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Multimodal perturbation analyses 
of cyclin‑dependent kinases reveal 
a network of synthetic lethalities 
associated with cell‑cycle 
regulation and transcriptional 
regulation
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Cell‑cycle control is accomplished by cyclin‑dependent kinases (CDKs), motivating extensive research 
into CDK targeting small‑molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/
Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs 
and related factors, identifying 43 synthetic‑lethal and 12 synergistic interactions. We dissect CDK 
perturbations using single‑cell RNAseq, for which we develop a novel computational framework 
to precisely quantify cell‑cycle effects and diverse cell states orchestrated by specific CDKs. While 
pairwise disruption of CDK4/6 is synthetic‑lethal, only CDK6 is required for normal cell‑cycle 
progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic‑lethal in 
combination with PRMT5, independent of cell‑cycle control. In‑depth analysis of mRNA expression 
and splicing patterns provides multiple lines of evidence that the CDK‑PRMT5 dependency is due to 
aberrant transcriptional regulation resulting in premature termination. These inter‑dependencies 
translate to drug–drug synergies, with therapeutic implications in cancer and other diseases.

Regulation and transition between cell-cycle phases is accomplished primarily by cyclin-dependent kinases 
(CDKs) and associated cyclin  proteins1. The CDK family is large, with more than 20 distinct protein-coding 
genes, and there is substantial uncertainty regarding the specific functions of individual family  members1,2. 
Canonically, CDK proteins have been divided into two functional classes: factors that regulate cell cycle, such 
as CDK1, 2, 4 and 6, and factors that participate in general control of transcription, such as CDK7, 9 and  121 
(Fig. 1a, Extended Suppl. Fig. 1). The transcriptional CDKs play a critical role in regulating RNA Polymerase II 
(RNAPII), with diverse functions across initiation, elongation, and termination. CDK7,9 and 12 all have been 
shown to phosphorylate RNAPII directly. However, there is still much uncertainty regarding the mechanistic 
role and functional importance of each transcriptional CDK. For example, CDK8 (working as part of the Media-
tor complex) has been reported to be both a transcriptional repressor and activator, and CDK7 has established 
roles in initiation, capping, promoter-proximal pausing, and phosphorylation of  CDK93,4. CDK9 is essential for 
transcriptional elongation, with CDK12 knockdown also leading to global impairment in transcription, especially 
among long genes, and DNA damage response  genes1,5,6. However, many CDKs have been shown to function 
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in both cell-cycle and transcriptional roles as well as in diverse other  pathways7–16. For example, both cell-cycle 
and transcriptional class proteins can activate the epigenetic regulators EZH2, AR, PRMT5, and  PARP111,17–20 
or interact with proliferative cell signaling via the transforming growth factor beta (TGFβ)  pathway21,22. The 
emerging picture is that CDKs govern a complex network of overlapping and synergistic functions, with “cell-
cycle” and “transcriptional” labels providing useful but incomplete guidelines.

CDKs have also been the focus of extensive interest in the pharmaceutical industry, which has developed 
an armada of specific CDK inhibitors with potential applications in  cancer2,23,  infection24,25, neurological 
 disorders26–28, and other diseases in which cell-cycle dysfunction plays a central role. Dual specificity CDK4/6 
inhibitors have thus far shown tremendous benefit in cancer, with Phase III clinical trials for palbociclib report-
ing an improvement in progression-free survival of approximately ten months in combination with endocrine 
therapy in hormone-receptor positive (HR +) breast  tumors29 (Fig. 1a). As these drugs have consequently moved 
to standard-of-care2,30–33, it has also become readily apparent that many tumors present innate or acquired resist-
ance. One pathway to resistance is inactivation of the retinoblastoma tumor suppressor  protein34 (Rb), a central 
transcriptional repressor of cell cycle progression which is regulated by CDKs. As Rb is typically inactivated in 
triple negative breast cancers (TNBC)35, CDK therapies have yet to be approved for this tumor subtype. Within 
the triple negative breast cancer classification, cells can be further divided into Basal A (more epithelial like), and 
Basal B (more mesenchymal). This stratification is the result of early gene expression profiling  experiments36,37, 

Figure 1.  Systematic mapping of CDK gene function in triple negative breast cancer cells. (a) CDK proteins 
control cell-cycle progression and act as transcriptional regulators, garnering interest as potential drug targets 
(colors). (b) Schematic describing the combinatorial CRISPR/Cas9 fitness screening approach to map CDK 
synthetic-lethal and synergistic interactions. A library of dual sgRNA constructs targeting pairs of genes 
listed in (a) was synthesized as an oligonucleotide pool and cloned into a lentiviral overexpression vector 
(top). TNBC cell lines were transduced with virus coding for this library and subjected to competitive growth 
screening. Resulting dual sgRNA construct fitnesses were used to extract single gene fitness values and map 
genetic interactions. (c) Schematic describing the single-cell transcriptional phenotyping approach to map the 
functional impact of CDK genetic perturbations. An sgRNA library targeting the genes in (a) was cloned into an 
scRNA-seq-compatible lentiviral overexpression vector and used to transduce TNBC cell lines in pooled format. 
One week after transduction, scRNA-seq was performed using the 10x Chromium platform.
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which identified two distinct clusters of TNBC cells expressing genes similar to basal cells in the human mam-
mary gland.

It is also clear that Rb status explains only a fraction of resistance to CDK4/6 inhibitors, motivating a keen 
interest in developing biomarkers of drug  response34,38. For example, androgen receptor (AR) has been proposed 
as a biomarker for drug  sensitivity7, and altered TGFβ signaling as a biomarker for drug  resistance39,40. Another 
area of interest, particularly in TNBC, has been the identification of synthetic-lethal dependencies involving CDK 
proteins, i.e. protein pairs that selectively kill tumor cells when they are disrupted in pairwise  combinations38,41–43. 
For example, inhibition of the epigenetic regulators EZH2 or PRMT5 is being investigated as a means to sensitize 
cells to anti-CDK4/6  therapy12,44, and inhibition of CDK12 was discovered to sensitize tumors to anti-PARP1 
 therapy16,45,46. Such developments suggest that the extended family of CDK proteins and interactors may provide 
a useful source of novel biomarkers and synthetic-lethal drug targets.

Here, we use CRISPR/Cas9 genetic disruption and single-cell mRNA  sequencing47–52 to systematically inter-
rogate interdependencies and functions of all 21 CDKs in TNBC cells, including 5 epigenetic factors linked to 
CDKs (AR, EZH2, PARP1, PRMT5, TGFBR1)11,16–18,22. These experiments reveal a complex network of synthetic-
lethal interactions among CDKs and show that the cellular programs orchestrated by each CDK are remarkably 
 diverse49,53,54. The resulting resource of interdependencies and associated cell states expands our understanding 
of this complex protein family and suggests targets for individual and combination therapy.

Results
A network of CDK genetic dependencies. To systematically map CDK genetic dependencies, we per-
formed combinatorial CRISPR fitness screening using lentiviral vectors delivering pairs of sgRNA molecules to 
each  cell50. We selected four distinct sgRNAs per gene, designed to perturb all single and pairwise combinations 
of the 26 CDK and CDK-related genes (Fig. 1a). Together with non-targeting sgRNA and safe-harbor controls 
(AAVS1, the adeno-associated virus integration site in intron 1 of PPP1R12C), this library design resulted in a 
total of 12,432 dual sgRNA constructs (Fig. 1b, “Methods”).

To supplement our combinatorial knockout screen with information-rich transcriptomic data, we built a 
second library of single-cell RNA sequencing (scRNA-seq) compatible single-knockout CRISPR constructs for 
the same set of 26 genes (2 sgRNA per gene). We verified the cutting efficiency of all 52 sgRNAs, confirming 
that we had achieved highly efficient editing of target loci (Fig. 1c). These libraries were used to interrogate three 
cell lines, representing distinct TNBC classifications (MDA-MB-468: Basal A; MDA-MB-231 and Hs578T: Basal 
B). MDA-MB-468 cells have a loss-of-function disruption of retinoblastoma protein (Rb–), while the Basal B 
cells are Rb + but have activating RAS mutations and CDKN2A deletions which increase mitogenic signaling via 
D-type  cyclins43,55–58.

Cell lines were screened in biological duplicates, with genomic DNA sequenced at 4 time points over 28 days 
to track the relative fitness of cells harboring each dual sgRNA construct. Fitness measurements were well cor-
related between biological replicates (Pearson’s r = 0.996) and across the three breast cancer cell lines (r = 0.922 
to 0.937), with CDK1 ranking as the most deleterious knockout, consistent with its role as a master regulator 
of cell-cycle  progression32,59 (Fig. 2a, Extended Suppl. Fig. 2). This high level of correlation was possible due to 
the large number (>100) of unique sgRNA constructs targeting each CDK gene and our computational strategy 
of imputing single gene fitness effects from the entirety of the combinatorial knockout data (“Methods”). We 
then analyzed these measurements to identify pairwise gene knockouts in which fitness was significantly less 
than or greater than expected from the single  knockouts50 (Fig. 2b, “Methods”). This analysis identified a col-
lection of 43 synthetic-sick/lethal and 12 synergistic genetic interactions, with CDK1-CDK12 identified as both 
synthetic-lethal and synergistic depending on context (Fig. 2c,d). These interactions were identified in either of 
two analysis modes: one treating data from each cell line separately, to identify specific vulnerabilities; another 
pooling all cell lines as replicates (“pan” cell line, Fig. 2c), to identify interactions occurring consistently across 
contexts with high statistical power.

