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Adaptive laboratory evolution in S. cerevisiae
highlights role of transcription factors in fungal
xenobiotic resistance
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In vitro evolution and whole genome analysis were used to comprehensively identify the

genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis

identified many genes contributing to the resistance phenotype as well as numerous amino

acids in potential targets that may play a role in compound binding. Our work shows that

compound-target pairs can be conserved across multiple species. The set of 25 most fre-

quently mutated genes was enriched for transcription factors, and for almost 25 percent of

the compounds, resistance was mediated by one of 100 independently derived, gain-of-

function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1

and YRM1 (p < 1 × 10−100). This remarkable enrichment for transcription factors as drug

resistance genes highlights their important role in the evolution of antifungal xenobiotic

resistance and underscores the challenge to develop antifungal treatments that maintain

potency.
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Experimental evolution is an important method for studying
evolutionary processes and is especially amenable to
microorganisms given their short generation times, large

population sizes, and ability to cryopreserve at distinct
timepoints1. The longest-running and largest-scale laboratory
evolution experiment to date utilize E. coli2–4, although the
approach has been used successfully in additional microbes,
including the eukaryote S. cerevisiae5–7. While many laboratory
evolution experiments focus on changing nutrient availability or
culturing conditions, another application of in vitro evolution
involves studying an organism’s evolutionary response to drug
pressure. For example, many antibiotic resistance mechanisms
have been identified and characterized through this method8–10.
A key challenge lies in identifying functional variants that con-
tribute to the evolved phenotypes given the sheer number of
mutation events; a recent sequencing study of 1011 yeast isolates
identified 1,625,809 SNVs11.

Systematic functional genomic studies are also used to
understand drug-target interactions, but most rely on strain
libraries in which the entire coding region is modified. For
example, a set of homozygous and heterozygous knockout yeast
strains was constructed which bear deletions in all genes in the
genome12,13. This set has been used to repeatedly and system-
atically identify knockout/knockdown lines that show sensitivity
or resistance to a wide variety of different compounds14 and
remains important15. CRISPR-based, genome-wide knockout and
knockdown studies and novel genome editing systems like base
editors are also used in many organisms to identify drug
targets16–19 or study processes such as the emergence of cancer
drug resistance. A key limitation of such studies is that they will
miss gain-of-function SNVs, which often drive natural adaptive
evolution20. Some examples of gain-of-function antibiotic resis-
tance mechanisms include mutations that activate global tran-
scription factors21 and mutations within the promoter region of
resistance genes that result in their hyperproduction22–24.

Here, we perform in vitro evolution and whole-genome ana-
lysis (IVIEWGA) in S. cerevisiae to delineate drug-target inter-
actions with a large set of compounds and in the process,
extensively characterize key features of the yeast resistome.
Whole-genome sequencing of 355 evolved, compound-resistant
clones showed only a few new coding variants per clone and that
statistical approaches can be used to readily identify variants that
modify phenotypes. As a proof-of-concept, we confirmed targets
that were previously reported and identified additional resistance-
conferring mutations for molecules with unknown mechanisms
of action (MOA). We also observed enrichment for gain-of-
function variants that affect transcription and confer resistance to
multiple compounds.

Results
Building a library of compounds that are active against a drug-
sensitive yeast. To understand how yeast evolves to evade the
action of small molecules, identify genes contributing to resis-
tance to uncharacterized small molecules, and hone in on
domains that might contribute to compound-target interaction,
we tested a collection of molecules for activity against S. cerevi-
siae. Since wild-type S. cerevisiae (strain S288C) requires higher
compound concentrations to inhibit growth due to an abundance
of drug export pumps (ABC transporters), in vitro selection
would be impossible for many compounds. Therefore, to find
compounds with activity against yeast at physiologically relevant
concentrations, we used a modified S. cerevisiae strain, termed the
“ABC16-Green Monster” (GM), in which 16 ABC transporters
have been replaced with a green fluorescent protein (GFP)25. This
has proven an excellent platform for in vitro drug selection and

target identification experiments because of lower compound
requirements26–30.

Specifically, we evaluated compound libraries comprised of (1)
drugs approved for human use with characterized MOAs, (2)
well-known tool compounds, and (3) compounds from open-
source libraries with demonstrated activity against eukaryotic
pathogens, viruses, or tuberculosis31,32 (Supplementary Data 1).
Commercially available compounds were tested in dose-response,
while other libraries were initially tested at a single point
concentration (in biological duplicates) of up to 150 µM, the
maximum concentration possible to avoid in-assay DMSO
toxicity. Compounds that showed at least 70% growth inhibition
were subsequently tested in dose-response. Overall, the com-
pounds of the assembled collection had drug-like physiochemical
properties in terms of molecular weight and the number of
hydrogen bond donors and acceptors (Fig. 1a). Maximum
Common Substructure (MCS) clustering identified 307 clusters
with a Tanimoto similarity coefficient of 0.64 (Fig. 1b, Supple-
mentary Data 1). Cluster enrichment was observed at rates
greater than expected by chance. For example, there were 12
members of a benzothiazepine family (cluster 185, Fig. 1b) of
which six had an IC50 of less than 10 µM in the yeast model
(p= 2.46 × 10−5).

In vitro resistance evolution and whole-genome analysis link
compound structures to phenotype. Based on potency and
compound availability, we selected 100 active compounds for
follow-up in vitro evolution experiments to verify known MOAs,
validate the use of this modified yeast strain in target deconvo-
lution studies, and characterize crucial amino acids that disrupt
compound binding when mutated. For each independent selec-
tion, ~500,000 cells derived from an ABC16-Green Monster single
colony were grown to saturation (OD600= 1.0–1.5) in 20 mL
YPD media in the presence of sublethal compound concentra-
tions equal to the previously determined IC50 (Fig. 2). After any
of the independent cultures reached saturation (OD600= 1.0–1.5),
~500,000 cells were transferred to a new 20 mL culture containing
increasing concentration of the compound until resistance was
observed as measured by an increase in IC50 compared to the
parental strain. Although growth rates of individual clones in
culture could be variable, each dilution series (1 × 109 cells) was
nevertheless grown to saturation (on average ~14 generations
amounting to a selection time of 5–20 days before plating on solid
media). Cultures were considered resistant if they (1) continued
to grow at compound concentrations 2–3-fold above the IC50

value of the untreated culture, and (2) had at least a 1.5-fold shift
in IC50 value compared to the drug-naïve parental line (Supple-
mentary Data 2). After a variable number of resistance cycles (R
average= 2.93, range= 1–9), these resistant cultures were plated
on drug-containing plates with the compound concentration of at
least 2-fold IC50 to isolate single clones. We picked two inde-
pendent colonies from the drug-containing plates to verify the
resistance phenotype before submitting DNA for whole-genome
sequencing. We attempted up to 12 independent selections per
compound and obtained 1–12 resistant clones. Using this strat-
egy, we isolated 355 clones selected against 80 compounds. The
IC50 values of the resistant clones increased 1.5–5-fold for 121
clones, 5–10-fold for 101 clones, and >10-fold for 98 resistant
clones (Supplementary Data 2, Supplementary Fig. 1). Some
selections were performed in a modified ABC16-Green Monster
clone with YRR1 deleted (see below). Culture contamination or
poor compound availability accounted for most failed selections
(20 compounds).

