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Numerous studies have shown that epigenetic
age—an individual’s degree of aging based on
patterns of DNA methylation—can be computed
and is associated with an array of factors includ-
ing diet, lifestyle, genetics, and disease. One can
expect that still further associations will emerge
with additional aging research, but to what end?
Prediction of age was an important first step, but—
in our view—the focus must shift from chasing
increasingly accurate age computations to under-
standing the links between the epigenome and the
mechanisms and physiological changes of aging.
Here, we outline emerging areas of epigenetic
aging research that prioritize biological under-
standing and clinical application. First, we sur-
vey recent progress in epigenetic clocks, which are

beginning to predict not only chronological age but
aging outcomes such as all-cause mortality and
onset of disease, or which integrate aging signals
across multiple biological processes. Second, we
discuss research that exemplifies how investiga-
tion of the epigenome is building a mechanistic
theory of aging and informing clinical practice.
Such examples include identifying methylation
sites and the genes most strongly predictive of
aging—a subset of which have shown strong poten-
tial as biomarkers of neurodegenerative disease
and cancer; relating epigenetic clock predictions to
hallmarks of aging; and using longitudinal studies
of DNAmethylation to characterize human disease,
resulting in the discovery of epigenetic indications
of type 1 diabetes and the propensity for psychotic
experiences.
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Introduction

The human genome contains approximately 28
million CpG dinucleotides, in which a cytosine pre-
cedes a guanine in the 5’-3’ direction. Each of
these cytosines can be modified through the addi-
tion of a methyl group to create 5-methylcytosine,
termed DNA methylation (DNAm). In most con-
texts, a majority of these sites are indeed methy-
lated, with the specific pattern of methylation vary-
ing across cell types, individuals, and conditions
[1–3]. DNAm performs essential functions such as
regulating transcription via modification of pro-
moters, enhancers, and gene bodies [4–6] and
contributing to X chromosome inactivation [7, 8].
For example, it regulates transcription by chang-
ing the binding affinity of transcription factors for
transcription factor binding sites [9] and impacts
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the activity of histone-modifying proteins in CpG
islands—regions with a large proportion of CpG
sites that are typically nonmethylated [10, 11]. Sev-
eral experimental techniques are used routinely to
measure the proportion of cells in a tissue that are
methylated at a given CpG site; these measured
values are called the CpG methylation fraction
(or state). Two of the most common measurement
technologies are genome-wide methylation arrays
and reduced representation bisulfite sequencing
[12].

Nearly a decade ago, our laboratory—and soon
thereafter, others—showed that a large number
of CpG sites in the human genome increase or
decrease in methylation fraction over time, such
that one can select among these CpG sites to
measure the rate at which an individual ages
[13–15]. These so-called “epigenetic clocks” train
regularized linear regression models, typically
ElasticNet [16], to predict the chronological age
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of an individual from the methylation values of
CpG sites distributed across the genome. During
training, the CpG sites for which the methylation
fractions are most predictive of chronological age
are identified and selected for use in the linear
regression equation. The number of CpG sites
selected has depended greatly on the particular
training data and hyperparameters used but is
typically between two and a few hundred.

In the time since these epigenetic clocks were
introduced, substantial development effort has
been invested into improving their predictive
accuracy and extending their range of applica-
tions. In humans, more recent epigenetic clocks
promise to predict age more accurately than their
predecessors [17–21], and similar clocks have
been developed to predict age in mice [22–24],
chimpanzees [25], dogs [26], and naked mole rats
[27–29]. Furthermore, a specific set of age-related
methylation changes were demonstrated to be con-
served across humans, dogs, and mice [30], and
such conservation has now been shown to apply
to many mammalian species [31]. In addition, the
rate of aging—both its pace and acceleration—has
been quantified by DunedinPACE, an epigenetic
clock that uses 20 years of longitudinal methyla-
tion data to form a novel biomarker of the pace
of aging [32]. Finally, the first randomized clinical
trial using an epigenetic clock as the main valida-
tor of intervention efficacy was recently conducted
[33]. The prediction of epigenetic age has also been
made more accessible and efficient; epigenetic
clock software packages are readily available, with
some requiring methylation values at only a few
CpG sites for accurate age predictions [14, 21].

While optimization of existing concepts and meth-
ods is important, it is also vital that the field keeps
moving. Beyond the construction of increasingly
accurate chronological clocks, there are many
unanswered questions related to the specific
mechanisms by which the epigenome influences
aging and, reciprocally, by which aging influences
the epigenome. In this review, we endeavor to
highlight and define some of these major unad-
dressed areas and opportunities. We begin by
outlining efforts to train epigenetic clocks more
directly against biological aging outcomes or to
integrate clocks with multiple data layers. We then
consider how, even as significant new data and
methods are still being developed, the findings of
current clocks can be used to further a molecular
theory of aging and evaluate clinical aging inter-

ventions. Throughout, we highlight the hierarchy
of measurement scales used to characterize aging
and how these might ultimately be integrated to
understand how macroscopic aging arises from
multiple molecular processes (Fig. 1).