Few synthetic lethalities identified in this experiment had been identified previously, with three partial excep-
tions. One interaction between CDK8 and CDK12 had been identified in K562, a model for chronic myeloid 
 leukemia52. We saw this synthetic-lethal interaction in Hs578T, but not in the other two contexts. Two interac-
tions, CDK4-CDK6 (Fig. 2b) and CDK2-CDK6 (Extended Suppl. Fig. 3a), had been previously inferred from 
patient data or knockout mouse  experiments60,61 but not demonstrated with a combinatorial genetic screen. Here, 
we observed these interactions in our primary screen as well as an orthogonal flow cytometry assay (Fig. 2e–h, 
“Methods”). For the remaining novel synthetic lethals, 14 corresponded to protein pairs that had been shown to 
physically interact (Supplemental File 1), corroborating the observed genetic interactions.

Notably, genetic interdependencies among the canonical cell-cycle CDKs were observed exclusively in the 
Rb+ cell types (MDA-MB-231 and Hs578T). For example, strong synthetic lethality was observed between CDK4 
and CDK6 in both of these backgrounds but not in the Rb– context (MDA-MB-468), supporting the use of Rb sta-
tus as a predictive biomarker for efficacy of anti-CDK4/6  agents42,62,63 (Fig. 2b). We also observed Rb-dependent 
interaction of CDK2 with CDK6, of note due to ongoing research in trispecific CDK2/4/6  inhibitors64, as well as 
interaction of CDK1 with CDK17 and CDK18, suggesting that the Rb-dependent regulatory axis may include 
the broader family of cell-cycle CDKs beyond CDK2/4/6.

Other than the CDK4/6 dependency, many of the top five synthetic-lethal interactions featured a transcrip-
tional CDK or epigenetic regulator (Fig. 2c, ranked by pooled score across cell lines). The overall strongest 
interaction linked PRMT5 and CDK12 (Fig. 2c,i; Extended Suppl. Fig. 3b), a novel interaction between two genes 
which, separately, have been implicated in regulation of RNA polymerase II (RNAP II) and  splicing16,65,66. Related 
to this finding, we found synthetic lethalities linking PRMT5 to CDK7 and CDK9, two additional transcriptional 
CDKs (Extended Suppl. Fig. 3c,d). Several highly ranked synthetic-lethal interactions were identified linking 
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a cell-cycle regulatory CDK to a transcriptional CDK, such as the CDK1–CDK8 interaction (Fig. 2d). Many 
synthetic lethalities involved CDK proteins that had yet to be investigated as anti-cancer drug targets, such as 
the transcriptional regulators CDK11B and CDK15.

Effects of CDK knockouts on cell‑cycle phase. Coupling genetic perturbations to rich molecular read-
outs, namely transcriptomic profiling with scRNA-seq49, offers the ability to reveal specific functions that under-
lie changes in fitness phenotypes. Accordingly, we analyzed each of the three TNBC cell lines using scRNA-seq in 
the presence or absence of genetic disruptions to each of the 26 CDK and CDK-related genes (Fig. 1c). A pooled 
library of CRISPR single-guide RNAs (sgRNAs) was transduced at low multiplicity of infection (MOI) such 
that the majority of cells received at most a single sgRNA (Extended Suppl. Fig. 4). One week after transduc-
tion, scRNA-seq was performed using the 10x Chromium platform (“Methods”). When annotating which cells 
received which sgRNA, we observed fewer than expected (based on the equimolar starting pool of CDK target-
ing sgRNA) cells harboring sgRNAs targeting essential genes such as CDK1 (Extended Suppl. Fig. 4c), consistent 
with their negative effects on cell fitness.

Within these data, we examined the expression of 603 genes that had been previously nominated as cell-cycle 
markers based on their periodic transcriptional variation in cycling  cells67–69. Gene markers of the same cell-cycle 
phase were tightly clustered when examining their co-expression (Pearson correlation, “Methods”), supporting 
their previous assignments (Extended Suppl. Fig. 5a). Furthermore, these clusters included additional transcripts 
whose inclusion was consistent across the three cell lines, prompting us to expand the set of cell-cycle markers by 
an additional 127 genes (Extended Suppl. Fig. 5b–d, “Methods”). We found highly significant overlap between 
this expanded list of cell-cycle marker transcripts and an independent dataset of cell-cycle transcripts character-
ized by the Human Protein  Atlas68 (p = 1.64 ×  10–31 Fisher’s exact test, odds ratio = 49.5; Extended Suppl. Fig. 5c). 
There was less overlap between our expanded list of cell-cycle marker transcripts and known cycling proteins, 
likely due to the importance of post-translational mechanisms in regulating cell phenotypes at the protein  level70 
(Extended Suppl. Fig. 5c). Of the 127 additional cell-cycle markers, 34 were differentially expressed in one or 
more CDK knockout populations (Extended Suppl. Fig. 5e).

The cell-cycle phase of each cell was determined by embedding the expression profiles of the expanded set 
of cell-cycle markers into polar coordinates, similar to a previous method based on Hi-C  data71 (Fig. 3a, “Meth-
ods”). In these coordinates, angle corresponded to the state of cell-cycle progression at the time of cell capture, 
with M, G1, S and G2 phases defined by successive angular ranges around the unit circle (Fig. 3b, Extended 
Suppl. Fig. 6a,b). The subpopulation of cells harboring a specific CDK knockout could then be selected, and its 
angular distribution examined for aberrations relative to wild type (Fig. 3c). Using this approach, we found that 
knockouts of CDK1, 2, 5, and 6 all had significant effects on cell cycle progression (Fig. 3d). Cells harboring 
CDK1 knockouts accumulated at the end of G2 phase, whereas cells harboring CDK2 knockouts accumulated 
at  G172 (Fig. 3d). CDK2 and CDK5 had context-specific impacts on cell cycle: CDK2 knockouts resulted in M/
G1 arrest in the Rb+ lines and early S phase arrest in the Rb– line, while CDK5 knockouts arrested in G2/M only 
in Hs578T cells. The effects of CDK6 knockout were also context-dependent: MDA-MB-231 and Hs578T cells 
showed enrichment in early and late G1 respectively, whereas the Rb– line, MDA-MB-468, showed little cell-cycle 
effect. In addition to effects of these canonical cell-cycle CDKs, we found that CDK13 significantly perturbed cell 
cycle progression in Hs578T cells, although it has previously been classified as transcriptional CDKs (Extended 
Suppl. Fig. 6c). We further used the angular cell-cycle embedding to robustly remove cell-cycle signatures from 
the expression profiles (Extended Suppl. Fig. 6f).

CDK transcriptional effects are large and distinct from one another. We next sought to quantify 
the functional effects of CDK knockouts beyond cell-cycle progression. We chose to focus our analysis on the 
MDA-MB-231 cell dataset, due to it having the highest number of cells harboring single sgRNA (increasing 
statistical power). First, we confirmed that many of the knockouts led to a significant expression reduction of 
the corresponding gene in cis, consistent with nonsense-mediated decay of the CRISPR-edited  transcripts73. 
CDKs lacking this cis regulatory effect could be largely explained by low endogenous transcript abundance levels 

Figure 2.  CDK combinatorial disruption reveals conserved and context-dependent interaction networks. 
(a) Mean fitness for cells receiving each CDK knockout, pooled across three TNBC cell lines. AAVS1, 
sgRNA targeting adeno-associated virus integration site 1, a safe-harbor control locus; NTC, non-targeting 
control. Error bars correspond to standard deviations across measurements from three cell lines: Hs578T, 
MDA-MB-231, and MDA-MB-468. (b) Fitness trajectories for CDK4/6 dual knockout vs. single knockouts 
(pairing CDK4 or CDK6 with AAVS) in each TNBC cell background. Error bars correspond to standard 
deviation of fitness measurements across replicates and 32 guide pairs targeting the same gene pair. (c) Heatmap 
of significant genetic interactions for each cell line and a pan-cell line analysis. (d) Complete CDK synthetic 
lethality networks discovered across all experiments. Single gene knockout fitness is defined as the  log2 growth 
relative to non-targeting control. (e) Schematic of validation of genetic interactions. sgRNAs paired with two 
different fluorophores are transduced at high MOI and grown in competition. Cells are colored according to 
the sgRNA a cell received: blue for sgRNA1-BFP, red for sgRNA2-mCherry, yellow for both sgRNA1-BFP and 
sgRNA2-mCherry, and gray for no viral integration. (f) CDK4/6 single and dual knockout populations 4 days 
and 11 days after infection. (g–i) Validation of synthetic lethal interactions for (g) CDK4-CDK6, (h) CDK2-
CDK6, (i) CDK12-PRMT5 in MDA-MB-231 cells by fold enrichment (positive values) or depletion (negative 
values) of single and dual knockouts on day 11 vs. day 4 post infection. Error bars represent standard deviation 
across two replicates. Dual knockouts showed marked reduction in growth relative to single knockouts.

◂
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in wild-type cells (Fig. 4a), as CRISPR sgRNA reagents were confirmed to efficiently generate gene knockouts 
(85.7% mean editing rate, Fig. 1c).