Next, resistant clones were sequenced to 55-fold average
coverage (Supplementary Data 3) using a short-read methodology.
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To detect mutations that arose during compound selection, we
designed a custom whole-genome analysis pipeline and filtering
method (see Methods). In total, we discovered 1405 mutations
(1286 SNVs and 119 INDELs) that met the filtering criteria, with
an average of 3.96 mutations per clone (Supplementary Data 4).
1117 mutations occurred in coding regions while 288 mutations
were intergenic, intronic, or splice region variants. 781 unique
genes were mutated across the dataset. We typically observed
between 1 and 8 coding mutations per evolved clone per
compound (Fig. 1c) with some variation. For 53 of the 80
compounds, we observed statistically significant (p < 0.05) repro-
ducibility with respect to genes that were mutated, with
enrichment considerably over that expected by chance (Fig. 1d).
For example, we obtained 13 independent TCMDC-124263-
resistant clones with 52 mutations (38 coding), of which 10 were
in a single gene, YRM1. Given that yeast has roughly 6000 genes,
the Bonferroni-corrected probability of this enrichment by chance
is 1.53 × 10−25. For this example, 9 of the 10 nucleotide changes in
YRM1 were clearly independent (Supplementary Data 4).

To further assess how our evolved mutations were driving the
observed resistance phenotypes, we considered the types of
mutations that arose during selection and compared them to a
published set of 3137 mutations in yeast strains grown long-term
in the absence of compound selection33. We observed signifi-
cantly different distributions in our compound-selected set than
in the non-compound-selected set (χ2, p < 0.0001). For example,

39% of the nucleotide base transitions for 1286 SNVs in our
compound-selected dataset were C to A or G to T, while for the
3137 transitions in the non-selected set, 40% were for A to G or T
to C (Fig. 3a). Likewise, we observed a noteworthy difference in
the coding changes. Among exonic selected mutations, 941 were
nonsynonymous and 127 were synonymous. The estimated ratio
of divergence at nonsynonymous and synonymous sites (dN/dS)
was 2.62 across the dataset, indicating that drug treatment applied
positive selection. In contrast, the neutral SNVs had a strong bias
toward synonymous mutations (Fig. 3b). These data suggest that
the observed mutations in our dataset are likely functional and
could provide a selective advantage to the evolved clones.

We also assessed our large mutational dataset to identify broad
insights into the functional impacts of different variant types.
Synonymous and missense variants emerged in essential genes in
~20% of cases. This finding agrees with the literature, which
suggests that only 20% of the yeast genome encodes essential
genes34. By this same metric, mutation types with more disruptive
impacts, such as premature stop codons and frameshift variants,
deviate strikingly from the expected genome-wide value of 20%.
These mutations occur in essential genes only 4.9% and 7.0% of
the time, respectively (Fig. 3c).

Copy number variants (CNVs) were detected through a
coverage-based algorithm using the output from GATK Diagno-
seTargets to identify contiguous genic regions with increased read
coverage relative to the parent. We observed 24 CNVs including

128

21

874

123

854

p=3.49E-03

265

p=6.81E-02 9

462

p=7.64E-04

75
188

860

p=3.49E-03

p=3.49E-03

137

643
662

945

271

584

842

154

925

p=3.49E-03

903

289

164
348

220

565

174

127

470

539

374

p=3.49E-03

988

p=2.03E-0473

p=3.49E-03

190

p=9.85E-03

194

p=5.42E-02

82

p=2.03E-04

16

185

p=2.46E-05

p=9.85E-03

193

p=1.86E-02
150

p=9.85E-03

614

04

GNF-Pf-5669

MMV645672
MMV000563

MMV007127

GNF-PF-5338

Inactive

GNF-Pf-3582

GNF-Pf-5129

GNF-Pf-4583

GNF-Pf-5468

GNF-Pf-4283

MMV006389

MMV1468363

Active

Inactive

Active

Active

Active

Active

MMV665807

MMV1505363

MMV687807
Niclosamide

Active

Active

Inactive

MMV007181

Active

Inactive

Active

MMV019017

MMV396736

MMV665882

Tamoxifen

Endoxifen

MMV652003

Everolimus

GNF-Pf-2823

GNF-Pf-3333

Etoposide

Doxorubicin

MMV000570

AN7973

Diethylstilbestrol

Rapamycin

GNF-Pf-445

MMV665806

MMV000839

MMV006787

MMV000848

MMV009063

GNF-PF-2863

GNF-Pf-2545

FK-506

Active

O

S

N

OH

N

S

Br

OH

OH
S

N

S

O

N
H

S

O

O

N
H

S

N

S
O

F

F

S

N

O

N

S
OH

N

S

O
OH

OH

Cl
O

N
H

F
F
F

N+
O

O-Cl

N
H

O
Cl

OH

OH

Br
O

N
H

Cl

Cl

H
N

O

NHO

N

S
OH

O

N

S
OH

F

S

N
H

O

NH

OH
N

OH

NH

N

OH

NH

N
OH

NH

N
NH

OH

N

OH

OH

O

O

O

O N

O

O

O OH

O

O

OH

HO

O

O

O

ClN
N

H
N B

OH

O

N
H

HO N

N

O

N

P+

HO

HO

O

OH

O

OO

OO

O

O

O
O

N

NO

N
H

O

O
O

ClCl

N

NO

NH

O

SO

ClCl

P+

N

O

O

N

Cl

N

N

O

Cl Cl

P+

N

NH

O

OH

ClCl
N

NH

O

OH

ClCl

OH

NH

N

II

OH

O

H
N

O
N

O
O

ON
O

O

OOH

O
OH

HO
O

O

OH
B

O

H
N

O

F
F

F

OH

Cl
O

N
H

F
F
F

F
F

F

OOOHO

O

O

OH O
OH

OH

NH2

OH

O

O

O
O

N

O

O
O

HO

O

HO

OH

O

O

M
W

M
W

HBA
HBA

HBD
HBD

log
D

log
D

log
S

log
S

0

500

1000

1500

-10

0

10

20

30

40

Library properties

D
al

to
ns

N
um

be r
*      *     *    *    *

Carmaphycin B

O

H
N

O

N
H

SO O

O

H
N

O
O

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

N
um

be
r 

of
 c

om
po

un
ds

Tavaborole

B
O

F

OH

Number of coding mutations/clone

Amitriptyline/ANY1
Etoposide/TOP2
sAEA410/TPO1
MMV306025/YRR1
GNF-Pf-3891/PMA1
MMV1078458/ERG9
sBOK868/YRM1
sBNZ110/YRR1