Moving from chronological to biological clocks

Epigenetic clock models were originally built using
biomarkers of a single type, DNAm, which were
used to predict chronological age [13, 15, 34, 35].
These first-generation models can thus be called
“chronological clocks.” In contrast, a second gener-
ation of epigenetic clocks has been formulated that
uses DNAm to predict biological attributes, such as
time to death or functional decline [17, 19]. These
so-called “biological clocks” have shown to be bet-
ter indicators of health outcomes during aging.
Generally, however, it has been extremely difficult
to separate aging into strictly independent chrono-
logical and biological components, such that all
clocks fall somewhere on a spectrum between the
two extremes (Fig. 2). Two people with the same
birthday by definition have the same chronologi-
cal age, but they may have different biological ages
due to variations in lifestyle, environmental factors,
disease, and so on [34, 36].

The blurry line between biological and chronological
aging

All present epigenetic clocks lie on a spectrum
between perfectly predicting biological and chrono-
logical age. The penalized regression process limits
a clock to only include CpG sites that are correlated
with the target variable. Therefore, the critical dif-
ference between chronological and biological clocks
is that chronological clocks are limited to includ-
ing only CpG sites that correlate with chronolog-
ical age, while biological clocks can more broadly
include CpG sites that correlate with biological
attributes forming that clock’s definition of biologi-
cal age. However, due to imperfections in measure-
ment technology, finite training data, and close
correlations between chronological and biological
age-associated CpG sites, an asymptotic approach
to each end of the spectrum is the most that can
be expected.

Imperfections in both types of clocks are expected
and inevitable; however, it is important to be able
to distinguish predictions for biological age from
those for chronological age so that one can inter-
pret predictions effectively. For example, in a bio-
logical clock forecasting time to death, the impact
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Fig. 1 Scales of aging. Aging impacts molecular to macroscopic scales, resulting in age-related deterioration of physical
components and mental faculties. Relationships between various molecular processes and the passage of time can be
observed through aging clocks, but ultimately these relations need to be integrated across scales. For visual simplicity, not
all possible relationships between molecular processes are shown.

that chronological age has on this prediction would
need to be calculated by possibly observing the
marginal change in the prediction of time to death
across samples. If all the variation in time-to-death
prediction was explained by variation in chrono-
logical age, then it would be clear that this clock
is not actually encoding biological age informa-
tion. Future methods should quantify the degree to
which their predictions are dependent on chrono-
logical age versus biological factors.

Moving past using chronological clocks to predict
biological attributes

Present chronological clocks use biological data,
such as DNAm, to make their predictions [13,
15] (Fig. 2). The values of such data are observed
to change with age, but they also vary between
samples due to non-age-related factors such as
differing environments and lifestyles. This effect is
evident in the older chronological ages predicted
for smokers and people with cancer in the pio-
neering Hannum and Horvath clocks [13, 15, 34].

This increase in predicted age relative to actual
chronological age is termed the “age acceleration
residual (AAR)” and has been shown to correlate
with increased risk of mortality [37–39].

However, a perfect chronological clock would
always have a zero AAR. Furthermore, empirically,
biological clocks have been shown to outperform
the AAR from chronological clocks in predicting
mortality and aging phenotypes [18], and the
association of AAR and mortality has been shown
to become insignificant as the training datasets of
chronological clocks increase [38]. Therefore, if the
goal is to investigate the causes of human aging,
a biological clock should be used. Chronological
clocks can be applied to areas such as forensics
or identifying the age of wild animals.

The first biological clock developed was PhenoAge,
which uses DNAm to predict a quantity termed
“phenotypic age” [19]. Phenotypic age is a measure
of biological age derived from 42 clinical biomark-
ers measured in 9926 individuals enrolled in the
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Fig. 2 A spectrum of epigenetic clocks. On the right of the spectrum (blue) are chronological clocks, which try to predict time
since birth. On the left (green) are clocks trained to predict biological attributes. There exist many possible variations. The
current clocks fall towards the middle of the spectrum (blue–green), either by design or as a result of imperfect methods
and data, yielding predictions that include aspects of chronological and biological age, but neither perfectly, since these two
concepts are highly correlated.

National Health and Nutrition Examination Survey
(NHANES), a long-term longitudinal health assess-
ment study run by the US Centers for Disease
Control and Prevention [40]. First, a penalized
linear regression model was applied to select the
10 NHANES biomarkers that were most predictive
of mortality. These included creatine, C-reactive
protein, white blood cell count (WBC), and so on.
Phenotypic age was defined as a weighted combina-
tion of these 10 biomarkers. Next, a DNAm-based
clock was trained in the standard way—using an
ElasticNet regression model to select an optimally
sparse set of CpG sites—but was optimized to pre-
dict phenotypic age instead of chronological age.