Moving to trans-acting effects, we found that many CDKs have strong transcriptional effects that are very 
different from one another in the affected downstream genes and pathways (Fig. 4a,b, “Methods”). In particular, 
CDK1 knockout in MDA-MB-231 cells showed significantly perturbed expression of a large number of genes 
(1334), including the TGFβ receptor (TGFBR1) as well as genes involved in proteasomal degradation, oxidative 
phosphorylation and the electron transport chain (Fig. 4a). CDK5 knockouts showed perturbed transcription 
of DNA damage response genes, potentially due to the observed dysregulation of DNA damage signaling via 
ataxia-telangiectasia mutated (ATM)74. While CDK6 knockouts caused dysregulation of Rb-regulated genes 
and canonical cell-cycle genes, they additionally perturbed genes involved in metabolism of fluoropyrimidines. 
The classic transcriptional CDKs also impacted diverse pathways. While CDK7, CDK9, and CDK12 knockouts 
each had highly perturbed transcriptomes when compared to control cells (in MDA-MB-231 cells; 92, 347, 893 
differentially expressed genes, respectively,  padj < 0.05; Fig. 4b,c), we detected few commonly dysregulated cell 
functions save for VEGFA-VEGFR2 signaling in CDK12 and CDK13 knockouts (Fig. 4a). Regardless of these 
differences, the magnitude of transcriptional perturbation caused by a CDK knockout (Fig. 4b, Extended Suppl. 

Figure 3.  Effects of CDK disruption on cell-cycle phase. (a) Approach for embedding cells such that cell-
cycle phases can be measured. In the embedding, the angle Θ indicates phase. (b) Cell-cycle embedding of all 
MDA-MB-231 cells. (c) Deviation of CDK1 knockout cells from AAVS control cells (grey circle) in density 
of cells about the cell-cycle embedding (blue). Dashed lines represent the median angle of cell-cycle phases. 
(d) Deviation in single-cell density compared to AAVS for select knockouts in MDA-MB-231, Hs578T, and 
MDA-MB-468 cells; *p < 0.05 by Kuiper test.
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Fig. 7a,b, radial distance from AAVS control) was strongly and negatively correlated with its effect on cell fitness 
(Fig. 4c, Pearson’s r = –0.66, Extended Suppl. Fig. 7a,b). Thus, transcriptional effects of CDK knockouts scale 
with their effects on growth, but beyond this general association they implicate different underlying programs.

The CDK/RNAPII transcriptional axis presents a critical vulnerability in TNBC cells. Our genetic 
interaction analysis revealed that three of the classical transcriptional CDKs (CDK7, 9, 12) have strong synthetic-
lethal interactions with the transcriptional regulator PRMT5 in all three cell-line contexts, with the CDK12-
PRMT5 interaction being the strongest in the screen overall (Figs. 2c, 5a). We further confirmed this interaction 
in two ways: first using an independent FACS assay (Fig. 2h), and second using selective small molecule inhibi-
tors against CDK12 (SR4835) and PRMT5 (EPZ015666 or PF-06939999) in place of CRISPR guides (Fig. 5b).

Phosphorylation of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) by CDK7, CDK9, 
and CDK12 is crucial for release of the negative elongation factor (NELF), promoting  transcription5,75,76. Like-
wise, methylation of SPT5 by PRMT5 dissociates the DSIF repressor from  RNAPII65, thus promoting transcript 
processing. Given these convergent functional roles (Fig. 5c), we examined how CDK7/9/12 and PRMT5 func-
tions impact RNA production and splicing patterns across the transcriptome. First, we found that the expression 
levels of an NELF subcomponent, NELFE, were significantly dysregulated in CDK9/12 and PRMT5 knockout 
cells (p < 0.05 t-test;  log2 fold-changes of 0.24, -0.86, -0.23, respectively; Extended Suppl. Fig. 8a,b). In addition to 
NELFE, several other key RNAPII associated proteins had changed expression levels in response to CDK knock-
outs, including RNAPII subunits in all CDK knockout populations. Second, we noted that CDK9 and CDK12 
knockouts produced very low transcriptional activity (read count per cell, Fig. 5d), as would be expected given the 
similar role of these kinases in NELF release by phosphorylation of the RNAPII CTD at Ser-277 (Fig. 5c). Notably, 
CDK7 knockouts did not show marked reduction in transcriptional activity by this metric, in contrast to prior 
work implicating CDK7 in transcriptional initiation via the TFIIH complex and in transcriptional elongation 
via CDK9  phosphorylation4,78,79. However, our data supported previous research showing CDK7 is not essential 
for global  transcription80,81, highlighting that although CDK7/9/12 all converge on RNAPII, the kinases have 
unique functional roles (and differing levels of essentiality) in RNAPII regulation. Showing a remarkably differ-
ent trend, CDK1 knockout cells had greater transcriptional activity, although we were unable to mechanistically 
deconvolve this result from CDK1 mediated cell-cycle regulation.

Figure 4.  Effects of CDK disruption on diverse transcriptional programs. (a) Wild-type expression (top row) 
of CDK genes (columns) and the knockout effect of those genes on their own expression (second row), the 
expression of other CDK genes (third row), and specific pathway signatures (bottom row) in MDA-MB-231 
cells. (b) MDS embedding of median single cell profile for each gene knockout. Each contour line depicts 
the confidence interval across 1000 bootstrap resamplings. The outermost contour line represents the 95% 
confidence interval. (c) For each gene knockout (colored points), the distance of the transcriptome from the 
AAVS control (y-axis) is plotted versus its fitness.
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Figure 5.  Relation of PRMT5/CDK synthetic-lethal interactions to aberrant splicing. (a) Genetic interaction score of indicated 
gene in combination with PRMT5, pooling data from MDA-MB-231, Hs578T, and MDA-MB-468 cell lines as replicates. Error bars 
represent the standard deviation across all replicates and cell lines. (b) Synergistic inhibition of MDA-MB-231 cell growth with 
combinatorial treatment of a CDK12 inhibitor (SR-4835) and a PRMT5 inhibitor (EPZ015666 or PF-0693999). (c) CDK proteins 
and PRMT5 modulate transcript elongation. (d) Mean number of transcripts observed in cells impacted by each gene knockout. The 
dotted lines represent the standard error of the mean. (e) Splicing rate observed across single cells impacted by each gene knockout. 
Dotted lines span the standard error of the mean. (f)  Log2-fold coverage of exon positions (colors) in transcripts from cells harboring 
specific gene knockouts (subplots). Data are normalized against data from cells harboring non-targeting-control guides (*p < 0.05, 
t-test compared to AAVS). (g) Heatmap showing the 5′ coverage bias (first exon relative to last exon) for each gene (row) under select 
gene knockouts (columns). The most enriched biological functions (MSigDB Hallmark gene sets) are given for select clusters of genes 
(*padj < 0.05). Rows and columns are sorted by hierarchical clustering; the dendrogram of rows is not shown. Data in panels (d–g) are 
from MDA-MB-231 cells.
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Third, we found that knockouts of CDK7/9/12, as well as PRMT5 and CDK1, led to a reduced fraction 
of spliced transcripts across the transcriptome (Fig. 5e), highlighting that although CDK7 knockout did not 
markedly reduce overall transcriptional activity, it did quantifiably perturb the fidelity of transcription. Fourth, 
in addition to a reduction in splicing overall, CDK7, 9 and 12 knockouts led to transcripts with significantly 
increased representation of the first exon, and significantly decreased representation of subsequent exons, relative 
to wild-type cells (p < 0.05 t-test; Fig. 5f). PRMT5 and CDK1 knockouts also led to significantly increased repre-
sentation of the first exon, indicating perturbed transcription. Thus, an in-depth analysis of mRNA expression 
and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant 
transcriptional activity resulting in a reduction in full-length processed mRNAs. However, the co-regulatory 
nature of the transcriptional CDKs, such as CDK7 phosphorylating CDK9, as well as the diverse sets of genes 
that become differentially expressed upon targeted knockout, allow for the possibility that other unidentified 
proteins may be critical for mediating the observed transcriptional changes.

To further characterize the impact CDKs and/or PRMT5 inhibition have on RNA Pol II transcription, we 
leveraged a CUT&Tag82 assay to profile RNA Pol II activity across the genome in individual CDK knockdowns, 
as well as in combination with PRMT5 knockdown (Extended Suppl. Fig. 9). Using an antibody raised against 
a synthetic “YSPTSpPS” peptide corresponding to the Ser-5 phosphorylated RNAPII C-terminal domain, we 
profiled direct interactions between phosphorylated RNAPII and the genome, more directly assaying transcrip-
tional initiation/activity than had our scRNA-seq readout. The results of this CUT&Tag assay demonstrated that 
CDK7, CDK12, and PRMT5 single knockdowns experience a significant reduction in RNA Pol II signal near the 
transcriptional start site compared to the NTC controls, and all of the combination knockdowns showed this 
transcriptional defect. This transcriptional phenotype supports previous work to selectively inhibit CDK7 and 
CDK12 with ATP analog  inhibitors5,83, highlighting that while CDK7 is often considered the primary regula-
tory CDK for transcriptional initiation, there is extensive CDK cross-talk during this process. We also observed 
reduced RNA Pol II signal near the TSS for PRMT5 knockdown cells, providing new evidence for how PRMT5 
regulates transcription beyond its more established functional role in  splicing65.

Following this observation, we next sought to determine the particular groups of genes for which splicing and 
other transcriptional dysregulation were most affected. For this purpose, we quantified the “5’ coverage bias” of 
a gene as the relative abundance of the first exon relative to the last exon among the collection of all transcript 
isoforms identified for a gene (Fig. 5f). When looking across the entire transcriptome, we observed that very 
similar sets of genes had high 5’ coverage bias in response to knockout of CDK7, 9, 12 or PRMT5 (Fig. 5g). 
Moreover, these groups of genes were significantly enriched for key cellular functions, including mitotic spindle 
formation and DNA repair  (padj < 0.01, odds ratios of 3.97 and 5.05, respectively; Fig. 5g). Notably, a strong 5’ 
coverage bias was observed among targets of the central transcriptional activators MYC and E2F  (padj < 0.01, odds 
ratios of 3.92 and 5.35, respectively; Fig. 5g), suggesting that dependence of TNBC on complete transcription of 
MYC and/or E2F targets may underlie the observed CDK/PRMT5 synthetic lethality.