0 5 10
10-30

10-20

10-10

100

1010

Repetition of genes per compound

p-
va

lu
e 

TCMDC-124263/YRM1
MMV665852/YRR1

MMV000442/INP53

MMV000570/PDE2

MMV403679/YRM1Etoposide/TOP2

Flucytosine/FUR1

KAE609/PMA1
sBMP668/YRR1

Tavabarole/CDC60
Diethylstilbestrol/TUP1
posaconazole/OSH3
MMV665807/YRR1
sAJH499/ERG11
MMV007181/PDE2
MMV1469689/YRM1
sBMH113/YRM1
MMV667491/SUR2
GNF-Pf-445/HXT3

n =10
n =16

n = 10
p <.005

a

c

d

b
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Y-axis: MW molecular weight: Right Y-axis: HBD hydrogen bond donor, HBA hydrogen bond acceptor, logD, logS. * indicates 80 compounds that yielded
resistant clones. b Maximum Common Substructure (MCS). Structure similarity clustering analysis for 80 compounds yielding resistant clones and larger
library of 1600, using Tanimoto as the similarity metric. The diagram shows 41 clusters sharing an MCS from which at least one compound was selected
for drug response (indicated by diamonds). Circles represent compounds that were not selected, or inactive. The strength of cytotoxicity against the S.
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from clusters with a p-value of less than 0.05 and which had multiple members active against GM are shown. c Coding region mutations for selected
compounds. Histogram showing the distribution of the number of coding mutations (e.g., missense, start-lost) per clone for the set of 80 compounds used
in selections. d Gene enrichment for selected compounds. The p-value is the probability of repeatedly discovering the same gene for a given compound,
calculated using Bonferroni-corrected hypergeometric mean function as described in Methods. Compound/gene pairs for n= 1, 2, and 3 can be obtained
from Supplementary Data 4.
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apparent aneuploidy (11 times, occurring in 10 clones) and small,
intrachromosomal amplification (13 times, occurring in 13 clones)
(Supplementary Data 5). Altogether, we observed aneuploidy with
8 compounds, including BMS-983970, doxorubicin, etoposide,
GNF-Pf-3582, GNF-Pf-4739, hygromycin B, CBR110, and wort-
mannin (Fig. 3d). This is perhaps not surprising given that
aneuploidies arise in S. cerevisiae as a short-term stress response35.
We observed an amplification on chromosome XVI that involved
the bZIP transcription factor, ARR1, for clones resistant to GNF-
Pf-1618 and GNF-Pf-2740, as well as with four strains resistant to
MMV665794. The strains Wortmannin-13R3a and CBR113-7R4a,
both had chromosome XV CNVs that involved the transcription
factors YRR1 and YRM1 (discussed below).

Resistance-conferring intergenic mutations are rare. Although
intergenic mutations are frequently found in cells not subject to
selection, mutations in promoters or 3’ UTRs could confer resis-
tance by increasing or decreasing transcript levels. To assess
examples where this might be the case, we mapped the 271
intergenic mutations identified across the sequencing dataset to
their nearest-neighbor coding genes and other genomic features
(Supplementary Data 6). This analysis showed little enrichment,

although we did observe several repeated mutations located in the
intergenic promoter regions of a few genes that showed sig-
nificance in our enrichment analysis. For example, we discovered
three mutations upstream of the ergosterol biosynthesis and azole
resistance gene ERG936,37 in addition to seven ERG9 coding region
mutations. One of the ERG9 intergenic mutations falls in its
putative promoter region and was also observed in selections with
compound AN7973 (Fig. 3e). Four coding and one noncoding
mutation upstream of the start codon in the endoplasmic reticulum
membrane protein and caspofungin resistance protein38, CSG2,
were also observed. All five mutations are associated with selections
to compound GNF-Pf-1618 and its close analog, KAAA725
(Fig. 3f). We also identified five mutations in the coding region of
PDR339, a Zn2C6 transcriptional regulator of the multidrug efflux,
and an additional mutation was found downstream of the open
reading frame (Fig. 3g). These examples demonstrate that inter-
genic mutations should not be entirely dismissed when considering
the effects of variant types on observed phenotypes.

CRISPR/Cas9 validation shows that most genes identified
more than once confer resistance, but singleton mutations may
not. Because many mutations can co-occur and be non-

Fig. 2 Generation of resistant yeast strains using a stepwise method of compound exposure. a To determine the degree of growth inhibition of small
molecules, cultures derived from single colonies of the ABC16-Green Monster strain (GM) were exposed to various drugs and the IC50s determined. b For
in vitro selections single colonies of GM were picked and grown to saturation in YPD media. 50 μl cells of a saturated culture (OD600= 1) were inoculated
into 50mL tubes containing 20mL of YPD media with a small-molecule inhibitor and grown until saturation. The starting drug concentration was the pre-
determined IC50. c Upon reaching saturation cultures were diluted (1:400) into fresh media with increasing drug concentrations. d Development of
resistance was evaluated through regular IC50 determinations. e Once cultures showed at least a 2-fold shift in IC50 single clones were generated by plating
an aliquot of the resistant strain onto compound-containing YPD plates. f Two independent clones were picked and the IC50 shift confirmed. IC50 values
were calculated by subtracting OD600 nm values at time 0 h from time 18 h. Nonlinear regression on log([inhibitor]) vs. response with variable slope was
performed using GraphPad Prism. Cycloheximide was used as a negative control. g DNA from clones deemed to be resistant (through a combination of
fold shift of IC50 and p-value) was isolated and their whole-genome analyzed. h The genomes of the drug-naïve parents and the drug-resistant clones were
compared and allele differences between these two clones were determined. Data from all in vitro evolutions was analyzed in great detail. To further
validate the potential resistance of the identified mutations allelic replacement of these SNVs into the parental line through CRISPR-Cas9 was performed.
Graphics created with Biorender.com under BioRender’s Academic License Terms.
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adapative40, the presence of one SNV in a resistant clone is not
proof that the specific mutation is resistance-conferring. To
confirm that some of these mutations directly contribute to the
resistance phenotype and rule out the possibility of them being
merely passenger mutations, we used CRISPR/Cas9 technology to
introduce 61 altered alleles from the evolved mutants back into
the original (unevolved) ABC16-Green Monster strain. Mutations
were chosen for validation based on the frequency of mutation

and/or whether the gene product was implicated as a potential
target for the compound based on literature searches. Successfully
reverse-engineered strains were tested in liquid-growth assays
using the same compounds from the corresponding IVIEWGA
experiments. Using a combination of fold change and p-value in
comparing the IC50 values of these edited clones to those of the
parental ABC16-Green Monster strain, we verified that 45 genetic
changes across 37 unique genes contributed to the observed
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resistance (Supplementary Data 7). Independent mutations that
were repeatedly identified for a specific gene tended to have a
high probability of confirming at least a partial resistance phe-
notype and these gene products were likely to be the direct target
of the small molecule. The only exception was RPO21, a subunit
of RNA polymerase, which was mutated four separate times with
four compounds (two nonsynonymous and two synonymous
mutations) but failed to confirm a resistance phenotype after
CRISPR/Cas9 editing. However, it is known that mutations in
RPO21 result in transcriptional slippage, which may allow cells to
better survive cytotoxic drugs that alter nucleotide pools41. For
the 15 alleles that did not show a statistically significant IC50 shift
(Supplementary Data 7), we noted that 11 of the resistant clones
also carried additional resistance alleles in a highly represented
gene such as YRR1 or YRM1 (Supplementary Data 4), two
transcription factors involved in multidrug resistance.