The predictive power of PhenoAge was subse-
quently validated on a broad variety of variables
such as morbidity and physical functioning. When
compared to the widely studied Hannum and
Horvath chronological clocks, PhenoAge was sig-
nificantly more predictive of 10-year and 20-year
all-cause mortality risk. Furthermore, elevated
phenotypic age was strongly associated with age-
related comorbidities and deficits of physical func-
tion, even adjusting for a subject’s chronological
age. This is a significant advance because insofar
as chronological clocks are able to predict age-
related comorbidities and decline in physiological
functions, this association occurs because chrono-
logical age is correlated with these factors [38]. In
contrast, the association between PhenoAge and
physiological decline exists even after adjusting
for chronological age, suggesting that this clock
relies on changes in DNAm more associated with
biological aging for predicting these attributes.

Following PhenoAge, another biological clock was
created, called GrimAge [17]. As training data, this
clock included DNAm, the levels of 88 plasma pro-
teins, and number of smoking pack-years. Training
was split into two stages. First, linear regression
models were built to predict the levels of each
plasma protein and the number of smoking pack-
years, using DNAm. The outputs of each of these
models were called “DNAm surrogate biomarkers.”
In the second stage of training, the DNAm sur-
rogate biomarkers for 12 of the plasma proteins,
smoking pack-years, chronological age, and sex
were used to form a new clock trained to predict
time to death—using only DNAm as input [17].

The GrimAge clock was predictive of aging-related
events and time to death. In predicting time
to death, GrimAge outperformed all previous
epigenetic clocks that it was tested against (Hor-
vath 2013, Hannum, and PhenoAge) as well as
the actual biomarkers used to train the clock
(e.g., plasma protein levels and self-reported
pack-years). Furthermore, the individual DNAm
surrogate biomarkers for smoking pack-years and
four of the plasma proteins were better predictors
of lifespan than actual self-reported pack-years
or clinical measures of plasma protein levels [17].
This suggests that the inclusion of these clinical
measures in training the GrimAge clock may better
uncover the DNAm correlates of biological aging;
however, determining which measures are opti-
mal for this task warrants further investigation.
Recently, the Hannum, Horvath 2013, PhenoAge,
and GrimAge clocks were tested against each other
to study their ability to predict nine functional
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phenotypes including walking speed, grip strength,
frailty, polypharmacy (i.e., the number of currently
prescribed drugs), Mini-Mental State Examina-
tion, Montreal Cognitive Assessment, Sustained
Attention Reaction Time, and two-choice reaction
time. In this analysis, each clock was modified to
be independent of chronological age and WBC, as
described by Fiorito et al. [41]. While the Hannum
and Horvath clocks were each significantly predic-
tive (p < 0.05) of a single phenotype (polypharmacy
and grip strength, respectively), the PhenoAge and
GrimAge were significantly predictive of 4/9 and
8/9 phenotypes, respectively [18]. Additionally,
adjusted for socioeconomic and lifestyle factors,
only GrimAge was significantly associated with
all-cause mortality (hazard ratio [HR] = 1.91, p =
0.004) [18]. However, on a different dataset, adjust-
ing for many of the same covariates (including
WBC and age), the Hannum and Horvath clocks
were shown to be predictive of mortality [37].
This underscores the importance of the datasets
and covariates chosen when conducting such
analyses.

In addition to surpassing the first generation of epi-
genetic clocks (chronological clocks) in the tasks
of predicting mortality risk and functional pheno-
types, the PhenoAge and GrimAge biological clocks
are predictive of a wide variety of disease states.
Reproducing the observed association between
DNAm and cancer in chronological clocks [13, 15,
42], PhenoAge and GrimAge associate with time to
any cancer (HR = 1.01 and 1.07, respectively) and
PhenoAge with mortality from cancer (HR = 1.07).
Biological age predictions from both clocks also
associate with cardiovascular disease and in Phe-
noAge with Alzheimer’s disease (HR = 1.04). These
HRs are significant but small, implying the risk of
disease rises slowly with an increase in biological
age. Also, in the context of the concept of “inflam-
maging” [43–45], it is of note that genes associated
with an older PhenoAge prediction were enriched
for pro-inflammatory signaling pathways, and
markers of inflammation were associated withmul-
tiple constituent biomarkers in GrimAge [17, 19].
These associations with disease provide another
line of support that biological clocks relate to clin-
ically relevant attributes. While biological age pre-
dictions are currently most appropriately used in
basic science research, the observed associations
with specific diseases can motivate future develop-
ment of more specific epigenetic tests, as has been
done with the use of DNAm in cancer prediction
[46, 47] and neurodegenerative diseases [48].

On top of guiding the development of epigenetic
biomarkers for disease, biological clocks are
advancing towards becoming tools for informing
clinical diagnoses and testing longevity-promoting
therapies. Many clinical diagnoses are informed
by patient-reported data where the accuracy of
the report varies [49]. Moreover, the same exter-
nal factor can have varying impacts on different
individuals’ health. Likely for these reasons, the
GrimAge DNAm surrogate biomarker of smok-
ing pack-years was a more accurate predictor of
time to death than self-reported smoking pack-
years [17]. Thus, a potential utility of epigenetic
biomarkers is to reduce the reliance on subjective
self-reporting and instead provide a more accurate
assessment using the methylome. Following this
same idea of using an epigenetic clock biomarker
in addition to, or instead of, traditional clinical
biomarkers, epigenetic age has been used to
assess the effect of purported longevity-promoting
interventions including metformin [50, 51], caloric
restriction [22, 23, 52], and rapamycin [22, 53, 54].
So, biological epigenetic clocks can theoretically
function as biomarkers relevant to a variety of
domains; however, more evaluation must be done
before assigning high credence to their reports.