Discussion
Integrating complementary pooled screening methodologies has the potential to substantially improve our 
understanding of genotype–phenotype relationships, including those in disease. Because CRISPR-Cas9 per-
turbs CDK function by specific disruption of genomic DNA, it bypasses confounding issues seen with chemical 
perturbagens such as off-target effects (given that CDKs have high sequence homology to one another) and the 
inability to inhibit phosp27-CDK4-CycD1  complexes84,85. While we focused on CDK proteins, similar approaches 
can be applied to diverse other biological pathways of interest. For example, combinatorial transcription factor 
expression is critical for cellular differentiation and  development86 and could be readily assayed in a similar 
fashion via CRISPR reagents and scRNA-seq. Additionally, the framework established here for visualizing the 
cell-cycle phenotypes of individual cells in scRNA-seq data could be applied to alternative phenotypes defined 
by sets of genes.

The 43 synthetic-lethal interactions we identified among CDK genes precisely quantify the functional redun-
dancies and interdependencies that exist in this gene family. While early studies of CDK4 and CDK6 suggested 
they were functionally  redundant60, our results highlight distinct roles based on several lines of evidence. First, 
each of the single CDK4 and CDK6 knockouts has a negative fitness impact, meaning its function is not com-
pletely buffered by the other gene (Fig. 2a). Second, knockouts of CDK6, but not CDK4, significantly alter cell-
cycle progression (Fig. 3d). Third, only CDK6 knockouts result in significant deregulation of Rb controlled genes 
(Fig. 4a). Fourth, CDK4 has many more synthetic-sick/lethal interactions than CDK6 (7 versus 3, Fig. 2c,d). 
One explanation for these distinct effects is that CDK4 is more readily compensated by diverse members of the 
CDK family. On the other hand, in support of some redundancy, CDK4 and CDK6 knockouts are synthetic-sick/
lethal with each other (Fig. 2d–g). This redundancy likely relates to their shared regulation of the Cyclin-D/Rb 
signaling axis, given the lack of CDK4/CDK6 synthetic lethality in Rb– cell  lines87 (Fig. 2c).

Contrary to the usual stratification of CDK genes into “cell-cycle” or “transcriptional” families (Extended 
Suppl. Fig. 1), each with independent functions, here we observe many genetic dependencies across CDKs 
of these two classes (Fig. 2d). This crosstalk is reflected in the transcriptome as well, where single-cell RNA 
sequencing reveals extensive transcriptional regulation by CDK1, a canonical cell-cycle regulator (although 
deconvolving transcriptional changes due to impaired cell fitness from regulatory activity is an ongoing chal-
lenge). Furthermore, we find that cell-cycle regulation is far from uniformly conserved across cellular contexts, 
since the same gene knockout (e.g. CDK2, 5, 6) can have impacts on cell-cycle behavior that are largely distinct 
from one another depending on the cell line (Fig. 3d). These results suggest that the exact timing, mechanisms, 
and druggability of cell-cycle checkpoints are not  universal88,89.
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Our analysis also indicates that the previously underexplored CDK7, CDK9, and CDK12 proteins play criti-
cal roles in controlling cell proliferation and RNAPII activity in concert with PRMT5 (Fig. 5). We observe a 
synthetic lethal phenotype when CDK7, CDK9 or CDK12 are knocked out in combination with the RNAPII 
regulator PRMT5, supporting emerging research that sequential phosphorylation of RNAPII by multiple CDKs 
(CDK9 and CDK12 phosphorylate Ser-2 on the RNAPII CTD, while CDK7 phosphorylates Ser-5) is critical for 
proper RNAPII  function77. Unlike CDK9 and CDK12, knockout of CDK7 does not result in a global reduction 
of detected transcripts (Fig. 5d), suggesting that phosphorylation at RNAPII CTD Ser-2 is the more critical 
regulatory event for RNAPII function. Regulation of transcriptional activity via the combination of these proteins 
emerges as a critical fitness vulnerability, with promising avenues for drug development and therapeutic interven-
tion. Our observation that CDK7, 9, 12 and PRMT5 knockouts have improper transcription of MYC-regulated 
transcripts is especially important, given that MYC is an amplified oncogene in the majority of  TNBCs90. These 
results suggest that other regulators of transcriptional activity and splicing outside the CDK family might serve 
as potential drug targets as  well91. In support of this notion, PRMT5 inhibition has been shown to be synergistic 
with inhibition of DOT1L, a methyltransferase that regulates  RNAPII92. CDK13 mutations have recently been 
shown to drive melanoma growth via ZC3H14-regulated improper transcriptional elongation, suggesting that the 
fitness impact of transcriptional dysregulation depends specifically on which transcripts are being  perturbed93. 
Additional studies will be able to assess the potential effects of therapeutically targeting the various steps of 
transcription (initiation, elongation, termination) on diseased and healthy cells in vivo94.

While these results expand our understanding of CDK function and essentiality in cell-cycle transition and 
transcription, there are still mechanistic uncertainties yet to be understood. One challenge encountered in this 
study is the difficulty in interrogating essential genes. Knocking out essential kinases, such as CDK1, results in 
a massive loss of fitness, severely reducing cell numbers available for transcriptional profiling in a pooled screen 
(Extended Suppl. Fig. 4c). One potential solution to this problem is to pool CRISPR sgRNAs predicted to cause 
large fitness defects at higher abundance in the initial library construction. Another challenge in understanding 
CDKs via scRNA-seq is the discrepancy between protein levels and RNA levels. Some cell-cycle proteins are 
regulated post-translationally68, limiting their usefulness in assaying the cell cycle when using a transcriptional 
readout. Given the importance of proteins in mediating biological phenotypes, advances in single-cell (and 
other high-throughput) proteomics will surely expand the potential toolkit for screening gene/protein function.

Here, we have presented a systematic, unbiased resource of CDK functions and interdependencies govern-
ing cellular growth, cell cycle, and transcriptional programs. Perturbations to essential cell functions such as 
transcription yield major impacts to cell state, with quantifiable effects unique to each CDK protein. Given the 
fundamental roles that CDK signaling plays in disease etiology and treatment, this dataset has the capacity to 
inform both basic science and translational medicine. We anticipate that our quantitative mapping of CDK gene 
functions will guide future interrogations into CDK biology, helping uncover how this critical class of proteins 
can be further leveraged therapeutically.

Methods
Phylogenetic tree construction. Tree diagram showing relationships between CDK proteins was con-
structed from a multi-sequence alignment (MSA) using  Geneious95. The “Geneious Aligner”, was used to gener-
ate the MSA, and the neighbor joining method was used to construct the tree. All default parameters were used 
except where otherwise indicated.

Combinatorial CRISPR sgRNA library construction. Design of gRNA spacer sequences. A list of 21 
CDK and 5 non-CDK genes was compiled from literature sources. The HGNC symbols of these genes were 
converted to Entrez IDs using Bioconductor packages AnnotationDbi and org.Hg.eg.db. To target these genes 
in CRISPR-Cas9 knockout experiments, four different gRNA spacer sequences were selected per gene from 
two lists of such sequences. One list was obtained from the Genetic Perturbation Platform sgRNA Designer 
(GPPD) web tool (https:// porta ls. broad insti tute. org/ gpp/ public/ analy sis- tools/ sgrna- design, accessed in March 
2018), and the other from the Brunello lentiviral pooled library (https:// www. addge ne. org/ pooled- libra ry/ broad 
gpp- human- knock out- brune llo/). The latter consists of 76,441 validated gRNAs that target 19,114 human genes 
and includes 1,000 control  gRNAs96. To obtain the first list of gRNA spacer sequences, the Entrez IDs of the 
target genes were submitted to GPPD with the following parameters: enzyme = Sp, taxon = human, quota = 50, 
include = unpicked. The output of this tool was a table listing up to 50 candidate spacers for each specified gene. 
For each spacer, the table included the genomic location (chromosome, coordinate, and strand) of the cut site, 
the 20-nt target sequence, a 30-nt context sequence encompassing the cut site, the PAM sequence, and the 
“pick order”, i.e. the gRNA ranking order based on a score that combines predictions of on-target and off-target 
Cas9  activity97. To detect potential errors, the obtained spacer sequences were subjected to the following quality 
control steps. The initial list of 6349 sequences was searched for duplicate entries, 330 of which were found and 
discarded. For each of the remaining 6019 spacers, a 30-nt context sequence around the cut genomic location 
predicted by GPPD was extracted from the human genome assembly hg38 using Bioconductor package BSge-
nome.Hsapiens.UCSC.hg38. The extracted sequence was compared to the 30-nt context sequence reported by 
GPPD. An exact match between the two sequences was found for all of the tested spacers. Next, each spacer se-
quence was tested for targeting the intended gene. To this end, the annotation file gencode.v28.annotation.gtf.gz 
was downloaded from release 28 of the GENCODE project, and a list of coding sequence (CDS) annotations for 
the human genome was extracted from that file. All gene IDs in the list of spacers were found to be represented in 
the extracted list of CDSs. Each spacer was tested to verify that the predicted genomic location of the cut site was 
within the annotated CDSs of the target gene, and not within the CDSs of any other gene. A suitable CDS could 
not be found for 11 spacers, but these had not been picked by GPPD and were therefore discarded at a later stage 