Using in vitro evolution for drug target and mechanism of
action studies. For compounds with known targets, we frequently
identified mutations clustering in the active site of the proposed
target molecule. For example, we isolated six clones resistant to
flucytosine (Table 1, Supplementary Data 4). Of the nine identified
missense or nonsense mutations, six were in the uracil phos-
phoribosyltransferase domain of FUR1 (probability of enrichment
by chance= 1.2 × 10−26 using a hypergeometric mean function).
Resistance to 5-flucytosine has been reported in multiple clinical
isolates of Candida and is typically caused by mutations in genes
that encode the enzymes involved in the metabolic transformation
of the prodrug. In a study of flucytosine-resistant clinical isolates of
C. albicans, mutations in Fur1 were identified42. A homology
model (Fig. 4a) revealed that the amino acid changes identified in
our in vitro selections are all located near the 5-FUMP binding
pocket, suggesting that these changes confer resistance by dis-
rupting 5-FUMP binding.

We obtained four benzoxaborole-resistant clones using the
antifungal drug, tavaborole. They were highly resistant and
contained six SNVs, four of which (R316T, V400F, V400D, and
M493R) were mutations in the 145 amino acid aminoacyl-tRNA
synthetase editing domain of CDC60 (p= 1.11 × 10−18, hypergeo-
metric mean function), the gene that encodes leucyl-tRNA-
synthetase in yeast. Wild-type yeast can evolve benzoxaborole
resistance via amino acid changes both within the ligase editing site
of the leucyl-tRNA synthetase and outside the active site43–45,
indicating the relevance of the GM model. A LeuRS homology
model (Fig. 4b) with a tavaborole ligand docked using QuickVina246

suggests that the observed CDC60 mutations could confer resistance
by directly interfering with tavaborole binding to Cdc60.

We also examined compounds used in chemotherapy.
Camptothecin is a specific topoisomerase (Top1) inhibitor that
binds the DNA/Top1 cleavage complex, preventing DNA
religation47. We isolated two camptothecin-resistant yeast clones
with three missense mutations, two of which were in TOP1
(G297C and E669*) (Supplementary Data 4). TOP1 mutations
can lead to camptothecin resistance in the human HCT116 colon
adenocarcinoma cell line when exposed to SN38, a water-soluble
camptothecin derivative48,49. A homology model (Fig. 4c)50 was
constructed by aligning a partial yeast Top1 crystal structure to a
crystal structure of human TOP1 with camptothecin bound
(PDB: 1T8I)51. This model showed that G297 is located in the
core domain of the enzyme near the binding pocket, suggesting
that it confers drug resistance by directly impeding compound
binding. E669* truncates the entire C-terminal domain, which
contains the DNA-binding site52 (Fig. 4c), thus eliminating many
protein/DNA contacts and likely impeding the formation of the
drug-DNA-protein complex.

Rapamycin, a macrocyclic lactone, and its analog everolimus
potently inhibit mTOR, a protein kinase component of both the
mTORC1 and mTORC2 complexes that controls cell growth and
proliferation in many species. Two rapamycin-resistant and three
everolimus-resistant clones were isolated in our study. One
carried a S1975I mutation in the FKBP12-rapamycin binding
domain of mTOR, TOR2, and three carried a mutation in the
FKBP-type peptidylprolyl cis-trans isomerase Pfam domain of
FPR1, a small peptidylprolyl isomerase that interacts with mTOR
(Supplementary Data 4). Recently, a selection with rapamycin in
a pdr1 deletion strain of S. cerevisiae BY474153 identified
mutations in TOR1, TOR2, and FPR1 that confer resistance to
rapamycin53. One of the reported TOR2 mutations produced a
S1975R amino acid change, the same residue we identified as
being mutated in our study. A model of the yeast Tor2/Fpr1/
rapamycin tertiary complex shows that residue S1975 is near the
bound rapamycin molecule (Fig. 4d), suggesting that changes at
this location might disrupt the formation of the tertiary complex.
The model suggests that the two FPR1 truncation mutations
(Y33* and Q61fs) (Supplementary Data 4, Fig. 4e) likely confer
resistance by interfering with everolimus binding.

Our collection also contained compounds active against other
pathogens. For example, mebendazole, a benzimidazole com-
pound, is among the few effective drugs available for treating soil-
transmitted helminths (worms) in both humans and animals. It
binds to tubulin, thereby disrupting worm motility54. We
confirmed the antifungal activity55 of mebendazole and obtained
two independent resistant clones with nine missense mutations,
two of which were in the GTPase domain of the TUB2 gene
(R241S and L250F) (Supplementary Data 4), near or at the same
residues (R241H and R241C) that confer resistance to the related
antimitotic drug, benomyl, which also binds tubulin53,56.
Modeling studies (Fig. 4f) confirm that the binding mode is
similar to that of benomyl, which binds with high affinity to the
beta subunit of tubulin, thereby disrupting the structure and
function of microtubules57. Despite sharing a common target
with yeast, helminths and nematodes have benzimidazole-
resistance mutations in codons 167, 198, and 200, suggesting
conservation of structure and function across phyla.

Alkylphosphocholines such as miltefosine and edelfosine were
originally developed as anticancer agents, but recent work has
shown that they are also effective against trypanosomatid
parasites such as Leishmania and Trypanosoma58–61. The specific
target of these drugs remains uncertain. Compound uptake in
yeast is known to depend on the membrane transporter
Lem362,63, which facilitates phospholipid translocation by inter-
acting with the flippase Dnf164, and DNF1 is closely related to the
gene associated with miltefosine resistance in Leishmania (Ldmt
(AY321297), BLASTP e= 2 × 10−125). We identified two inde-
pendent LEM3 mutations that confer resistance to miltefosine
(K134* and Y107*) (Supplementary Data 4). Editing Y107* into
the drug-naïve parent reconfirmed resistance to both miltefosine
and edelfosine (Supplementary Data 7). Both mutations truncate
the protein, functionally mimicking a deletion strain. LEM3 is a
yeast ortholog of LdROS (ABB05176.1, BLASTP 5 × 10−13), also
related to Leishmania miltefosine resistance65.

Revealing the putative target for an uncharacterized anti-
malarial natural product. Hectochlorin is a natural product from
the marine cyanobacterium Lyngbya majuscule66 that has strong
antimalarial blood stage activity (IC50= 85.60 nM± 0.96) as well as
activity against the ABC16-Green Monster strain (IC50= 0.25 µM).
We identified six independent disruptive mutations, three of which
were in the actin Pfam domain of Act1 (p= 1.9 × 10−13, Supple-
mentary Data 4). We confirmed by CRISPR-Cas9 editing that a
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mutation in ACT1 confers resistance to hectochlorin in yeast
(Supplementary Data 7). When mapped onto a crystal structure of
Act1 (PDB: 1YAG67), the altered amino acids line a distinct protein
pocket (Fig. 4g), suggesting they confer resistance by directly dis-
rupting compound binding. To assess whether hectochlorin resis-
tance in Plasmodiummight occur through a similar mechanism, we
also mapped the mutations onto a synthetic construct of P. berghei
Act1 protein (PDB: 4CBW), which shares 97% sequence identity
with PfAct1. The altered amino acids again line a well-defined
protein pocket, and the hectochlorin docked pose is also similar.
This work supports published experiments that suggest actin is the
target of hectochlorin68. To provide further support for this
hypothesis, we determined if hectochlorin produces the same cell-
invasion inhibition phenotype in malaria liver stage parasites as
cytochalasin D, another actin polymerization inhibitor, which
reduces Plasmodium sporozoite motility69. Treatment with 1 µM

hectochlorin blocked parasite invasion as efficiently as 10 µM
cytochalasin D (Fig. 4h).