Exploring relationships beyond epigenetics

Following the introduction of DNAm clocks, the
next step was to ask whether other biomolecular
data can be related to aging. Recently, using a novel
approach based on an ensemble of classifiers, an
aging clock based on the human transcriptome was
created [55]. This clock was shown to be predictive
of chronological age (mean absolute error (MAE) =
7.7 years, Rˆ2 = 0.81), but less so than the best
DNAm-based clocks (Horvath-2018 R = 0.89, MAE
= 1.2, Hannum R = 0.9, root mean squared error
(RMSE) = 4.89) [15, 54]. Subsequently, a similar
model was created for C. elegans, named BiT age
[56]. Using RNA-seq measurements in a similar
fashion to DNAm measurements in DNAm-based
clocks, an ElasticNet regression model was trained
to predict chronological age, resulting in accu-
rate age predictions—on par with the best human
DNAm clocks [56]. These studies raise the ques-
tion of whether transcript abundance and DNAm
in the same regions of the genome are associated
with aging, and if so, does one lead to the other?

Moving from RNA to proteins, multiple studies of
the human proteome have revealed proteins with
underlying associations with aging. In addition to
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GrimAge (see above), which was based on levels of
several plasma proteins, Lehallier et al. performed
a proteome-wide selection of protein markers, pro-
ducing 373 proteins that were very accurate at
predicting chronological age (R = 0.93–0.97) [57].
Johnson et al. produced a similar clock by iden-
tifying 32 proteins that were associated with both
age and aging disorders, which made commensu-
rately accurate predictions of chronological age (R
= 0.9, MAE = 5.5), but needed only one quarter of
the number of proteins [58].

Beyond the protein concentrations themselves, the
posttranslational modification of certain proteins
by glycans has also been shown to track chrono-
logical age and certain physiological states [59–
61]. Glycans are a diverse group of polysaccharide
macromolecules that have varied biological roles,
ranging from stabilizing other molecular structures
to acting as ligands modulating protein–protein
interactions [62]. Immunoglobulin G (IgG) glyco-
sylation, which affects IgG binding affinity, was
shown to correlate with chronological age by Gly-
canAge (R = 0.76, MAE = 9.7)—remarkably, using
information about the abundance of just three gly-
cans [59]. Glycans have since been demonstrated
to relate to obesity [61] and diseases of inflamma-
tion, cancer, and autoimmunity [60], which also
lead to increased GlycanAge predictions.

Collectively, this work demonstrates that, in addi-
tion to the methylome, the transcriptome, pro-
teome, and posttranslational modifications are
closely associated with aging. It is unclear whether
these are separate or related causes of aging. How-
ever, in the near future, it may be possible to infer
how a change in one level of data creates down-
stream effects in others, leading to aging pheno-
types, or to distinguish each as a separate mecha-
nism. Moreover, a detailed understanding of these
relationships begins to form a mechanistic expla-
nation of aging.

To what degree do epigenetics reflect or orchestrate
hallmarks of aging?

DNAm has been shown to correlate with numerous
molecular and cellular processes, some of which
are themselves hallmarks of aging. These include
cellular senescence, telomere attrition, and stem
cell exhaustion (Fig. 3) [63]. For instance, at cer-
tain loci, DNAm correlates with cellular senes-
cence arising from repeated cell divisions [64, 65],
such that the methylation values of a subset of

these loci can estimate the number of divisions a
cell has undergone [66, 67]. Furthermore, there
is a modest correlation between age-related vari-
ation and senescence-related variation of DNAm
levels [68], and some epigenetic clocks [19, 69]
have been demonstrated to predict increased epi-
genetic ages as fibroblast cultures progressed from
early passage to replicative senescence [70]. On
the other hand, epigenetic age estimates continue
to increase even in the presence of telomerase,
which prevents telomere attrition and replicative
senescence. This finding indicates that age-related
and senescence-related DNAm changes may be,
at least partially, epigenetically distinct [71]. A
further divergence between the epigenetics of age
and senescence appears when induced pluripotent
stem cells (iPSCs) are created [72]. Upon induc-
tion of pluripotency, DNAm measures of both epi-
genetic age and replicative senescence are reset,
but when the iPSCs are redifferentiated, DNAm
patterns attributed to senescence reappear, while
age-related ones do not [65, 73, 74]. These findings
suggest that epigenetic aging patterns are not sim-
ply an advance toward cellular senescence, nor of
telomere attrition.