https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna
https://www.addgene.org/pooled-library/broadgpp-human-knockout-brunello/
https://www.addgene.org/pooled-library/broadgpp-human-knockout-brunello/
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(see below). Lastly, to test for potential off-target activity, the spacer sequences were mapped to the human refer-
ence genome using Bioconductor packages Biostrings and BSgenome.Hsapiens.UCSC.hg38, allowing for up to 
two base mismatches. Out of 6019 sequences, 3697 mapped to multiple genomic locations. In the latter group, 43 
spacers were found to have a pick order less than 5. The second list of spacer sequences was obtained by down-
loading the file https:// www. addge ne. org/ static/ cms/ filer_ public/ 8b/ 4c/ 8b4c8 9d9- eac1- 44b2- bb2f- 8fea9 56727 
05/ broad gpp- brune llo- libra ry- conte nts. txt. The table in this file contained the same kind of information as that 
provided by GPPD. This table was confirmed to contain no two spacers with the same predicted cut site, or with 
the same target sequence, or with different lengths of target, context, or PAM sequence. The list of spacers was 
then subjected to the same quality controls described above for the list of spacers obtained from GPPD. In this 
case, 784 spacers were found to be associated with 196 genes lacking a CDS annotation, 48 spacers did not hit a 
CDS of the intended gene, 790 spacers hit a CDS of 211 genes that were not the intended targets, 12 spacers hit 
only the CDSs of unintended targets, and 74,831 spacers hit only a CDS of the intended targets. Within this last 
set of spacers, 30,481 could be mapped to multiple genomic locations with up to two base mismatches. All CDS 
hits were determined using the downloaded and confirmed genomic locations of the gRNA cut sites. After the 
above controls, the two lists of spacers obtained from GPPD and the Brunello library were merged into a single 
list. All spacers labeled with the Entrez IDs of the 26 chosen genes were retained, yielding 6,024 spacers. From 
the latter set of spacers, a total of 5236 undesirable spacers were discarded. These included 11 spacers that were 
not hitting a CDS of the intended gene, 4745 that were not assigned a pick order by GPPD, and 2647 whose target 
CDS was not one of the following: the only CDS in the gene, the second CDS in the gene, or an “asymmetric” 
exon, i.e., a CDS that is not the first or the last in the gene and whose length in bases is not a multiple of 3. These 
criteria for choosing the target CDS were intended to maximize the likelihood of disrupting the translation 
product from the targeted gene. Out of the remaining spacers, 104 were selected to target the 26 chosen genes, 
with four spacers per gene. To make this selection, the spacers in the Brunello library were given the highest 
priority, and the genes obtained from GPPD were ranked according to pick order. The final list of selected 
spacers (Supplemental File 1) included 60 from the Brunello library and 44 from GPPD. This list of 104 gene-
targeting spacer sequences was augmented with four non-targeting sequences (AAA AAG CTT CCG CCT GAT 
GG, AAC TAG CCC GAG CAG CTT CG, AAG TGA CGG TGT CAT GCG GG, AAT ATT TGG CTC GGC TGC GC) 
and four sequences targeting the AAVS1 safe harbor locus (CCT GCA ACA GAT CTT TGA TG, GGT CCA AAC 
TTA GGG ATG TG, AGT ACA GTT GGG AAA CAA CT, GGC CAT TCC CGG CCT CCC TG). The final list was used 
to generate a pool of oligonucleotide sequences containing all possible pairs of spacer sequences, but excluding 
pairs of identical sequences, thus yielding (104 + 8) × (104 + 8 − 1) = 12,432 different pairs. For each such pair, the 
corresponding oligonucleotide sequence was obtained from the following scaffold sequence:

TCT TGT GGA AAG GAC GAA ACA CCG  <M20> GTT TTG AGACG <R15> CGT CTC GTTTG <N20> GTT 
TTA GAG CTA GAA ATA GCA AGT TAAAA, where the segments <M20> and <N20> were replaced with the given 
pair of spacer sequences, and the segment <R15> was replaced with a unique random 15-base sequence. The latter 
was intended to minimize the “uncoupling” of spacer sequences that can arise from abortive PCR  products98. To 
obtain the random 15-base sequences, a pool of 592 barcodes of length 5 bases and minimum Hamming distance 
of 3 bases was generated using the function DNABarcodes in the Bioconductor package of the same  name99. 
This function was used with the parameter heuristic = "ashlock". A unique permutation of three 5-base barcode 
sequences was used to define each of the 15-base random sequences. The list of oligonucleotide sequences was 
submitted to CustomArray, Inc. (Bothell, WA) for synthesis on CMOS array technology.

PCR amplification of pooled oligos. The dual library constructs were ordered as single stranded DNA oligo-
nucleotides from Custom Array. PCR primers OLS_gRNA-SP_F and OLS_gRNA-SP_R were used to amplify 
100 ng of the libraries with Kapa Hifi Hot Start Ready Mix (Roche 7958935001) according to the manufacturer’s 
protocol. An annealing temperature of 55 °C and an extension time of 15 s was used, with the number of cycles 
tested to fall within the exponential phase of amplification.

Gibson cloning of amplified libraries into lentiviral plasmids. A lentiviral vector containing Cas9 and a human 
U6 promoter for sgRNA expression (LentiCRISPRv2: Addgene 52961) was digested with BsmBI (NEB R0580) 
for 3  h at 55 °C. The digested vector was then purified using a Qiaquick PCR purification column (Qiagen 
28104). Gibson Assembly reactions containing 200 ng of digested vector, 36 ng of insert (containing pooled 
library), and 10 μL of Gibson Assembly Master Mix (NEB E2611S) were then incubated at 50 °C for 1 h, and 
subsequently transformed into 200μL of Stbl4 electrocompetent bacteria (Thermo 11635018). Transformed cells 
were resuspended in 8 mL of SOC media (Invitrogen 15544034) and allowed to recover for 1 h shaking before 
being used to inoculate 150 mL of LB media supplemented with carbenicillin. After 16 h of further growth, plas-
mid DNA containing the sgRNA library was isolated via a Qiagen Plasmid Plus MaxiPrep kit (Qiagen 12963).

Insertion of the gRNA scaffold, mouse U6 promoter, and 30mer barcode. A DNA insert containing the mouse 
U6 promoter and second gRNA scaffold was first PCR amplified from a previously sequence validated TOPO 
vector (Shen et al.50). This insert was modified from previous designs to include a 30mer Unique molecular 
identifiers (UMI) barcode between each pair of sgRNAs. To generate this modified insert, 5’ and 3’ fragments 
of the original insert were amplified using dgRNA_Insertv4_barcoded_Left_F/R and dgRNA_Insertv4_barcod-
ed30mer_Right_F/R, respectively. These two fragments were then stitched together via an overlap extension 
PCR and subsequently cloned into the sgRNA library containing vector. 10 ng of template plasmid was used to 
amplify the 5′ and 3′ fragments, with an annealing temperature of 65 °C and an extension time of 30 s and 25 
cycles. After purifying via a Qiaquick PCR Purification column, the two fragments were stitched together via an 
overlap extension PCR amplification using primers dgRNA_Insertv4_barcoded_Left_F and dgRNA_Insertv4_

https://www.addgene.org/static/cms/filer_public/8b/4c/8b4c89d9-eac1-44b2-bb2f-8fea95672705/broadgpp-brunello-library-contents.txt
https://www.addgene.org/static/cms/filer_public/8b/4c/8b4c89d9-eac1-44b2-bb2f-8fea95672705/broadgpp-brunello-library-contents.txt
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barcoded_Right_R, with identical PCR cycling conditions as the individual fragment amplifications. 147  ng 
of the purified 3′ fragment and 52 ng of purified 5′ fragment were used as template to maintain an equimolar 
concentration of each fragment.

Insert ligation and transformation. Both the insert and step 1 sgRNA vector were digested with BsmBI for 3 h 
at 55 °C and subsequently purified via a Qiaquick PCR Purification column. The ligation reactions were then 
set up using 100 ng of vector, 100 ng of insert, 2 μL of buffer, 1 μL of T4 ligase (NEB M0202T), and ultra pure 
 H2O up to 20 μL. Each reaction was allowed to proceed overnight at 16 °C. The following morning the ligase was 
heat inactivated at 65 °C for 20 min. Following this, the reaction was dialyzed into ultrapure water (Millipore 
VSWP01300) to remove any residual salts from the ligase buffer. Once the DNA was dialyzed, the ligation reac-
tion was split evenly between 300 μL of Stbl4 electrocompetent cells, which were then transformed according 
to the manufacturer’s protocol. The transformed cells were resuspended in 10 mL of SOC media (Invitrogen 
15544034) and allowed to recover for 1 h shaking before being used to inoculate 150 mL of LB media supple-
mented with carbenicillin. After 16 h of further growth, plasmid DNA containing the sgRNA library was isolated 
via a Qiagen Plasmid Plus MaxiPrep kit (Qiagen 12963).

Combinatorial fitness screening and NGS prep from gDNA. Transfection of HEK293T cells for len‑
tivirus production. HEK293T cells were used to produce lentivirus for the pooled CRISPR screens. One day 
before transfection, HEK293T cells were seeded into a 15-cm dish so that they would be approximately 70–80% 
confluent the following day. On the day of transfection, 36 μL of Lipofectamine 2000 was added to 1.5 mL of 
Opti-Mem reduced serum media. In a separate 1.5 mL of Opti-Mem, 12 μg pCMVR8.74, 3 μg pMD2.G, and 
9 μg of the sgRNA containing lentivector were mixed. After 5 min, the lipofectamine containing OptiMem and 
the diluted DNA were mixed gently and incubated at room temp for 25 min. While this was incubating, the 
HEK293T cells were replenished with 20 mL of fresh media. After 25 min, 3 mL of the lipofectamine/DNA 
was added to the cells dropwise. The cells were incubated for 48 h, after which the virus containing supernatant 
was collected and replaced with 20 mL fresh media. After 24 more hours, a second round of virus containing 
supernatant was harvested and combined with the first. Following this, a Steriflip 0.45 μm filter unit was used to 
remove contaminating HEK293T cells. The virus was then concentrated at 3500g and 4 °C using a 100K MWCO 
spin concentrator (Millipore UFC910096). Once the final volume was 1.5 mL or less, the virus was aliquoted 
and stored at −80 °C.