Mutations in the transcription factors YRR1 and YRM1 are
associated with multidrug resistance in the ABC16-Green
Monster yeast. SNVs in some genes appeared repeatedly across
different compound sets. The set of 25 highest confidence genes
(mutated five or more times across the dataset) was enriched for
DNA-binding transcription factor activity (seven genes, Holm-
Bonferroni-corrected p= 0.035). Altogether we observed 140
coding mutations in 24 genes affecting transcription (Fig. 5a).
The greatest number of unique allelic exchanges was found in the
two transcription factors, YRR1 (27x) and YRM1 (23x) (Fig. 5b,
c). In addition, multiple unique missense mutations were
observed in PDR1 (7x), PDR3 (5x) YAP1 (5x), AFT1 (5x), TUP1

Table 1 Summary of statistically enriched genes identified in compound selections.

Gene Description NG NC Compounds p-value

YRM1 Zn2-Cys6 zinc-finger transcription factor 52 13 See Supplementary Data 4 3.53 × 10−116

YRR1 Zn2-Cys6 zinc-finger transcription factor 48 12 See Supplementary Data 4 2.51 × 10−105

PMA1 Plasma membrane P2-type H+ -ATPase 15 5 GNF-Pf-445, Hygromycin B, KAE609, Wortmannin,
GNF-Pf-3891

3.00 × 10−24

BUL1 Ubiquitin-binding component of the Rsp5p E3-
ubiquitin ligase complex

14 11 See Supplementary Data 4 3.92 × 10−22

PDE2 High-affinity cyclic AMP phosphodiesterase 13 2 MMV000570, MMV007181 4.76 × 10−20

TPO1 Polyamine transporter of the major facilitator
superfamily

12 5 GNF-Pf-4283, MMV006389, CBR410, CBR572,
TCMDC-124263

5.34 × 10−18

ANY1 Putative protein of unknown function 11 5 Amitriptyline, MMV019017, Clomipramine, MMV396736,
Sertraline

5.51 × 10−16

BAP2 High-affinity leucine permease 10 6 GNF-Pf-3703, GNF-Pf-3815, GNF-Pf-5129, GNF-Pf-5468,
MMV006389

5.19 × 10−14

SIP3 Putative sterol transfer protein 8 3 GNF-Pf-445, Lomerizine, Loratidine 3.38 × 10−10

INP53 Polyphosphatidylinositol phosphatase 8 1 MMV000442 3.38 × 10−10

AFT1 Transcription factor involved in iron utilization 7 3 MMV085203, MMV1007245, CBR868 2.28 × 10−8

PDR1 Transcription factor that regulates the pleiotropic
drug response

7 7 DDD01027481, Doxorubicin, MMV000442, MMV007224,
MMV667491, CBR668, CBR110

2.28 × 10−8

ERG9 Farnesyl-diphosphate farnesyl transferase 7 2 AN7973, MMV1078458 2.28 × 10−8

YAP1 Basic leucine zipper (bZIP) transcription factor 6 4 Cycloheximide, GNF-Pf-4739, DDD01027481,
MMV001246

1.34 × 10−6

TOP2 Topoisomerase II 6 1 Etoposide 1.34 × 10−6

HXT3 Low-affinity glucose transporter of the major
facilitator superfamily

6 3 Amitriptyline, DDD01035522, GNF-Pf-445 1.34 × 10−6

ERG11 Lanosterol 14-alpha-demethylase 6 2 MMV001239, CBR499 1.34 × 10−6

FUR1 Uracil phosphoribosyltransferase 6 1 Flucytosine 1.34 × 10−6

CCR4 Component of the CCR4-NOT transcriptional
complex

5 4 GNF-Pf-2823, GNF-Pf-4583, MMV403679, CBR868 6.76 × 10−5

ERG3 C-5 sterol desaturase 5 2 Miconazole, Posaconazole 6.76 × 10−5

FKS1 Catalytic subunit of 1,3-beta-D-glucan synthase 5 4 DDD01027481, CBR113, CBR668, CBR110 6.76 × 10−5

CDC60 Cytosolic leucyl-tRNA synthetase 5 2 CBR668, Tavaborole
ROX1 Heme-dependent repressor of hypoxic genes; 5 3 Loratadine, MMV665909, TCMDC-124263 6.76 × 10−5

PDR3 Transcriptional activator of the pleiotropic drug-
resistance network

5 3 Lapatinib, MMV665794, CBR110 6.76 × 10−5

OSH3 Member of an oxysterol-binding protein family 5 1 Posaconazole 6.76 × 10−5

CSG2 Endoplasmic reticulum membrane protein 4 2 GNF-Pf-1618, KAAA726 4.76 × 10−2

ELO2 Fatty acid elongase 4 2 Doxorubicin, MMV667491 4.76 × 10−2

TUP1 General repressor of transcription 4 1 Diethylstilbestrol
RPO21 RNA polymerase II largest subunit B220 4 4 Lapatinib, MMV007181, MMV1469689, CBR110 4.76 × 10−2

SUR2 Sphinganine C4-hydroxylase 4 1 MMV667491 4.76 × 10−2

VMA16 Subunit c” of the vacuolar ATPase 4 4 Lapatinib, MMV019017, MMV396736, MMV665882 4.76 × 10−2

PAN1 Part of actin cytoskeleton-regulatory complex
Pan1p-Sla1p-End3p

4 2 Hygromycin B, KAE609 4.76 × 10−2

32 genes contained at least four independently selected coding mutations, the significance threshold for number of mutations occurring in a gene at a rate not expected by chance across the dataset.
Bonferroni-corrected p-values were calculated using the hypergeometric mean function (number of successes in sample= number of times gene was identified as mutated; sample size= total number of
genes mutated in dataset (731); successes in population= number of independent selections (355); population size= number of genes in yeast genome multiplied by 355) followed by Bonferroni-
correction using number of independent selections.For a complete list of genes and mutations identified across the study, refer to Supplementary Data 4.
NG number of times gene was identified as mutated in independent evolution experiments, NC number of compounds.
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(3x) HAL9 (2x), AZF1 (2x) (Table 1, Supplementary Data 4).
With the exception of TUP1, AFT1, and YAP1, all of these
transcription factors contain the Zn2C6 fungal-type DNA-binding
domain. In fact, we discovered 124 different mutations in 15
different Zn2C6 transcription factors. This Zn2C6 domain family
(Pf00172) is only found in fungi: S. cerevisiae has 52 genes with
this domain and C. albicans has 225. In this human pathogen,
members include FCR1, MRR2, TAC1, PDR1, and PDR3, all genes
involved in drug resistance. YRR1 (PDR2), YRM1, PDR1, and
PDR3 are all known to be involved in the pleiotropic drug
response in S. cerevisiae70,71, activating transcription of drug
transporters such as PDR5, PDR10, PDR15, YOR1, and SNQ2
(reviewed in ref. 72). Although the GM strain has some of these
multidrug efflux pumps deleted, the GM genome retains many
other genes that could contribute to multidrug resistance that
are under transcriptional control of YRR170. In addition to sta-
tistical enrichment strongly suggesting a driving role in resistance,

reverse gene editing by CRISPR/Cas9 of some of the mutations
identified in YRR1, AFT1, and TUP1 fully recapitulated the
observed resistance phenotype (Supplementary Data 7).

