from shRNA knockdown of each of five genes (see Supplementary Table 9 for 
file accessions). Bar chart shows number of differential mRNAs shared by 
different gene groups indicated by black dots beneath each bar. One-sided 
one-sample t-test. g, Comparison among the top 10 pathways (Gene Ontology 
Biological Process) returned from Gene Set Enrichment Analysis using the top 
500 differentially expressed transcripts. Bar chart shows number of enriched 
pathways shared by different gene groups indicated by black dots beneath 
each bar. One-sided one-sample t-test. h, eCLIP workflow. RBP, RNA-binding 
protein. NGS, next generation sequencing.
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Extended Data Fig. 8 | Supporting analyses for Discussion. a, b, Examples of 
proteins with strong AP–MS protein interactions that have very different IF 
localization patterns. Colours represent immunostained protein (green) and 
cytoskeleton (red). c, Degree of co-essentiality for gene pairs within PRRPA 
(teal bar) shown in comparison to remaining pairs of genes assigned to the 
more general system that contains it, “Ribosome biogenesis community” 
(green bar), as well as all other gene pairs in MuSIC (grey bar). d, Similar analysis 
as in (c) for “RNA splicing complex 3.” Parent systems are “RNA processing 

complex 1” and “RNA splicing complex family.” e, Protein co-abundance for 
MuSIC systems, calculated from the median Pearson correlation of pairwise 
protein abundance over 375 diverse cell lines32. The plot shows all systems with 
fewer than 20 proteins and co-abundance measurements for >50% of protein 
pairs. Significance is assessed empirically (one-sided), using 1,000 
randomized MuSIC hierarchies, followed by Benjamini–Hochberg multiple test 
correction to obtain FDR (colour of bar). Protein co-abundance for a system 
provides evidence for its presence in cell types beyond HEK293.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Immunofluorescence confocal images were collected using 63x oil immersion with Numerical Aperture 1.4. AP-MS data were acquired on 
first-generation Q-Exactive mass spectrometers (Thermo Fisher Scientific) equipped with Famos autosamplers (LC Packings) and Accela600 
liquid chromatography (LC) pumps (Thermo Fisher Scientific). The eCLIP data were sequenced using Illumina HiSeq 4000.

Data analysis All data analyses have been described in detail in the relevant Methods section with links to publicly available GitHub repositories. The MuSIC 
pipeline, along with a detailed step-by-step guide to reproduce MuSIC 1.0 presented in the paper, are included in a publicly available GitHub 
repository https://github.com/idekerlab/MuSIC. The required Python packages, along with specific versions, were documented and wrapped 
as an installation file in GitHub. These packages include: 
    dill==0.3.1.1 
    distributed==1.18.3 
    docutils==0.14 
    entrypoints==0.2.3 
    gensim==4.0.1 
    glob2==0.5 
    gmpy2==2.0.8 
    imageio==2.2.0 
    imagesize==0.7.1 
    imutils==0.5.3 
    loess==2.0.11 
    louvain==0.6.1 
    matplotlib>=2.0.2 
    mistune==0.7.4 
    nbconvert==5.3.1 
    nbformat==4.4.0 
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    ndex-dev==3.0.11.41 
    networkx==1.11 
    nltk==3.2.4 
    nose==1.3.7 
    numpy==1.19.5 
    pandas==0.23.4 
    Pillow==4.2.1 
    python-igraph==0.7.1.post6 
    requests==2.18.4 
    requests-toolbelt==0.9.1 
    scikit-image==0.13.0 
    scikit-learn==0.19.0 
    scipy==1.2.0 
    seaborn==0.8 
    statsmodels==0.8.0 
    tqdm==4.60.0 
    traitlets==4.3.2 
    tulip-python==5.4.0 
 
Other softwares used in this study are documented in the Methods section and listed below: 
    CliXO v1.0    https://github.com/fanzheng10/CliXO-1.0 
    STAR v2.7.1a 
    featureCounts v1.6.3 
    DESeq2 v1.28.1 
    fastcluster v1.1.28 
    CompPASS    https://github.com/dnusinow/cRomppass 
    CompPASS-Plus    https://github.com/HMSBioPlex/ CompPASS-Plus-CLI

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

A web portal is available at http://nrnb.org/music with links to all major resources used for this study. These include the MuSIC systems map; the 
immunofluorescence (HPA) and AP-MS data (BioPlex 2.0) on which the map is based; and data for the AP-MS pulldown experiments performed as follow-up. The 
new AP-MS data have also been included as part of the larger compendium of protein interactions to be included in the next version of the BioPlex resource 
(BioPlex 3.0). AP-MS data, including filtered and unfiltered interaction lists as well as raw mass spectrometry data, are also available at http://
bioplex.hms.harvard.edu. The Gene Expression Omnibus (GEO) accession number for eCLIP data generated in this study is GSE171553. 
 
Other public databases used in this study are documented in the Methods section and listed below: 
    Gene Ontology (http://geneontology.org/; 25.9.2018 release) 
    ENCODE (https://www.encodeproject.org/; v3) 
    Human Cell Map (https://cell-map.org/; v1) 
    Cancer Cell Dependency Map (https://depmap.org/portal/; v20Q3) 
    Human ORFeome, version 8.1 
    UniProt database (includes both SwissProt and Trembl entries and dates to the outset of the BioPlex study in 2013)

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The number of proteins analyzed in this study (n=661) was determined based on amount of matched data available when overlapping Human 
Protein Atlas (HPA) and BioPlex. Other proteins in HPA and BioPlex were measured in differing cell types that did not align across projects; 
thus, we focused on the 661 proteins in the common HEK293-derived context for prototyping the new approach we developed in this study. 
As we have demonstrated in Extended Data Fig. 1d, these proteins covered a wide distribution of subcellular locations, as previously 
annotated by HPA, which was very similar to the distribution seen for all human proteins. 
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For all follow-up experiments in this study, no statistical methods were used to pre-determine sample sizes. The sample sizes were chosen to 
reliably observe experimental phenotypes.

