ТОРІС	LECTURER	TIME /PLACE
1.1 Introduction: why biological networks? Molecular networks bridge genotype to phenotype Networks as next phase of the Genome Project Types of biological networks Network databases and the NDEx cloud Overview of scope and syllabus Course format and expectations	Ideker	Apr 4 LFFB 107
Reading: Newman Ch. 1 p. 1-8, Ch. 5 p. 78-104		
 1.2 <u>Network theory and algorithms I</u> Network versus matrix representations Weighted and directed networks Edges based on "co-citation" and correlation Bipartite networks and hypergraphs Degree and cluster coefficient 	Ideker	Apr 6 LFFB 107
Reading: Newman Ch. 6.1 - 6.6, p. 109-126; Ch. 6.10 - 6.11, p. 136	5-141	
Problem Set 1 Assigned		Due Apr 17
2.1 <u>Protein interaction networks I</u> Immunoprecipitation and affinity purification Mass spectrometry analysis	Ideker	Apr 11 LFFB 107
Reading: Huttlin, E. L., Bruckner, R. J., Navarrete-Perea, J., Cannor (2021). Dual proteome-scale networks reveal cell-specific 184(11), 3022-3040.		
2.2 <u>Genetic interaction networks I</u> Epistasis versus epistacy; Statistical genetic interactions Dependency maps and Project Achilles Mutual exclusivity	Kelly	Apr 13 LFFB 107
Reading: Kobourov, S. G. (2012). Spring embedders and force arXiv:1201.3011.	e directed graph drawing	; algorithms. arXiv
Problem Set 2 Assigned. * Part I MUST be completed prior to class	<u>3.1</u> on April 18.	Due Apr 24
3.1 Introduction to network analysis in Cytoscape and Python * Cytoscape and the NDEx infrastructure Cytoscape and NDEx: live hands-on demo	Pillich / Churas	Apr 18
Working with Cytoscape and NDEx in Python: live demo		LFFB 107

Epistasis and synthetic lethality Epistatic miniarrays Combinatorial CRISPR

Reading: Costanzo, M., Hou, J., Messier, V., Nelson, J., Rahman, M., VanderSluis, B., ... & Andrews, B. (2021). Environmental robustness of the global yeast genetic interaction network. *Science*, 372(6542), eabf8424.

Problem Set 1 Solutions Available Problem Set 3 Assigned		Due May 1st
4.1 Protein interaction networks II	ldeker	Apr 25
Proximity labeling (APEX + BioID) Co-elution (size exclusion chromatography)		
Residue contact maps (XL-MS)		LFFB 107
Reading: Humphreys, I. R., Pei, J., Baek, M., Krishnakumar, A. (2021). Computed structures of core eukaryotic protein comple		
 4.2 Protein interaction networks III Yeast 2 Hybrid (Y2H) and Proximity Ligation (PLA) Protein interaction prediction (Naive Bayes, PrePPI) Protein interaction structural modeling (alphaFold & Ro 	ldeker seTTAfold)	Apr 27 LFFB 107
Reading: Tsherniak, A. et al. Defining a Cancer Dependency Ma	o. <i>Cell</i> 170 , 564-576. e16 (2	2017).
Problem Set 2 Solutions Available		
Problem Set 4 Assigned		Due May 8
5.1 <u>Network organization and modularity I</u>	ldeker	May 2
Degree distributions and the scale-free (power-law) pro Random network models: Erdos-Renyi versus preferent Pathfinding and shortest paths Small-world effect and resilience Components and cliques Graph partitioning and min-cut		LFFB 107
Reading: Newman Ch. 8.1 - 8.6, p. 235-265, Ch. 11.2 - 11.11, p.	354-391	
5.2 <u>Network organization and modularity II</u> Network embedding (node2vec) Hierarchical community detection Network reconstruction of whole-cell structure (i.e. the Hierarchical network visualization tools	Ideker Gene Ontology)	May 4 LFFB 107
Reading: Oin Y Huttlin E L Winsnes C E Gosztyla M L V	Nachaul I Kally M R	& Ideker T (2021) A

Reading: Qin, Y., Huttlin, E. L., Winsnes, C. F., Gosztyla, M. L., Wacheul, L., Kelly, M. R., ... & Ideker, T. (2021). A multi-scale map of cell structure fusing protein images and interactions. *Nature*, 600(7889), 536-542.