Because the two Zn2C6 transcription factors YRR1 and YRM1
were mutated 100 times for 19 structurally diverse compounds
(Fig. 5b–d), we conducted a focused investigation of the
mutations and their spatial localization. Remarkably, all
resistance-conferring YRR1 and YRM1 mutations were clustered
in a ~170 amino acid domain in the C-terminal half of the protein
(Fig. 5b, c), which is distal to the DNA-binding domain. We
found no mutations in the DNA-binding domain and no
mutations in the predicted activation domain at the far
C-terminus. Notably, it has been shown that the C-terminal
activation domain of Gal4 (activation domain 9aaTAD (857–871
aa), which interacts with Tra1 protein of the SAGA complex, can
be substituted for the activation domain of Yrr170. Yrr1 binds to
the sequence (T/A)CCG(C/T)(G/T)(G/T)(A/T)(A/T), found
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upstream of genes involved in multidrug resistance such as AZR1,
FLR1, SNG1, SNQ2, APD1, and PLB170,73,74.

YRR1 and YRM1 are nonessential genes, and we hypothesized
that our evolved resistant strains possessed YRR1 and YRM1
gain-of-function mutations that result in constitutive expression
of transcriptional target genes encoding proteins with roles in
drug resistance. This hypothesis is motivated in part by the fact
that others have reported multidrug resistance-conferring gain-
of-function mutations in the related genes PDR1 and PDR375–77.
To expand on this previous work, we exposed a YRR1 L611F
strain (generated using CRISPR/Cas9) to a set of compounds and
observed cross-resistance to almost all compounds tested

(Supplementary Fig. 2, Supplementary Data 7). Others have
found that deleting the YRR1 gene entirely does not significantly
increase sensitivity to cytotoxic compounds75, providing further
evidence that the YRR1 and YRM1 mutations identified in our
selections—which were all single amino acid changes—represent
gain-of-function mutations. We confirmed this finding by
testing a small set of cytotoxic compounds against a yrr1
deletion strain30. With very few exceptions, we also noted no
significant differences in growth inhibition over the wild-type-
allele strain. Only compounds MMV6685852, GNF-PF-4739, and
MMV668507 had different IC50s against the yrr1 deletion strain
and the fold IC50 differences were very modest.
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To further test the hypothesis that the YRM1 and YRR1 SNVs
are gain-of-function mutations resulting in constitutive expression
of additional transporters and other potential resistance genes
(including AZR1, FLR1 SNG1, YLR046L, YLL046C, YPL088W,
and YLR179C70), we used qPCR to directly evaluate the expression
of three such target genes (AZR1, FLR1, and SNG1). To this set we
added the YRR1 gene itself, since YRR1 activates its own
expression via an auto-feedback loop76 (Fig. 5e). We examined
gene expression in YRR1-mutant strains, in the ABC16-Green
Monster strain with a wild-type YRR1 allele, and in the yrr1
deletion clone (Supplementary Data 8). Relative RNA expression
levels of the putative target genes AZR1, FLR1, SNG1, and YRR1
are 1.5–140-fold higher in all YRR1 evolved mutant clones tested
compared to the parental GM strain; mutant clones also display
elevated levels relative to the yrr1 deletion clone (Fig. 5e). This
data are further corroborated when using TDH3 or TAF10 as
alternative housekeeping genes to ACT1 (Supplementary Data 8).

To assess whether YRR1 mutations confer resistance to specific
compounds or elicit a more general resistance response, we
evaluated seven different YRR1-mutant clones derived from our
resistance selections for resistance to a set of five structurally
unrelated compounds. All tested cultures showed strong cross-
resistance to all tested compounds (Supplementary Data 7). Taken
together, these results strongly support our hypothesis that the
identified YRR1 SNVs lead to constitutive transcriptional activa-
tion of its target genes involved in the pleiotropic drug response,
thereby conferring general resistance to many compounds.

Discussion
To our knowledge, this is one of the most comprehensive and
systematic studies of the drug-selected mutational landscape in a
model system like yeast. Although genome-wide sets of knockout
strains have been used to discover drug targets and to study drug
resistance12,78–83, our approach is different in that we identify
SNVs in specific domains that might play a crucial role in
compound-target interaction. Since these mutations confer
resistance, we hypothesize that many of the SNVs are gain-of-
function mutations. This difference in approach allows
IVIEWGA to complement other genome-wide knockdown
approaches, including those that rely on measures of hap-
loinsufficiency in the presence of compound (HIPHOP)78. Few
genetic tools are needed, and the approach can be applied to any
organism that can be subjected to drug pressure and sequencing.

One potential disadvantage of whole-genome evolutionary
approaches is that background passenger mutations can accu-
mulate during the prolonged culturing of a fast-dividing organ-
ism and some may not contribute to resistance40. However, given
the enrichment for nonsynonymous mutations in our study, most
mutations likely do offer some advantage to the cell even when
they are not the primary drivers of resistance. A large dataset like
ours can provide clarity and statistical confidence regarding an
allele’s importance even in the absence of CRISPR-Cas9 recon-
firmation. The examples that are discussed in the manuscript did,
in almost all cases, achieve strong statistical significance, with
mutations in the same genes or with compounds that are struc-
turally closely related appearing at rates much greater than
expected by chance. It should be mentioned that many other
mutations were found at rates not expected by chance and were
not discussed here for the sake of brevity. For example, we found
a strong association between BUL1 and BAP2 mutations and
inhibitors of mitochondrial function as well as vacuolar ATPase
mutations that were associated with other scaffold families.

The reproducibility of the results for genes and compound
families indicates that the approach could be powerful in other
fungal species that lack the genetic tools available for S. cerevisiae.

Although others have identified targets of antifungal compounds
through deep sequencing of drug-resistant mutants in other
fungi84, S. cerevisiae is an excellent model for studying antifungal
drug resistance in part because it is a haploid. IVIEWGA may be
more difficult to apply in diploid species such as Candida albicans
since complete loss-of-function mutations may be difficult to
evolve and heterozygous gain-of-function mutations may be hard
to identify in whole-genome sequencing data.