One hallmark of aging that does relate to epige-
netic aging is stem cell exhaustion. DNAm has
been found to be important for stem cells main-
taining their undifferentiated state [75]. Current
epigenetic clocks are based on methylation values
from tissues, rather than individual cells. Thus, if
stem cells are exhausted in a given tissue, these
changes in tissue composition may lead to changes
in the epigenetic age prediction of that tissue [35,
38]. However, epigenetic age predictions have been
shown to be significant even when using datasets
containing a single cell type [76] or when cell type
composition is taken into account [39]; thus, stem
cell exhaustion leading to changes in tissue com-
position may not be the only cause of epigenetic
aging. Future research should investigate why this
disconnect exists and seek to better understand
the true relationship between epigenetic clocks,
DNAm, and the hallmarks of aging.

Age-associated CpG sites and corresponding genes

For epigenetic clocks to inform mechanisms of
aging, the particular regions of the epigenome that
correlate with aging must be made clear. If the
methylation of certain CpG sites truly does have
a downstream impact on aging, there must be a
chain of events that can be identified as to how this
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Fig. 3 Connection between the environment, methylome, and the hallmarks of aging. Top: Some of the many macroscopic
factors related to aging have also been linked to changes in the methylome. Bottom: Molecular hallmarks of aging that have
also been linked to changes in the methylome, while remaining distinct effects.

impact occurs. Alternatively, if the modifications of
these CpG sites are a byproduct of another process
which itself is a cause of aging, then one might still
seek a traceable pathway of events in which epige-
netic modifications are a component of the chain.

The first step in this direction is to investigate the
downstream effects of common aging-associated
epigenetic changes (Table 1) and seek causal
relationships between these changes and gene
expression. For instance, ELOVL2 (elongation of
very long-chain fatty acids protein 2) catalyzes
reactions in the long-chain fatty acids elongation
cycle involved in lipid homeostasis [77, 78] and
retinal function [79]. A murine study found a corre-
lation between the downregulation of this gene and
age [80]. Remarkably, this study also showed that

when hypermethylation of the ELOVL2 promoter
is reversed in vivo, retinal function consequently
improves. This finding suggests a causal pathway
from increased methylation at the ELOVL2 pro-
moter (an epigenetic change) to decreased ELOVL2
gene expression (a transcriptomic change), to
reduced retinal function (a phenotypic change).
The study of ELOVL2 is not complete, but it serves
as an example for future research into epigenetic
marks that may underlie aging phenotypes.

The analysis of CpG sites can also be useful
in explaining why epigenetic clocks make the
predictions they do. In a novel analysis, 5717
CpG sites previously used in 20 epigenetic clocks
were clustered by their covariance and range of
methylation values across chronological ages [74].
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Table 1. Genes associated with the most common CpG sites
used by epigenetic clocks

Gene nearby
CpG site

Number of uses
in published
clocks

Corresponding
list of clock
citations

EDARADD 8 13, 15, 19, 69, 81–84
ELOVL2 7 25, 84–89
FHL2 4 84, 85, 87, 88
KLF14 4 84, 87, 88, 90
CCDC102B 3 25, 84, 89
C1orf132 3 84, 87, 88
TRIM59 2 87, 88
ZNF423 2 25, 89
PDE4C 1 84
SST 1 84
TOM1L1 1 81
NPTX2 1 81
PENK 1 85

Note: While certain CpG sites do appear in many epige-
netic clocks, there may exist other CpG sites that are
highly correlated with these frequently appearing ones
and are equally predictive of aging, but were removed by
the penalized regression for their redundancy.

This produced 12 clusters of CpG sites, termed
“modules,” which exhibited strong biological asso-
ciations. Some modules were characterized by
a loss of DNAm as chronological age increased
or there was a gain in methylation during epige-
netic reprogramming or an exponential change in
methylation during development. Further analy-
sis uncovered that across time, certain modules
seemed to display epigenetic drift—their methy-
lation values regressing to the mean—while a few
showed strong directional changes. This study
begins to help explain the mechanistic drivers
of variations in epigenetic age prediction by con-
necting subsets of CpG sites to specific biological
conditions—another step on the path towards a
mechanistic understanding of aging.

Longitudinal DNAm studies

The clocks discussed thus far are cross sectional,
analyzing a snapshot of an individual’s methy-
lome at a moment in time. In contrast, longitudinal
methylation studies enable the study of changes
in methylation in single individuals across time,
facilitating a clearer investigation of which regions
become methylated as a result of, or portending,
disease and aging.

Recent studies have recognized differences in lon-
gitudinal methylation changes when comparing
diseased individuals to controls. In addition to
locations where the amount of methylation is dif-
ferential across individuals at a single time (cross-
sectional differential methylation), there also exist
locations where the direction, magnitude, and rate
of change of methylation is significantly different
across time points. In type 1 diabetes, 10 sig-
nificant cross-sectional differentially methylated
regions, two regions whose longitudinal rate of
change of methylation was differential (DCMRs:
longitudinal differentially changing methylation
regions), and 28 regions whose average methyla-
tion across time were differential were found [91].
In previous research, five of these regions that were
identified as DCMRs had been found to be associ-
ated with changes in gene expression [92, 93], sug-
gesting a regulatory basis for their association with
type 1 diabetes. Similarly, CpG sites were found,
at both ages 7 and 15–17, that were differentially
methylated between children who would and would
not go on to have psychotic experiences [94]. The
existence of these differences in methylation sug-
gests the possibility of detecting a predisposition
to psychotic experiences and type 1 diabetes using
the epigenome, well before symptoms are present.
Similarly, future investigation may reveal longitu-
dinal differences in methylation associated with
aging.