Lentiviral transduction. All cell lines used were transduced at a low MOI (< 0.4) to ensure every cell has only a 
single sgRNA integrated. Before doing a scaled up transduction at 1000 fold coverage, cells were transduced in a 
12 well plate with varying amounts of virus to identify the appropriate amount of virus necessary. To transduce 
the cells, lentivirus was mixed with the necessary volume of cell culture media containing 8 μg/mL polybrene. 
The virus-containing media was added to the cells at 30% confluency and let incubate overnight. The following 
day, the virus/polybrene containing media was removed and replaced with fresh media. 48 h after transduction, 
the cells were changed into puromycin (2 μg/mL) containing media. Cells were then grown as normal in media 
containing puromycin.

Fitness screening in TNBC cell lines. Fitness screening was performed in three TNBC cell lines: Hs578T, MDA-
MB-231, and MDA-MB-468. All cells were grown in DMEM media (Thermo 10566016) supplemented with 10% 
FBS (Thermo 10082147) and antibiotics/antimycotics (Thermo 15240096). Cells were passaged every 3–4 days 
via 0.25% Trypsin–EDTA (Thermo 25200056). The TNBC cell lines were grown for a total of 28 days, freezing 
down (−80 °C) aliquots of cell pellets at each passage as well as a portion of cells three days after transduction. 
Care was taken to ensure that the number of cells plated and frozen down were greater than 1000 fold the library 
size. After the completion of the screen, a Qiagen DNeasy blood and tissue kit was used to isolate genomic DNA 
from four evenly spaced time points over the course of the screen. After genomic DNA extraction, primers 
NGS_dualgRNA_SP_Lib_F and NGS_ dual-gRNA_SP_Lib_R (Supplemental File 1) were used to amplify the 
dual sgRNA cassette for sequencing. For each sample, 40 μg of genomic DNA was mixed with 250 μL of Kapa 
Hifi HotStart ReadyMix, 25 μL of each primer (10 μM stock), and water up to 500 μL. The amplification was 
performed according to the manufacturer’s protocol, with an annealing temperature of 55 °C and an extension 
time of 45 s. The step 1 PCR product was then purified using a QiaQuick PCR Purification Kit. Following this, an 
NEBNext indexing kit (NEB E7335S) was used to attach Illumina specific sequences and indices via nested PCR. 
1 μL of the purified step 1 PCR amplicon as template (the sgRNA library) was added with 2.5 μL of each index-
ing primer per 50 μL Kapa HiFi reaction, and run for 6–8 cycles with an annealing temperature of 65 °C and an 
extension time of 45 s. The final dual sgRNA sequencing libraries were then purified using AmpureXP magnetic 
beads (Beckman A63881) at a 0.8:1 bead-to-DNA ratio. The libraries were subsequently sequenced with at least 
500 fold sequencing coverage using a HiSeq2500 operating in rapid mode.

Genetic interaction scoring. Counting gRNAs. The abundance of cells harboring dual CRISPR con-
structs, the fitness estimation of those constructs, and resulting interaction scores were quantified as previously 
 described50 with modification. Briefly, the DNA aligner  Bowtie2100 was used to align the sequencing reads har-
boring sgRNAs to a reference of expected guides and background amplicon sequence. The NGS read format of 
the dual CRISPR constructs was as follows:

Read1: 5′-TAT ATA TCT TGT GGA AAG GAC GAA ACA CCG  <gRNA_1> GTT TCA GAG CTA TGC TGG AAA 
CTG CAT AGC AAG TTG AAA TAA GGC TAG TCC-3′.
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Read2: 5′-CCT TAT TTT AAC TTG CTA TTT CTA GCT CTA AAAC <gRNA_2> GTT TTA GAG CTA GAA ATA 
GCA AGT TAA AAT AAGG-3′.

gRNA_1 and gRNA_2 are the guide RNAs targeting gene 1 and gene 2, respectively. A reference sequence fasta 
sequence was constructed by prepending the 5′ sequence and appending the 3′ sequence to each guide RNA in 
positions 1 and 2 separately. This resulted in a reference sequence with 224 ‘contigs’ or expected sequences, 112 
in each gRNA position. The bowtie2 index files were then built with the command ‘bowtie2-build’. The individual 
read 1 and read 2 fastq files were aligned separately with ‘bowtie2-align’ using the ‘-very-sensitive’ preset. After 
alignment, bam tags were added to each alignment specifying the index position of the first base of the gRNA, 
the expected gRNA based on which gRNA contig the read was aligned to, and the Levenshtein distance of the 
read to the expected guide sequence. Additionally, the bam binary flag was modified to include mate pair infor-
mation. The individual read 1 and read 2 bams were then merged with ‘samtools merge’, coordinate sorted with 
‘samtools sort’, and the mate pair information fixed with ‘samtools fixmate’. Guide-guide pairs were then counted 
from the aligned bam files. The individual reads are filtered to those with a Levenshtein distance of less than 3, 
allowing for a maximum of two insertions, deletions, or mismatches in the guide sequence. Furthermore, for a 
given mate pair to be valid, we require that each read is aligned to a contig expected in that position. The pair of 
guide sequences observed in read 1 and read 2 for a given mate pair are also required to be expected from the 
library construction. These requirements ensure we do not quantify sequencing reads or PCR errors.

The relative abundance of each dual gRNA construct, xg1g2 , was represented as a  log2 transformed ratio of 
the number of reads assigned to that pair, Mg1g2 , to the total number of reads assigned to any construct in the 
experiment:

where N is the total number of individual gRNAs. The log2 changes in abundance induced by each gRNA pair, 
mg1g2,t , at each timepoint t  was estimated as the difference between the abundance on day t and the abundance 
in the initial infection ( t0):

These changes in abundances mg1g2,t were then Z-score standardized. The standardization serves to scale 
mg1g2,t to a dimensionless number that has similar distribution across different times.

Scoring genetic interactions. A genetic interaction, π, was scored as the deviation in observed dual gRNA con-
struct fitness, fg1g2 , from the multiplicative effects of the individual gRNA construct fitnesses. Since the fitness f 
is log transformed, the genetic interaction score is described as follows:

The single guide effects fg1 (or equivalently fg2, fg3 … fgN) were imputed as follows. Summing Eq. (4) over all 
gRNA pairs containing g1, we have:

Under the assumptions that genetic interactions are rare and centered about  zero101, the final term of this 
equation is dropped:

The set all summations for each gRNA is then solved as a system of linear equations, Ax = b, where A is an 
N⨉N matrix, x is the vector of single gRNA fitnesses fg to be imputed, and b is the sum of all construct fitnesses 
harboring gRNA i (Eq. 5).

Having used this equation to impute values for each fg , we then solve Eq. (4) for all genetic interaction terms 
πg1g2.

Each pair of genes in the screening library, a and b, corresponds to 32 distinct combinations of gRNAs: each 
gene is targeted by 4 distinct gRNAs, resulting in 4 ⨉ 4 = 16 unique gRNA combinations per gene pair, and the 
gene pair appears in 2 orders (a,b or b,a). To compute gene level genetic interaction scores, we averaged πg1,g2 
across all 32 combinations of gRNAs for a given gene pair. The gene level interaction scores were then z-score 
normalized for each time point in each replicate. A final estimate of the gene–gene interaction score was com-
puted as the median z-score for all 3 timepoints and 2 replicates.
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Validation of candidate genetic interactions. We validated candidate genetic interactions using a previously 
described  technique52 as follows. sgRNA used in the screen (Supplemental File 1) were selected and cloned into 
the lentiviral pKLV2-U6gRNA5(BbsI)-PGKpuro vector backbone expressing either BFP or mCherry (Addgene 
#67974 or #67977). Cells were transduced in triplicate to create four populations, and abundance of each popula-
tion was quantified by FACS Aria. Analysis was performed with Flowjo (v10.8.1).

Single‑cell RNA sequencing of pooled knockout cells. The DNA coding for each sgRNA construct 
was generated using two overlapping oligonucleotides containing the guide sequence and homology arms for 
Gibson cloning. The full list of oligonucleotides used to generate sgRNA constructs is contained in Supplemen-
tal File 1. To produce a double-stranded insert for Gibson Assembly cloning, 1 μL of each primer (10 μM) was 
added to 8 μL of ultrapure water and 10 μL Kapa Hifi HotStart ReadyMix. The PCR reaction was performed 
according to the manufacturer’s protocol with an annealing temperature of 60 °C and an extension time of 15 s 
and 7 cycles. Following this, the sgRNA insert was purified using a QiaQuick PCR purification column. 50 ng 
of BsmBI digested CROP-Cas9-Puro vector was then incubated with 10 ng of purified sgRNA insert in a 10 μL 
Gibson Assembly reaction for 1 h at 50 °C. This Gibson reaction was then directly transformed into Stbl3 chemi-
cally competent cells according to the manufacturer’s protocol. Colonies were then miniprepped and sequenced 
to identify correctly cloned constructs. After sequence verifying all targeting sgRNA plasmids in the library, they 
were quantitated via Nanodrop and pooled at equal molarity, excluding the non-targeting and AAVS1-targeting 
negative control guides which were included at 25% of the total library.