Another notable finding is the enrichment for Zn2C6 tran-
scription factors YRR1 and YRM1 in the set of resistance genes.
Though this may be specific to Saccharomyces or even the ABC16-
Green Monster strain that was used, smaller-scale studies with
specific compounds strongly support our findings (reviewed in
ref. 85). Evolution experiments with unmodified S. cerevisiae and
fluconazole gave mutations in PDR186. Gallagher et al. mapped
the ability of wild-type yeast to resist 4-nitroquinoline 1-oxide to
YRR187. In addition, YRR1 was originally identified with selec-
tions in unmodified yeast88. Zn2C6 transcription factors are
known to play a major role in the pathogenesis and pleiotropic
drug response of pathogenic fungi such as Candida spp., the most
common clinically relevant fungal pathogens89–91. Examples
include TAC1, STB5, and many others (reviewed in ref. 92).
Nevertheless, it is plausible that the abundance of YRR1 and
YRM1 mutations that we identified only emerges when multiple
other drug pumps are deleted, as in the GM strain.

A major unanswered question is how the cell senses increased
compound pressure and translate this to increased transcription.
A cofactor could bind to the drug-resistance domain in Yrr1 and
Yrm1. Alternatively, the observed amino acid changes could
increase either the strength of the dimerization of Yrr1 and/or its
binding to DNA, causing an increase in the transcription of drug
pumps, which would lead to resistance to many compounds
irrespective of their MOA. This hypothesis is supported by the
fact that (1) the RNA expression levels of the Yrr1 target genes
AZR1, FLR1, SNG1, and YRR1 are 2–70-fold higher in all of the
tested YRR1-mutant clones when compared to the parental GM
strain or the yrr1 deletion lineage and (2) clones with YRR1
mutations confer resistance even to compounds that were not
used in selections or that did not yield YRR1 mutations.

The World Health Organization has declared antimicrobial
resistance one of the top 10 public health concerns currently
facing humanity. While understanding resistance profiles and the
rate at which resistance emerges are already key components of
drug development pipelines for eukaryotic pathogens like the
human malaria parasite Plasmodium falciparum93, studies of drug
resistance in fungal pathogens remain extremely limited. Adap-
tive laboratory evolution has proven a useful tool for cataloging
resistance variants across multiple microbes, enabling strategic
drug design efforts and more. If the goal is to create better drugs
for fungal pathogens, more studies like these are urgently needed.

Materials and methods
Yeast strains and clones. All yeast strains and clones used are listed in Supple-
mentary Data 10.

Statistics and reproducibility. To calculate probabilities of enrichment chance for
specific allele sets a high accuracy hypergeometric mean function (Excel) was used:

PðX ≥ xÞ ¼

k

x

� �
N � k

n� x

� �

N

n

� �

n is the number of different observed alleles in a particular domain or gene for a
compound in n selections.

x is the number of independent selections that were performed for a compound.
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N is the number of nucleotides in the gene or domain of interest (e.g., 300
bases), or the number of genes in the genome multiplied by the number of n
selections.

K is the number of nucleotides in the yeast genome (12.1 Mb), or the number of
genes (6000) multiplied by the number of n selections.

A Bonferroni adjustment using the yeast genome size (12.1 × 106) or a number
of genes (6000) was made to correct for multiple hypothesis testing.

S. cerevisiae susceptibility and dose-response assays. To measure compound
activity against whole-cell yeast, single colonies of the ABC16-Green Monster strain
were inoculated into 2 mL of YPD media and cultured overnight at 250RPM in a
shaking incubator at 30 °C. Cultures were diluted the following day and 200 µl of
log-phase cultures, (OD600nm readings between 0.1 and 0.2) were added to the
wells of a 96-well plate. Eight 1:2 serial dilutions of the compound were subse-
quently performed, in biological duplicates, with final compound concentrations
ranging from 0.1 to 150 μM. After an initial reading of OD600 (time 0 h), the plate
was placed in an incubator at 30 °C for 18 h, and OD600 nm determined. IC50

values were calculated by subtracting OD600 nm values at time 0 h from time 18 h.
Nonlinear regression on log([inhibitor]) vs. response with variable slope was
performed using GraphPad Prism. As a negative control, cultures not treated with
any compounds were run in parallel.

GM Growth inhibition evaluation for the MMV Malaria Box, Pathogen Box,
and Charles River libraries. 96-well plates containing 10 µl 10 mM compounds
were provided. We first tested these compounds for cytotoxicity of the ABC16-
Green Monster clone in single-dose measurements (150 µM, in biological dupli-
cates). Compounds that inhibited GM growth by at least 70% after 18 h (in either
replicate) were further characterized using an eight-point dose-response assay
(Supplementary Data 1).

In vitro resistance evolution. In vitro selections26–30 were performed as outlined in
Fig. 2. At least five independent selections were initiated with a single colony of the
ABC16-Green Monster strain. Assorted drug concentrations (corresponding to 1-fold to
3-fold IC50) of diverse compounds were added to 50mL conical tubes containing 50 μL
of saturated (OD600= 1.0–1.5; 1–5 × 107/ml cells) ABC16-Monster cells in 20mL of
YPD medium. The tubes were then cultured at 250RPM in a shaking incubator at
30 °C. Cultures that achieved OD600 values between OD600= 1.0–1.5; ~14 generations)
were diluted 1:400 into fresh media with the inhibitors, and multiple rounds of dilutions
(about of 2–6 rounds of dilutions) were performed at increasingly higher concentra-
tions. After a culture was able to grow at a compound concentration that was at least
equal to 2–3× IC50 compared to the parental IC50, cells from this polyclonal culture
were plated onto agar plates containing the inhibitor. Single colonies were isolated, and
an eight-point dose-response assay (in biological duplicates) with two-fold dilutions
steps and final compound concentrations ranging from 0.1 to 150 µM (depending on
the original parental IC50) was performed to determine the IC50 values of the evolved
versus parental clones. Genomic DNA from clones that had at least an IC50 shift of 1.5-
fold was extracted using the YeaStar Genomic DNA kit (cat. No D2002, ZYMO
Research).

Whole-genome sequencing and analysis. Sequencing libraries using 200 ng
genomic DNA were prepared using the Illumina Nextera XT kit (Cat. No FC-131-
1024, Illumina) following the standard dual indexing protocol, and sequenced on
the Illumina HiSeq 2500 in RapidRun mode to generate paired-end reads at least
100 bp in length. Reads from the paired-end FASTQ files were aligned to the S.
cerevisiae 288 C reference genome (assembly R64-1-1) using BWA-mem and fur-
ther processed using Picard Tools (http://broadinstitute.github.io/picard/). Quality
control, alignment, and preprocessing workflows were automated using the com-
putational platform Omics Pipe94 to ensure scalable and parallelized analysis. A
total of 363 clones were sequenced to an average coverage of 54.6× with an average
of 99.7% reads mapping to the reference genome. Additional sequencing quality
statistics are given in Supplementary Data 3. SNVs and INDELs were first called
against the 288 C reference genome using GATK HaplotypeCaller, filtered based on
GATK recommendations95, and annotated with a SnpEff96 database built from the
S. cerevisiae 288 C (assembly R64-1-1) GFF to leave only high-quality variants with
high allelic depth. Variants that were present in both the drug-sensitive parent clone
and resistant clones were then subtracted using a custom shell script so that
mutations were only retained if they arose during the compound selection process.
To standardize and streamline the analysis, only one of the eight parent clones was
used for the subtraction of variants (NODRUG--GM2). However, all 7 parent
clones were analyzed for their own background mutations against NODRUG--GM2
first so that any background mutations could be removed following the first sub-
traction against NODRUG--GM2.

