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Abstract

Many disease-causing genetic variants converge on common biological functions and path-

ways. Precisely how to incorporate pathway knowledge in genetic association studies is not

yet clear, however. Previous approaches employ a two-step approach, in which a regular

association test is first performed to identify variants associated with the disease phenotype,

followed by a test for functional enrichment within the genes implicated by those variants.

Here we introduce a concise one-step approach, Hierarchical Genetic Analysis (Higana),

which directly computes phenotype associations against each function in the large hierarchy

of biological functions documented by the Gene Ontology. Using this approach, we identify

risk genes and functions for Chronic Obstructive Pulmonary Disease (COPD), highlighting

microtubule transport, muscle adaptation, and nicotine receptor signaling pathways. Micro-

tubule transport has not been previously linked to COPD, as it integrates genetic variants

spread over numerous genes. All associations validate strongly in a second COPD cohort.

Introduction

A longstanding challenge with Genome-Wide Association Studies (GWAS) is the so-called

multiple testing problem that arises from testing thousands to millions of Single Nucleotide

Polymorphisms (SNPs) for association with a phenotype (Bush and Moore 2012). Given a

large number of association tests relative to the size of the population, a fraction of SNPs may

appear to associate with the phenotype by chance. This problem is most commonly overcome

by controlling the family-wise error rate, with p� 5 × 10−8 being the de facto standard signifi-

cance threshold [1]. This strict significance threshold, in turn, has the consequence that strong

effect sizes or very large population sizes, or both, can be necessary for causal genetic variants

to be discovered.

A second, independent, challenge relates to functional interpretation. For any SNPs that

meet the association threshold, the immediate task is to understand the molecular and cellular

mechanisms that mediate the effects of those variants on phenotypic outcome. Linking SNPs

to functions is complicated by multiple factors, including (1) the extensive SNP-SNP
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covariation observed at genomic loci due to linkage disequilibrium (LD) [2]; (2) the mapping

of SNPs to genes, since an associated locus can either lie far from gene bodies or encompass

many; and (3) the fact that complex diseases arise not from the action of a single gene but from

the integrated effects of diverse genetic loci acting on common or opposing functions [3].

A body of previous work has attempted to tackle these challenges by moving from tests of

individual SNPs to tests based on genes and gene sets. This field, also known as pathway or

network GWAS, has given rise to many methods [4–16] and has been extensively reviewed

[17–27]. The benefits of these approaches are twofold. Firstly, the number of genes and func-

tional gene sets is substantially fewer than the number of SNPs, yielding a reduced set of

hypothesis tests with the potential to discover variants with weaker effects than would be

detected when considering SNPs individually. Secondly, these approaches allow for functional

interpretation of GWAS results by associating phenotypes with sets of genes operating in com-

mon biological pathways. Such association can point to underlying mechanisms that would

not be revealed otherwise [18].

Among these methods, a general template is the “two-step” test, in which a standard single-

variant association test is first performed to obtain a summary statistic (e.g. p-value of associa-

tion) for each SNP. From these SNPs, a short list of complementary representatives is selected

(e.g. without strong covariation, r2 < 0.5). Then, in the second step, each gene and functional

gene set is assigned a score equal to the mean test statistic among the SNP representatives, and

this score is tested for significance using permutations. Versions of this approach are offered

by standard tools such as PLINK [4,8], which provides a self-contained method for testing not

only single SNPs, but also sets of SNPs and sets of genes, for association. Several newer alterna-

tives, including MAGMA [9], implement a gene set test using a linear regression framework.

MAGMA first performs principal component regression (PCR) of the phenotype against the

SNPs in the neighborhood of each gene, yielding a per-gene significance of association (p-

value). Each gene set of interest is then tested by examining the distribution of per-gene scores

that make up that gene set, in comparison to a null distribution. Other notable gene set tests

include ALIGATOR [5], MAGENTA [6], INRICH [7], GSA-SNP2 [16], and Generalized

Berk-Jones [14].

These methods all share the intuition that knowledge of gene function can increase statisti-

cal power and interpretability of GWAS, by pooling signals across sets of genes organized by

common functions. Thus far, however, the essential unit of genome-wide association has

remained the SNP or the gene. A standard GWAS is still run to compute SNP level summary

statistics over the study population, after which information from individual genotypes is not

used further; rather, the p-values of association of SNPs within each gene set are evaluated for

unexpected distributions.