Twins are a popular form of longitudinal study
as the juxtaposition of two genetically identical
patients offers a valuable perspective on the rel-
ative effects of environmental and genetic factors.
A study of elderly Swedish twins took place over
20 years with up to five measurements of DNAm
per person during this time [95]. In this study,
a total of 1316 CpG sites were found to be sig-
nificantly associated with age. The CpG with the
highest association was located in the ELOVL2
gene [88, 96]. This study also found that intratwin
methylation differences increased over time more
in dizygotic twins than in monozygotic twins, sug-
gesting a genetic effect on the methylome. This
genetic effect was further supported by the fact that
age-associated CpGs were more often significantly
associated with at least one single nucleotide poly-
morphism (SNP) (9.2%) when compared to non-
age-associated CpGs (3.7%) [95]. Genetic effects on
the methylome have generally been shown to be
steady across time [95, 97, 98], with environmental
factors accounting for 90% of the change in methy-
lation of CpG sites as we age [99].
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Longitudinal studies have also allowed for the test-
ing of longevity-promoting interventions and their
effects on the methylome. Metformin was demon-
strated to extend lifespan in humans and model
organisms [100–102] and have genome-wide
impacts on methylation [103–105]. Rapamycin
administration to mice for 22 months was shown
to significantly decrease DNAm epigenetic age
when compared to control mice [22]. However,
marmosets treated with rapamycin for 2–3.5 years
did not exhibit a significant decrease in DNAm
epigenetic age [53]. Caloric restriction has also
been shown to be preventative of age-related
DNAm changes in multiple tissue types [24, 106]
and has been demonstrated to decrease predicted
DNAm epigenetic age in mice and rats—and, in
one study, in rhesus monkeys [22, 23, 52]. Thus,
the studies thus far are somewhat conflicting, and
more research is needed to resolve the apparent
discrepancies.

Conclusion

Here we have reviewed programs of epigenetic
aging research, which may lead towards an
increase in clinical applicability and a deeper
understanding of how epigenetics influence, and
are influenced by, age-related deterioration. We
have discussed how epigenetic clocks are evolv-
ing from chronological to biological, studies of
methylation are broadening from cross sectional
to longitudinal, and links are being drawn between
age-related DNAm changes, other -omics data
types (genome, transcriptome, proteome), and the
hallmarks of aging. The sophistication of epige-
netic clocks today is greater than it was a decade
ago because the tools have broader reach, and we
fully expect this trend to continue.

Conflict of interest

T. I. is the cofounder and a member of the advi-
sory board for Data4Cure, Inc. and has an equity
interest. T. I. has an equity interest in Ideaya Bio-
Sciences, Inc. and is a member of the Scientific
Advisory Board. The terms of this arrangement
have been reviewed and approved by the Univer-
sity of California, San Diego in accordance with its
conflict-of-interest policies.

Author contributions

Adam Li: Conceptualization; formal analysis;
investigation; methodology; project administra-
tion; validation; visualization; writing – original

draft; writing – review and editing. Zane Koch:
Conceptualization; formal analysis; investigation;
methodology; project administration; validation;
visualization; writing – original draft; writing –
review and editing. Trey Ideker: Conceptualization;
formal analysis; funding acquisition; investigation;
methodology; project administration; supervision;
validation; visualization; writing – review and
editing.

References

1 Jabbari K, Bernardi G. Cytosine methylation and CpG, TpG
(CpA) and TpA frequencies. Gene. 2004;333:143–9.

2 Mugal CF, Ellegren H. Substitution rate variation at human
CpG sites correlates with non-CpG divergence, methylation
level and GC content. Genome Biol. 2011;12:R58.

3 Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo
KC, Mccune RA, et al. Amount and distribution of 5-
methylcytosine in human DNA from different types of tis-
sues of cells. Nucleic Acids Res. 1982;10:2709–21.

4 Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler
A, et al. DNA-binding factors shape the mouse methylome
at distal regulatory regions. Nature. 2011;480:490–5.

5 Deaton AM, Bird A. CpG islands and the regulation of tran-
scription. Genes Dev. 2011;25:1010–22.

6 Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide
evolutionary analysis of eukaryotic DNA methylation. Sci-
ence. 2010;328:916–9.

7 Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H,
et al. Targets and dynamics of promoter DNA methylation
during early mouse development. Nat Genet. 2010;42:1093–
100.

8 Li E, Beard C, Jaenisch R. Role for DNA methylation in
genomic imprinting. Nature. 1993;366:362–5.

9 Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-
Sayeed S, et al. Impact of cytosine methylation on DNA
binding specificities of human transcription factors. Science.
2017;356:eaaj2239.