In total, 1405 mutations (1286 SNVs and 119 INDELs) met these criteria and
were collated into a single list for subsequent analyses (Supplementary Data 4).
Mutations were visually inspected using the Integrative Genomics Viewer (IGV)97.
Manual annotation of variants was required in some cases to resolve issues with
SnpEff outputs. Raw sequencing data files were uploaded to NCBI Sequence Read
Archive under accession PRJNA590203. To increase the depth of our analysis, we
also reanalyzed FASTQ files from several resistance selections that were previously

published (https://escholarship.org/uc/item/42b8231t) and deposited in the NCBI
Short Read Archive with the following accession numbers: SRX1745463,
SRX1745464, SRX1745465, SRX1745466, SRX1751863, SRX1751950, SRX1751953,
SRX1751954, SRX1805319, SRX1805320, SRX1805321, SRX1805322, SRX1805323,
SRX1868845, SRX1869272, SRX1869274, SRX1869275, SRX1869276, SRX1869277,
SRX1869278, SRX1869279, SRX1869280, SRX1869282). These include selections
with the following compounds: KAE609, MMV001239, cycloheximide,
MMV000570, MMV007181, MMV019017, and MMV396736.

CNV analysis. Read coverage values across defined gene intervals in each align-
ment file were calculated using GATK DiagnoseTargets (input parameters: -max
2000 -ins 1500 -MQ 50). Coverage values were log-transformed then mean-
centered across and within arrays in Cluster (http://bonsai.ims.u-tokyo.ac.jp/
~mdehoon/software/cluster). Copy number variants were filtered so that they
would only be retained if there was at least 2–3× fold coverage change relative to
the parent strain and if they spanned four or more genes (Supplementary Data 5).
CNVs were visually confirmed in IGV.

Intergenic mutation analysis. A Python script was written to map the 271
intergenic mutations to the coordinates of known chromosomal features based on
the GFF supplied on SGD for the S. cerevisiae S288C genome version R64-2-1. For
each intergenic mutation position, we determined whether it was located within a
feature and/or if it was located within 500 bp either upstream or downstream of a
known coding gene. All possible annotations for each intergenic mutation position
are listed in Supplementary Data 6.

CRISPR-Cas9 allelic exchange in S. cerevisiae. CRISPR-Cas9 genome engi-
neering was performed using the S. cerevisiae ABC16-Green Monster strain29.
gRNA plasmids were generated with specific oligonucleotides (Supplementary
Data 9) for the desired allelic exchange (Integrated DNA Technologies) containing
a 24 bp overlap with the p426 vector backbone. Subsequently, target-specific
gRNAs were PCR amplified/transformed into competent E. coli cells and selected
on LB-Ampicillin plates. ABC16-Monster cells expressing Cas9 were simulta-
neously transformed with 300–500 ng of gene-specific gRNA vector and 1–2 nmole
of synthesized donor template (IDT) via a standard lithium acetate method.
Transformed cells were plated and selected on methionine and leucine deficient
CM-glucose plates. Each engineered mutation was confirmed by Sanger sequencing
(Eton Bioscience).

qPCR. S. cerevisiae strains were grown in YPD (1% yeast extract, 2% bacto peptone,
2% dextrose) overnight at 30oC. 1 OD600 log-phase cells were harvested and subject
to total RNA extraction using Qiagen RNeasy kit, following the manufacturer’s
protocol. cDNA was generated using ThermoFisher SuperScript IV First-Strand
Synthesis System, following the manufacturer’s protocol using oligo(dT). qPCR
was performed with oligonucleotides (Supplementary Table 1) in technical tripli-
cate with Quanta PerfeCTa SYBR® Green FastMix. Analysis was done using Prism
8. Ct values for each gene of interest were averaged and normalized against ACT1
within each clone (ΔCt). Then each gene of interest was normalized against cor-
responding genes in the wild-type GM background (ΔΔCt). Fold expression was
calculated using the formula: 2-ΔΔCt98. This analysis was done for each of the four
biological replicates (Supplementary Data 8).

Plasmodium invasion assay. The impact of hectochlorin on hepatocellular tra-
versal and invasion by Plasmodium berghei (Pb) sporozoites was measured using a
flow cytometry-based assay69. Anopheles stephensi mosquitoes infected with GFP
expressing Pb sporozoites (Pb-GFP)99 were purchased from the New York Uni-
versity (NYU) Insectary Core Facility. Approximately 24 h before infection,
1.75 × 105 Huh7.5.1 cells were seeded in 24-well plates using DMEM (Invitrogen
cat# 11965-092) supplemented with 10% FBS (Corning cat# 35-011-CV) and 1×
Pen Strep Glutamine (100 Units/mL Penicillin, 100 µg/mL Streptomycin, and
0.292 mg/mL L-glutamine) (Invitrogen cat# 10378-016) for a final volume of 1 mL.
On the day of infection, hectochlorin was added to test wells (final concentration
1 µM) with cytochalasin D (final concentration 10 µM) acting as a positive control
for invasion inhibition. A non-infected control and DMSO (final concentration
0.5%) negative control was also utilized to mimic the treated well conditions.
Sporozoites were freshly dissected and prepared 2–4 h before infection100. Imme-
diately prior to infection, rhodamine-dextran was added to each test well (final
concentration 1 mg/mL) followed by 3.5 × 104 Pb-GFP sporozoites. The plates were
then incubated at 37 °C and 5% CO2 for 2 h. Following this incubation, the cells
were washed and the presence of GFP and rhodamine-dextran signals were eval-
uated using flow cytometry.

Model building. We used I-TASSER50 to model proteins without acceptable
structures in the Protein Data Bank101. To visually inspect the homology models,
we aligned them to the structural templates used for model construction102. We
discarded models that had poor I-TASSER C-scores or that we judged to be
improbable (e.g., excessively disordered). Where there were no homologous crystal
structures with bound ligands for reference, we used docking to predict ligand
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binding poses. Specifically, we converted the SMILES strings of the ligands to 3D
structures using a beta version of Gypsum-DL103 and docked the 3D models using
QuickVina246 (exhaustiveness= 15). The AutoDock forcefield does not include
parameters for boron. To dock tavaborole, we substituted the boron atom with a
carbon atom, as recommended on the AutoDock webpage (http://
autodock.scripps.edu). We tested both the “C” and “A” atom types as boron
substitutes to determine which gave predicted tavaborole poses with the best
binding affinities. For heme groups, we manually added a charge of +2 to the iron
atom. All protein-structure images were generated using BlendMol104.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw DNA sequences for all 363 yeast clones have been deposited in the Sequence Read
Archive (www.ncbi.nlm.nih.gov/sra) under BioProject accession PRJNA590203. All other
data are available in the manuscript or the supplementary materials. This work is licensed
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/
artwork or other content included in the article that is credited to a third party; obtain
authorization from the rights holder before using such material.
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