For scRNA-seq experiments, cells were transduced with lentivirus at 30% confluency in a 10 cm dish to 
maintain library coverage. After transduction (see above), cells were grown for 7 days, then processed via 10× 
Genomics 3′ Single Cell mRNA Capture Kit v3 according to the manufacturers protocols. Unused cDNA from the 
library prep was used to amplify the CRISPR sgRNA sequences to improve cell annotation. In a 50 μL reaction, 20 
μL of cDNA was mixed with 2.5 μL of the CROP-Seq_Guide_Amp primer (10 μM), 2.5 μL of the NEB_Universal 
primer (10 μM) (Supplemental File 1), and 25 μL of Kapa HiFi HotStart ReadyMix. The PCR cycling parameters 
were used according to the manufacturer’s protocol, with an annealing temperature of 65 °C and an extension 
time of 30 s. Care was taken to ensure the PCR reaction was terminated in the exponential phase by performing 
a small scale test PCR reaction and running several different cycle numbers on an agarose gel to visualize ampli-
fication kinetics. After amplifying and purifying the sgRNA libraries via a Qiagen PCR purification column, the 
libraries were then indexed for Illumina sequencing via an NEBNext multiplexed indexing oligo kit. 1 μL of the 
purified step 1 PCR amplicon as template (the sgRNA library) was added with 2.5 μL of each indexing primer 
per 50 μL Kapa HiFi reaction, and run for 6–8 cycles with an annealing temperature of 65 °C and an extension 
time of 45 s. The final sgRNA sequencing libraries were then purified using AmpureXP magnetic beads (Beck-
man A63881) at a 1.6:1 beads to DNA ratio. Resulting sequencing libraries were then sequenced on a NovaSeq 
according to 10× Genomics’ recommended sequencing parameters.

Assessing sgRNA efficiency. Lentiviral transduction was used to delivery each sgRNA to Hs578T cells in 
separate wells of six-well plates. Transduction was performed at a high MOI, incubating the cells for 16 h in a 1:1 
mix of unconcentrated viral supernatant (see lentiviral production section) and DMEM + 10% FBS (with 8 μg/
mL polybrene). After 16 h of incubation, the virus containing media was replaced with fresh DMEM + 10% FBS, 
and after 48 h of incubation the media was replaced with DMEM + 10% FBS + 2 μg/mL puromycin. Following 
this, the cells were maintained in media containing puromycin for one week, at which point genomic DNA was 
isolated via the Qiagen DNeasy blood and tissue kit. The genomic DNA was then used as template for a set of 
nested PCR reactions to amplify the edited genomic region and subject it to NGS (see Supplemental File 1 for 
primers and details on editing rates). For each sample, 4 μg of genomic DNA was mixed with 25 μL of Kapa Hifi 
HotStart ReadyMix, 2.5 μL of each primer (10 μM stock), and water up to 50 μL. The amplification was per-
formed according to the manufacturer’s protocol, with an annealing temperature of 60 °C, an extension time of 
30 s, and 30–35 cycles of amplification. The step 1 PCR product was then purified using a QiaQuick PCR Purifi-
cation Kit. Following this an NEBNext indexing kit (NEB E7335S) was used to attach Illumina specific sequences 
and indices via a nested PCR. 25 ng of the purified step 1 PCR amplicon as template was added with 2.5 μL of 
each indexing primer per 50 μL Kapa HiFi reaction, and run for 6–8 cycles with an annealing temperature of 
65 °C and an extension time of 45 s. The final amplicons were then purified using AmpureXP magnetic beads 
(Beckman A63881) at a 1.6:1 bead-to-DNA ratio, and sequenced on an Illumina HiSeq2500. The online ‘CRIS-
PResso’ tool (http:// crisp resso2. pinel lolab. org/ submi ssion) was then used to quantify editing rates with default 
 parameters102. For sgRNA “CCT CCT CCT CCG GCA CCC AG”, targeting CDK13, we were unable to generate a 
high quality NGS compatible amplicon due to significant off-target amplification. Instead, we used the Synthego 
ICE analysis tool to estimate the editing rate from Sanger sequencing data. This methodology has been shown 
to well approximate results from  NGS103.

Cell‑cycle phase scoring for unannotated genes. Co-expression networks were constructed using 
the “scanpy” and “numpy” Python  packages104 using the Pearson correlation to quantify gene–gene similarity in 
expression. For each transcript of unknown cell-cycle relevance, cell-cycle phase scores were quantified by tak-
ing the mean Pearson correlation of the transcript of interest to a given set of known cell-cycle phase  markers67. 
To quantify statistical significance, we identified genes which have a significantly higher mean coexpression with 
genes of a given phase versus all other phases, as quantified by a t-test. We then stratified transcripts by the vari-
ance in their cell-cycle phase scores, only plotting genes with cell-cycle phase scores with variance greater than 
2 standard deviations away from the dataset mean.

http://crispresso2.pinellolab.org/submission
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Cell‑cycle phase annotation. Preprocessing read counts. The sequencing counts from the scRNA-seq 
experiments were quantified with  CellRanger105, which provides estimates of mRNA abundance per gene and 
classification of which sgRNA each cell harbors. “Scanpy” was used for downstream processing of the mRNA ex-
pression estimates. Cells for which the mRNA samples have fewer than 200 genes expressed, or more than 10,000 
genes expressed, were removed with the scanpy function “filter_cells”. Likewise, genes expressed in fewer than 3 
cells were filtered from the expression matrices with the scanpy function “filter_genes”. Next, the fraction of read 
counts mapping to mitochondrial genes was quantified, and cells with more than 10% mitochondrial reads were 
removed. The expression estimates were then read-count normalized with the function “normalize_total” and 
log normalized with the scanpy function ‘log1p’.

Expression markers of cell cycle and coarse classification of cell‑cycle phase. For each cell i, the cell-cycle phase 
was estimated using numpy and pandas in custom python scripts. First, we obtained five sets of genes ( Jk ), 
k ∈ K = {M,M/G1,G1/S, S,G2/M} , containing genes  that had been previously identified as biomarkers of 
discrete cell-cycle  phases69 as well as cell-cycle biomarkers newly identified from our transcriptomic data (Sup-
plemental File 1). For each Jk we computed the average expression, Eik:

We also computed a pan-phase expression profile Ei, with all genes implicated in any cell-cycle phase:

These expression vectors were also used to label each cell with a coarse-grained classification C ∈ K of the 
cell-cycle phase:

Embedding of single‑cell expression to quantitate cell‑cycle phase angle. For each pair of cells (m, n), we com-
puted the cosine similarity of the pan-phase expression profiles (Eq. 9), which was used to derive the pairwise 
cell–cell distance D:

The matrix of all pairwise cell–cell distances, D , was then embedded into two dimensional space ( D1 and D2 ) 
using Multidimensional  Scaling106 (MDS) in sklearn. The Cartesian coordinates of each cell in the embedding 
were converted to polar coordinates:

We then assigned consecutive angular ranges to discrete cell-cycle labels k according to the Ci that was most 
represented among the cells within that range. Defining S� as the set of all cells residing in a angular range 
bounded by � and �+ 1 , the most represented cell-cycle phase label was:

We used linear regression to assess the ability of � to capture cell-cycle information and to consequently be 
used to remove that information from the transcriptome-wide expression profile. We first smoothed the expres-
sion estimates for each cell in each phase, Eik , across the angular dimension, � , with the R package ‘mgcv’107. The 
modified cell-cycle expression scores were then used as features in the ‘regress_out’ function in scanpy. Kuiper’s 
test, a Kolomogrov-Smirnov test in polar coordinates available in the R package “circular”108, was used to score 
which gene knockouts result in a significant change in distribution of cells about the cell-cycle embedding.

Annotating phenotypic effects of CRISPR knockouts. To establish the baseline transcriptomic state, 
we calculated the median abundance per each transcript for all cells that received only one AAVS sgRNA. We 
calculated the log2 fold change in abundance from this baseline for each transcript of each cell. We then calcu-
lated the median fold change per transcript for each set of cells that had the same gene knockout. We also estab-
lished a confidence interval of the median through 1000 bootstrap resampling. We embedded both the median 
and resampled median using multi-dimensional scaling, similar to the cell cycle phase analysis.

We also inferred the transcriptomic programs altered by the genetic perturbation. For each gene knockout, 
we compared the distribution of transcript abundances between the knockout cells and cells that received AAVS 
sgRNAs using a Mann Whitney-U test corrected for multiple hypothesis testing using the Bejamini-Hochberg 
procedure (FDR < 0.05). This procedure yielded a set of differentially expressed genes for each knockout. We 
then determined what cellular functions are perturbed by performing gene enrichment analysis against genesets 
from Reactome.

(8)Eik =
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Chemical validation of CDK12‑PRMT5 interaction. MDA-MB-231 cells were seeded into 96-well flat 
bottom black wall plates in 100 μL/well of L-15 culture medium with 10% FBS and 1× Penicillin/Streptomy-
cin added at 1500 cells per well and incubated overnight at 37C in air. PRMT5 inhibitor (PF-06939999109 or 
 EPZ015666110) dilutions were prepared in 100% DMSO, then further diluted in complete culture media, and 
11  ml was added to each well of the cell plate to reach the appropriate final concentration in 0.1% DMSO. 
Each dose was tested in triplicate. Plates were incubated for 3  days at 37  °C. Media and PRMT5 inhibitors 
were refreshed and  SR4835111 was added to measure a dose response. SR4835 compound dilution plates were 
prepared in 100% DMSO starting with a 10 mM stock concentration, using a 3-pt serial dilution, then further 
diluted in complete culture media and added to each well of the cell plate such that the highest compound con-
centration tested was 10 mM final in 0.1% DMSO. Cells were incubated an additional 7 days at 37 °C, then plates 
were removed and assayed for viability using Cell Titer Glo reagent. Plates were read on an Envision plate reader 
using the luminescent filter. Viability was assessed as a percentage of DMSO control. The SynergyFinder 2.0112 
web tool was used to calculate synergy scores for each PRMT5 inhibitor + SR4835 combination.