6.1 <u>Transcriptional and chromatin networks I</u> Chromatin immunoprecipitation Chromatin capture and HiC methodology eQTL analysis; integration with genetic perturbations	Benner	May 9 LFFB 107	
Reading: Dixon, Jesse R., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. <i>Nature</i> 485.7398 (2012): 376.			
6.2 <u>Transcription and chromatin networks II</u> Using gene expression to infer transcriptional interaction	Ideker	May 11 LFFB 107	

Approaches using differential equations Discovery of master regulators

Reading: Gardner, T.S., Di Bernardo, D., Lorenz, D. & Collins, J.J. Inferring Genetic Networks and Identifying Compound Mode of Action Via Expression Profiling. *Science* **301**, 102-105 (2003).

Problem Set 4 Solutions Available Problem Set: None, prepare for MIDTERM

7.1 MIDTERM EXAMINATION	Rahman	May 16 LFFB 107
7.2 <u>Network theory and algorithms II</u> Closeness and betweenness Eigenvector centrality and PageRank Network propagation and random walks Application: prediction of gene function	Ideker/Carlin	May 18 LFFB 107
Reading: Newman Ch. 7.1 - 7.4, p. 168-178; Ch. 6.13 - 6.14, p. 152-162	1	
Midterm Solutions Available Problem Set 6 Assigned (combined for lectures 7.2 - 9.1)		Due Jun 1
8.1 <u>Network-based Genome-Wide Association Studies I</u> Introduction to GWAS Association tests and tools – germline variants, common versu Fine mapping using transcriptional networks	Palmer Is rare variants	May 23 LFFB 107

Barrio-Hernandez, I., Schwartzentruber, J., Shrivastava, A., Del-Toro, N., Gonzalez, A., Zhang, Q., ... & Beltrao, P. (2023). Network expansion of genetic associations defines a pleiotropy map of human cell biology. *Nature Genetics*, 1-10.

8.2 <u>Network-based Genome-Wide Association Studies II</u> Network prioritization of germline variants Identification of mutated subnetworks in cancer (HotNet, N Understanding conserved and shared signals by network co	•	May 25 LFFB 107	
Reading: Rosenthal, S. B., Wright, S. N., Liu, S., Churas, C., Chilin-Fuentes, D., Chen, C. H., & Ideker, T. (2023). Mapping the common gene networks that underlie related diseases. <i>Nature Protocols</i> , 1-15.			
No new Problem Set assignment, work on team projects			
9.1 <u>Using networks for interpretable machine learning</u> Basic introduction to neural networks (ANNs) Neural networks coupled to structure (CNNs, LLMs) Graph neural networks Coupling ANN architecture to knowledge of biological netw Application: Translating mutations in genotype to cell grow Application: Patient networks		May 30 LFFB 107	
Reading: Elmarakeby, H. A., Hwang, J., Arafeh, R., Crowdis, J., Gan informed deep neural network for prostate cancer discover	-		
9.2 Network comparison and differential analysis Cross species studies Homologs, orthologs and interologs Algorithms for network alignment Networks across conditions, Edgetics Measuring differential genetic interactions Measuring differential protein interactions How big is network condition space?	Ideker	Jun 1 LFFB 107	
Reading: Sahni, N. <i>et al.</i> Widespread Macromolecular Interaction P <i>Cell</i> 161 , 647-660 (2015).	erturbations in Human	Genetic Disorders.	
Problem Set 5 Solutions Available No new Problem Set assignment, work on team projects			
10 WORK ON TEAM PROJECTS			
11 TEAM PROJECT PRESENTATIONS	ldeker	Jun 13, 2h block	
FINAL PROJECT REPORTS DUE	Rahman	Jun 18 Midnight	