Data exclusions RPL6 was excluded from downstream analysis of MuSIC map due to concerns for antibody correctness in IF staining. For 28S/18S 
measurement shown in Extended Data Fig. 5c, RPL7L1 was excluded due to technical difficulties. For RIP-qPCR data shown in Fig. 5d, RPL13A 
was excluded due to technical difficulties.

Replication All the data collected in this study consisted of technical or biological replicates. The number of replicates, as well as the type of replicates (i.e. 
technical or biological), are labeled in the relevant figures or method sections.

Randomization AP-MS baits were arrayed on 96-well plates in random order, and plates were run in random order during LC-MS analysis. For other 
experiments in this study, randomization was used whenever possible to determine experimental order, but individual samples were not 
intentionally randomized since this does not affect the results.

Blinding All AP-MS data and eCLIP data were generated and processed with investigators blinded to the hypothesis.  
    For the RIP-qPCR data (Fig. 5d), the experimenter was blinded to the group allocation. Blinding was not applied during analysis, which we 
followed established procedure from previous studies and provided related source data. 
    For the northern blot data (Fig. 5e), the investigators were blinded to group allocation during data acquisition and analysis. Related source 
data are provided as well. 
    For 28S/18S measurement (Extended Data Fig. 5c), the investigator was not blinded to the group allocation. We designed stringent 
computational pipeline that algorithmically fit Gaussian curves to analyze the 18S and 28S rRNA abundance from TapeStation profiles 
(Supplementary Figure 2) and provided related source data. 
    For in situ fractionation data (Extended Data Fig. 7c), the experimenter was blinded to the group allocation. Blinding was not applied during 
analysis. Related source data are provided in Supplementary Figure 3.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used All the antibodies used in this study, including respective catalog number and dilution used, are provided in Supplementary Table 7 

and reproduced below: 
 
GAPDH    NBP1-47339    1:4000 (ProteinSimple WES) 
HA-tag    Sigma-Aldrich H9658; BioLegend #901501; CST #3724    Western blot - 1:10000; eCLIP - see protocol; AP-MS - see protocol 
KRI1    Novus NBP2-14797    3 ug/mL (ProteinSimple WES) 
Mouse secondary    Cell Signaling Technology 7076S    1:5000 
NOC2L    Novus NBP1-92190    0.5 ug/mL (ProteinSimple WES) 
NVL    LS-C352601    1:500 
Rabbit secondary    Cell Signaling Technology 7074S    1:5000 
Rat secondary    Jackson ImmunoResearch 712-035-153    1:5000 
REXO4    Novus NBP2-85628    1:500 
RPL13A    Novus NBP1-32710    1:500 
RPS13    Novus NBP2-93953    1:500 
Tubulin    Abcam ab196583    1:10000

Validation The primary antibodies used for validating protein knockdown in this study showed decreased protein abundance around expected 
molecular weight for samples treated with siRNA. Furthermore, all antibodies used in this study are commercially available and have 
been validated by the manufacturer, for which the evidences and relevant criteria are available in the following links: 
 
Tubulin    https://www.abcam.com/hrp-tubulin-antibody-yol134-microtubule-marker-ab196583.html 
RPS13    https://www.novusbio.com/products/rps13-antibody_nbp2-93953 
REXO4    https://www.novusbio.com/products/rexo4-antibody_nbp2-85628 
RPL13A    https://www.novusbio.com/products/rpl13a-antibody_nbp1-32710 
KRI1    https://www.novusbio.com/products/kri1-antibody_nbp2-14797 
NVL    https://www.lsbio.com/antibodies/nvl-antibody-internal-wb-western-ls-c352601/363722 
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NOC2L    https://www.novusbio.com/products/noc2l-antibody_nbp1-92190 
HA-tag    https://www.sigmaaldrich.com/catalog/product/sigma/h9658?lang=en&region=US 
                https://www.biolegend.com/fr-ch/global-elements/pdf-popup/purified-anti-ha-11-epitope-tag-antibody-11374 
                https://www.cellsignal.com/products/primary-antibodies/ha-tag-c29f4-rabbit-mab/3724 
GAPDH    https://www.novusbio.com/products/gapdh-antibody-1a10_nbp1-47339

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293T cells used for AP-MS were from American Type Culture Collection (ATCC). Cell lines used for pre-rRNA analysis 
(HeLa ref. ATCC CCL-2; HEK293 ref. ATCC CRL-1573) were purchased from ATCC. HEK293 cells used for IF stainings were 
obtained from ATCC.

Authentication The identity of HEK293T cell line used for AP-MS experiments was verified through GTG-banded karyotyping by the Brigham 
and Women’s Hospital Cytogenomics Core Laboratory. 
    The identity of other HEK293T cell lines used in this study was validated by the CellCheck service provided at IDEXX 
BioAnalytics.  
    The HEK293 cells used for IF stainings were authenticated according to the manufacturer ATCC using morphology, 
karyotyping and PCR based approaches to confirm the identity and to exclude intra and interspecies contaminations. These 
include an assay to detect species specific variants of the cytochrome C oxidase I gene (COI analysis) to rule out interspecies 
contamination and short tandem repeat (STR) profiling to distinguish between individual human cell lines and rule out intra-
species contamination. 
    The HeLa and HEK293 cells used for pre-rRNA analysis shown in Fig. 5e were authenticated by short tandem repeat (STR) 
profiling.

Mycoplasma contamination All cells used in this study (HEK293T, HEK293, HeLa) were tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.
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