5′ transcript coverage bias. Exon coverage. Strand aware, base level read coverage was computed for 
each knockout in the MDA-MB-231 dataset from aligned bam files using the ‘genomecov’ tool in bedtools (ver-
sion 2.30.0) with the ‘-bg’ and ‘-strand’ flags set. GENCODE comprehensive gene annotation for GRCh38 ver-
sion 28 was used as a gene model for exon definitions. Exons categories for a given gene were defined as follows: 
‘First’ exons are the 5′ most exon in any transcript, ‘Alternative First’ exons are other exons which are the 5′ most 
exon in any transcript but are not labeled ‘First’, ‘Last’ exons are the 3′ most exon in any transcript for a given 
gene, ‘Alternative Last’ exons are other exons which are the 3′ most exon in any transcript but are not labeled 
‘Last’, ‘Internal’ exons are all other exons. Coverage per exon per gene was computed for all genes using  the 
GENCODE annotation, based on the number of reads that span the exon with at least one base-pair, using the 
package bx-python (version 0.8.11). Genes with less than 10 assigned reads were filtered out. Exon coverages 
were subsequently normalized as reads per million and  log2 transformed.  Log2 fold-change per exon per gene 
was computed relative to cells harboring non-targeting control (NTC) guides. Significant perturbation to the 
fold enrichment of ‘First’ exons across the distribution of all genes measured in the scRNAseq experiment was 
computed using a t-test with the python package scipy (version 1.6.2).

Gene set enrichment of 5′ biased transcripts. The 5′ coverage bias was defined as the ratio of the fold enrichment 
relative to NTC of the ‘First’ exon to the ‘Last’ exon. We performed hierarchical clustering of the Euclidean dis-
tances of the 5′ bias for select knockout samples across all genes with ten or more read counts measured in the 
scRNAseq experiment using the ‘complete’ option from the ‘hierarchy’ package in scipy. The hierarchy was then 
cut into 12 trees and gene set enrichment was performed on the transcripts within each tree using the  Enrichr113 
webtool. Significantly enriched terms from the MSigDB Hallmark 2020 gene sets were determined based on 
 padj < 0.05 by Benjamini–Hochberg corrected Fisher exact test.

RNA Pol II transcriptional profiling via CUT&Tag. To quantify RNA pol II transcriptional initia-
tion/activity across the genome, we employed a CUT&Tag (ActiveMotif #53165 and #91152)  assay82. To tar-
get RNAPII, we used an antibody raised against a synthetic “YSPTSpPS” peptide corresponding to the Ser-5 
phosphorylated RNAPII C-terminal domain (ActiveMotif # 91152). We used a clonal doxycycline inducible 
dCas9-KRAB MDA-MB-231 cell line to control repression of CDK genes and PRMT5. On day 1 of the experi-
ment, cells were infected with lentiviruses containing the appropriate targeting/NTC sgRNAs (see Supplemental 
File 1), driven by the human U6 promoter at an MOI of ~ 3 for each virus to ensure all cells were transduced. 
Cells were transduced in DMEM + 10% FBS with the addition of 8  μg/mL polybrene. 16  h after the time of 
transduction, media was changed to DMEM + 10% FBS. 24 h after this, the cell culture media was switched to 
DMEM + 10% FBS containing 2 μg/mL puromycin to ensure no uninfected cells remain. 48 h after this, cell 
culture media was changed to DMEM + 10% FBS containing 2 μg/mL puromycin and 1 μg/mL doxycycline to 
induce dCas9-KRAB expression. 48 h after this, cells were processed for CUT&Tag library prep following the 
manufacturer’s recommendations. To summarize, for each sample 500 K cells were spun down at 500g for 3 min 
in a 1.5 mL Eppendorf tube. The cell pellet was then resuspended in 1 mL 1× wash buffer. The cells were again 
spun down at 500g for 3 min, and resuspended in 1.5 mL 1× wash buffer. Concanavalin A beads were prepared 
by mixing 20 μL of beads with 1.6 mL 1× binding buffer. The tube was placed on a magnetic separator, until 
the beads were adhered to the wall of the tube. The supernatant was aspirated, and the beads were washed with 
1.5 mL 1× binding buffer. After this, the supernatant was again removed and the tubes were removed from the 
magnetic rack and beads resuspended in 20 μL of 1× binding buffer. The resuspended beads were then added to 
cells, and allowed to mix end-over-end for 10 min at room temp. The samples were then placed on a magnetic 
rack, and after the beads had adhered to the wall of the tube the supernatant was removed. The cells/beads were 
then resuspended in 50 μL of ice-cold antibody buffer (containing protease inhibitors and digitonin), and 1uL of 
anti-RNAPII primary antibody was added to the samples. The primary antibody was allowed to bind overnight 
at 4 °C on an orbital rotator. The next day, the tubes were placed back on the magnetic rack, and the supernatant 
was removed after the beads had adhered to the wall of the tube. 100 µL of rabbit anti-mouse secondary antibody 
(diluted 1:100 in Dig-Wash buffer) was added to each tube, and allowed to bind for 1 h on an orbital rotator at 
room temp. Using the magnetic separator, the bead/cells were then washed three times with 1 mL of Dig-Wash 
buffer. The assembled pA-Tn5 transposomes were then mixed with Dig-300 Buffer at a final concentration of 
1:100 (100 µL total volume). For each sample, the cells/beads were resuspended in 100 µL of the assembled 
transposome buffer and incubated at room temperature for 1 h on an orbital rotator. After this, the cells/beads 
were then washed three times with 1 mL of Dig-300 buffer via the magnetic separator. After the final wash, the 
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supernatant was removed and the samples resuspended in 125 µL of tagmentation buffer. The samples were then 
incubated for one hour at 37 °C. Following this, we added 4.2 µL of 0.5 M EDTA, 1.25 µL of 10% SDS, and 1.1 
µL of Proteinase K (10 mg/mL) to each sample. After mixing well, the samples were incubated at 55 °C for 1 h. 
The beads/samples were then placed on a magnetic separator, and the supernatant was moved to a new tube for 
DNA purification. 625 µL of DNA purification binding buffer was then added to each sample. The samples were 
then placed in a DNA purification column and spun down at 17,000g for 1 min. Following this, the column was 
washed once with 750 µL of DNA wash buffer. The column was allowed to air dry for 1 min, and then the DNA 
was eluted with 35 µL of elution buffer. 30 µL of the eluted DNA was then used as template for a PCR, attaching 
Illumina specific adapters and indices via Q5 polymerase. The PCR conditions were: 72 °C for 5 min, 98 °C for 
30 s, 14 cycles of: {98 °C for 10 s, 63 °C for 10 s} followed by a final incubation at 72 °C for 1 min and a hold at 
10 °C. The PCR reaction was then cleaned up using SPRI beads at a 1.1:1 beads to sample volume ratio, washing 
the beads twice with 200 µL of 80% ethanol. The DNA was finally eluted in 20 µL of DNA purification buffer, and 
the libraries sequenced on a NovaSeq 6000.

Quantifying RNA Pol II transcriptional activity from CUT&Tag data. Adapter sequences were 
trimmed from the raw FASTQ files with Trim Galore using default settings and cutadapt (version 4.1). Trimmed 
FASTQ files were aligned with bowtie2 (version 2.4.5) with the following settings: ‘-end-to-end -very-sensitive 
-no-mixed -no-discordant -I 70 -X 700’. Aligned bam files were coordinate sorted and duplicates were removed 
with Picard Tools (version 2.17.11). Alignments with a quality score less than 2 were removed with samtools (ver-
sion 1.15.1). Genomic read coverage was computed with the ‘bamCoverage’ utility in deeptools (version 3.5.1) 
with a binsize of 1 base pair. Read coverage across the transcript body was computed with the ‘computeMatrix’ 
utility in deeptools in ‘reference-point’ mode with the following settings ‘-referencePoint TSS -beforeRegion-
StartLength 2000 -binSize 10 -metagene -afterRegionStartLength 2000’. Read coverage values in bins across the 
transcript bodies were summed across all transcripts with a minimum read count of 100 and a maximum read 
count of 10,000. The transcriptome wide gene body coverages were normalized relative to the mean of double 
non-targeting control (NTC-NTC) knockouts. Significance was quantified with a Kolmogorov–Smirnov test of 
the mean of replicate knockdowns in the python package scipy (version 1.6.2).

Data availability
All datasets and materials generated in this study are available from the corresponding author on reasonable 
request. Raw sequencing data has been made publicly available via the NCBI Gene Expression Omnibus and 
Short Read Archive (accessions: GSE218629 GSE227432, PRJNA945412). The genetic interaction scoring is avail-
able on GitHub (https:// github. com/ bpmun son/ ctg). All other custom code, including the single-cell cell-cycle 
analysis, will be made available on a second a public GitHub repository (Multimodal-perturbation-analyses-of-
cyclin-dependent-kinases/). The double knockout counts for each cell line in the interaction screen are included 
in Supplemental File 1. The network shown in Fig. 2d is stored on NDEx an open-source project for network 
data exchange (UUID: 30404eda-14f4-11ed-ac45-0ac135e8bacf).
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