10 Rose NR, Klose RJ. Understanding the relationship between
DNA methylation and histone lysine methylation. Biochim
Biophys Acta. 2014;1839:1362–72.

11 Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The
methyl-CpG-binding protein MeCP2 links DNA methylation
to histone methylation. J Biol Chem. 2003;278:4035–40.

12 Singer BD. A practical guide to the measurement and
analysis of DNA methylation. Am J Respir Cell Mol Biol.
2019;61:417–28.

13 Horvath S. DNA methylation age of human tissues and cell
types. Genome Biol. 2013;14:R115.

14 Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al.
Aging of blood can be tracked by DNA methylation changes
at just three CpG sites. Genome Biol. 2014;15:R24.

15 Hannum G, Guinney J, Zhao L, Zhang Li, Hughes G, Sadda
S, et al. Genome-wide methylation profiles reveal quantita-
tive views of human aging rates. Mol Cell. 2013;49:359–67.

16 Zou H, Hastie T. Regularization and variable selection via the
elastic net. J R Stat Soc Series B Stat Methodol. 2005;67:301–
20.

© 2022 The Association for the Publication of the Journal of Internal Medicine.
Journal of Internal Medicine, 2022, 0; 1–12

9



Epigenetic aging: Bio age and mechanisms / A. Li et al.

17 Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al.
DNA methylation GrimAge strongly predicts lifespan and
healthspan. Aging. 2019;11:303–27.

18 McCrory C, Fiorito G, Hernandez B, Polidoro S, O’halloran
AM, Hever A, et al. GrimAge outperforms other epigenetic
clocks in the prediction of age-related clinical phenotypes
and all-cause mortality. J Gerontol A Biol Sci Med Sci.
2021;76:741–9.

19 Levine ME, Lu AT, Quach A, Chen BH, Assimes TL,
Bandinelli S, et al. An epigenetic biomarker of aging for lifes-
pan and healthspan. Aging. 2018;10:573–91.

20 Galkin F, Mamoshina P, Kochetov K, Sidorenko D,
Zhavoronkov A. DeepMAge: a methylation aging clock devel-
oped with deep learning. Aging Dis. 2021;12:1252–62.

21 Levy JJ, Titus AJ, Petersen CL, Chen Y, Salas LA,
Christensen BC. MethylNet: an automated and modular
deep learning approach for DNA methylation analysis. BMC
Bioinformatics. 2020;21:108.

22 Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM,
Yu MK, et al. Epigenetic aging signatures in mice livers are
slowed by dwarfism, calorie restriction and rapamycin treat-
ment. Genome Biol. 2017;18:57.

23 Petkovich DA, Podolskiy DI, Lobanov AV, Lee S-G, Miller RA,
Gladyshev VN. Using DNA methylation profiling to evalu-
ate biological age and longevity interventions. Cell Metab.
2017;25:954–60.e6.

24 Hahn O, Grönke S, Stubbs TM, Ficz G, Hendrich O, Krueger
F, et al. Dietary restriction protects from age-associated DNA
methylation and induces epigenetic reprogramming of lipid
metabolism. Genome Biol. 2017;18:56.

25 Ito H, Udono T, Hirata S, Inoue-Murayama M. Estimation
of chimpanzee age based on DNA methylation. Sci Rep.
2018;8:9998.

26 Thompson MJ, VonHoldt B, Horvath S, Pellegrini M.
An epigenetic aging clock for dogs and wolves. Aging.
2017;9:1055–68.

27 Lowe R, Danson AF, Rakyan VK, Yildizoglu S, Saldmann
F, Viltard M, et al. DNA methylation clocks as a predictor
for ageing and age estimation in naked mole-rats, Hetero-
cephalus glaber. Aging. 2020;12:4394–406.

28 Horvath S, Haghani A, Macoretta N, Ablaeva J, Zoller JA,
Li CZ, et al. DNA methylation clocks tick in naked mole rats
but queens age more slowly than nonbreeders. Nature Aging.
2021;2:46–59.

29 Kerepesi C, Meer MV, Ablaeva J, Amoroso VG, Lee S-G,
Zhang B, et al. Epigenetic aging of the demographically non-
aging naked mole-rat. Nat Commun. 2022;13:355.

30 Wang T, Ma J, Hogan AN, Fong S, Licon K, Tsui B,
et al. Quantitative translation of dog-to-human aging by
conserved remodeling of the DNA methylome. Cell Syst.
2020;11:176–85.e6.

31 Fei Z, Raj K, Horvath S, Lu A. Universal DNA methyla-
tion age across mammalian tissues. Innov Aging. 2021;5:
412.

32 Belsky DW, Caspi A, Corcoran DL, Sugden K, Poulton
R, Arseneault L, et al. DunedinPACE, a DNA methy-
lation biomarker of the pace of aging. Elife. 2022;11:
e73420.

33 Fitzgerald KN, Hodges R, Hanes D, Stack E, Cheishvili D,
Szyf M, et al. Potential reversal of epigenetic age using a diet
and lifestyle intervention: a pilot randomized clinical trial.
Aging. 2021;13:9419–32.

34 Field AE, Robertson NA, Wang T, Havas A, Ideker T, Adams
PD. DNA methylation clocks in aging: categories, causes,
and consequences. Mol Cell. 2018;71:882–95.

35 Horvath S, Raj K. DNA methylation-based biomarkers
and the epigenetic clock theory of ageing. Nat Rev Genet.
2018;19:371–84.

36 Nwanaji-Enwerem JC, Weisskopf MG, Baccarelli AA. Multi-
tissue DNA methylation age: molecular relationships and
perspectives for advancing biomarker utility. Ageing Res
Rev. 2018;45:15–23.

37 Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris
SE, et al. DNA methylation age of blood predicts all-cause
mortality in later life. Genome Biol. 2015;16:25.

38 Zhang Q, Vallerga CL, Walker RM, Lin T, Henders AK,
Montgomery GW, et al. Improved precision of epigenetic
clock estimates across tissues and its implication for bio-
logical ageing. Genome Med. 2019;11:54.

39 Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness
CK, Tsai P-C, et al. DNA methylation-based measures of bio-
logical age: meta-analysis predicting time to death. Aging.
2016;8:1844–65.

40 Burt VL, Harris T. The third National Health and Nutrition
Examination Survey: contributing data on aging and health.
Gerontologist. 1994;34:486–90.

41 Fiorito G, Polidoro S, Dugué P-A, Kivimaki M, Ponzi E,
Matullo G, et al. Social adversity and epigenetic aging: a
multi-cohort study on socioeconomic differences in periph-
eral blood DNA methylation. Sci Rep. 2017;7:16266.

42 Levine ME, Hosgood HD, Chen B, Absher D, Assimes T,
Horvath S. DNA methylation age of blood predicts future
onset of lung cancer in the women’s health initiative. Aging.
2015;7:690–700.

43 Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S.
Inflammaging and “garb-aging”. Trends Endocrinol Metab.
2017;28:199–212.

44 Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini
F, et al. Inflammaging and anti-inflammaging: a systemic
perspective on aging and longevity emerged from studies in
humans. Mech Ageing Dev. 2007;128:92–105.

45 Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding
how we age: insights into inflammaging. Longev Healthspan.
2013;2:8.

46 Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. Circulat-
ing tumor DNA methylation profiles enable early diagnosis,
prognosis prediction, and screening for colorectal cancer. Sci
Transl Med. 2020;12:eaax7533.

47 Kresovich JK, Xu Z, O’Brien KM, Shi M, Weinberg CR,
Sandler DP, et al. Blood DNA methylation profiles improve
breast cancer prediction. Mol Oncol. 2022;16:42–53.

48 Martínez-Iglesias O, Naidoo V, Cacabelos N, Cacabelos R.
Epigenetic biomarkers as diagnostic tools for neurodegen-
erative disorders. Int J Mol Sci. 2022;23:13.

49 Gorber SC, Schofield-Hurwitz S, Hardt J, Levasseur G,
Tremblay M. The accuracy of self-reported smoking: a sys-
tematic review of the relationship between self-reported
and cotinine-assessed smoking status. Nicotine Tob Res.
2009;11:12–24.

50 Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L,
et al. Epigenetic clock analysis of diet, exercise, education,
and lifestyle factors. Aging. 2017;9:419–46.

51 Fahy GM, Brooke RT, Watson JP, Good Z, Vasanawala
SS, Maecker H, et al. Reversal of epigenetic aging

10 © 2022 The Association for the Publication of the Journal of Internal Medicine.
Journal of Internal Medicine, 2022, 0; 1–12



Epigenetic aging: Bio age and mechanisms / A. Li et al.

and immunosenescent trends in humans. Aging Cell.
2019;18:e13028.

52 Maegawa S, Lu Y, Tahara T, Lee JT, Madzo J, Liang S, et al.
Caloric restriction delays age-related methylation drift. Nat
Commun. 2017;8:539.

53 Horvath S, Zoller JA, Haghani A, Lu AT, Raj K, Jasinska AJ,
et al. DNAmethylation age analysis of rapamycin in common
marmosets. Geroscience. 2021;43:2413–25.

54 Thompson MJ, Chwiałkowska K, Rubbi L, Lusis AJ, Davis
RC, Srivastava A, et al. A multi-tissue full lifespan epigenetic
clock for mice. Aging. 2018;10:2832–54.

55 Fleischer JG, Schulte R, Tsai HH, Tyagi S, Ibarra A,
Shokhirev MN, et al. Predicting age from the transcrip-
tome of human dermal fibroblasts. Genome Biol. 2018;19:
221.

56 Meyer DH, Schumacher B. BiT age: a transcriptome-based
aging clock near the theoretical limit of accuracy. Aging Cell.
2021;20:e13320.

57 Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef
H, et al. Undulating changes in human plasma proteome
profiles across the lifespan. Nat Med. 2019;25:1843–50.

58 Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Sys-
tematic review and analysis of human proteomics aging
studies unveils a novel proteomic aging clock and identi-
fies key processes that change with age. Ageing Res Rev.
2020;60:101070.
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