Here, we extend the intuition of functional GWAS by treating the function itself as a basic

genetic unit, rather than the SNP or gene. In contrast to the previous two-step structure which

computes association statistics at the SNP level before proceeding to analyze gene sets, we

develop an approach in which the principal genetic effects on each function are captured and

made subject to direct tests of association in human populations. A direct “one-step” test has

the potential to detect function-phenotype associations based on the convergent effects of

many SNPs, even when the marginal effects of each of these SNPs may be insignificant. It also

sidesteps some of the previous statistical challenges that have been raised with the two-step

procedure [16], such as the double-counting of SNP contributions near genes that are mem-

bers of multiple pathways, or inconsistent treatment of genes of different lengths and local LD

structures. The general problem definition is to seek a low dimensional representation of SNPs

covered by each known function and to identify which of these functions are associated with

phenotype using regression models (Fig 1). Since biological functions are organized
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Fig 1. Study design. (A) Analysis workflow. Blue rhomboids are data inputs and green rhomboids are analysis outputs. MAF, Minor Allele Frequency. HWE, Hardy-

Weinberg Equilibrium. (B) Hierarchy of functions increasing in specificity from top to bottom. Color shows strength of association. (C) Dimensionality reduction and

association workflow. For each system defining a set of genes (left), a SNP matrix (center) is constructed from variants near system genes (blue bands in underlying

chromosomes). Matrix columns: SNPs; Rows: Individuals. Values (0, 1, 2) are (major allele homozygous, heterozygous, minor allele homozygous) at each SNP. A low-

dimensional representation is computed using SVD (center right) and tested for association with phenotype (model f1) in comparison to the null hypothesis (f0).

https://doi.org/10.1371/journal.pone.0286064.g001
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hierarchically, from specific to general resolutions, a follow-up panel of statistical tests is

applied to identify which of these resolutions yields the most plausible association. We show

that, despite its conceptual simplicity, the method identifies pathway associations that have not

been previously reported in conventional GWAS or in gene set analyses. The suggested

method, which we call Hierarchical Genetic Association Analysis (Higana), is publicly avail-

able as a Python implementation on GitHub at http://github.com/SimonLarsen/higana/.

This type of analysis is explored in the context of Chronic Obstructive Pulmonary Disease

(COPD), a progressive lung disease characterized by respiratory symptoms (including short-

ness of breath) and airflow obstruction. COPD has an estimated 384 million cases worldwide

[28] and three million deaths annually [29], making it one of the leading causes of death.

Tobacco smoking is the most significant risk factor although other factors have been impli-

cated as well, such as childhood asthma, air pollution, and occupational exposure to dusts and

chemical fumes [30]. COPD also involves the combination of these environmental factors with

genetics, with a study of Danish and Swedish twins suggesting that as much as 60% of disease

susceptibility can be explained by the additive effects of genetic variants [31]. In an effort to

systematically elucidate genetic risk factors, COPDGene, a multicenter study, has built a large

cohort of COPD cases and controls with phenotypes that include chest CT scans and assess-

ment of emphysema, gas trapping, and airway wall thickening [32]. Very recently this cohort

has been analyzed in conjunction with more than 20 other studies to identify 82 genome-wide

significant variants associated with COPD, with these variants explaining approximately 7% of

the variance in phenotype [33].

Results

Hierarchical genetic analysis of COPD identifies systems of convergent

SNPs

We applied hierarchical genetic association analysis to the non-Hispanic White COPDGene

cohort [32] of 2812 cases and 2534 controls (Fig 1, Methods). A hierarchy of 9312 systems was

selected from the GO knowledgebase [34], and each of these systems was attached to a data

matrix providing, for each individual, measurements of SNPs proximal to the genes in that sys-

tem. Each matrix was analyzed to extract its principal components, representing a simple com-

pact representation of the genetic state of that system across the samples (i.e. system genetic
components, Methods). We then applied a regression framework, using standard statistical

approaches, to test the association of system genetic components with the COPD phenotype

while accounting for general genetic and clinical covariates.

Among the 9312 tested systems, our analysis identified four for which the components

were significantly associated with COPD at a strict significance threshold controlling for the

Family-Wise Error Rate (FWER < 0.05, adjusting the association p-value using a Bonferroni

procedure, Table 1 and Fig 2, complete results S1 Data). We noted that each of these systems

maintained its significant phenotype association when performing a competitive association

test against the equivalent system in a ‘null’ ontology hierarchy for which the gene-to-ontology

annotations had been randomized (Methods, Table 1 ‘ontology permutation’ column). All sig-

nificantly associated systems were from the Biological Process domain of GO. The first two of

these, Organelle Transport Along Microtubule (GO:0072384, FWER < 0.00127) and Vesicle
Transport Along Microtubule (GO:0047496, FWER < 0.00954), contained dozens of genes and

appeared to represent a convergence of signal from multiple loci dispersed throughout the

genome. Notably, none of these systems contained any genome-wide significant SNPs (p< 5

× 10−8) nor SNPs in LD with genome-wide significant SNPs (none with r2 > 0.2 within 1 kb).

In particular, Vesicle Transport Along Microtubule aggregated the individual effects of SNPs in
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or near genes including AP3S1 on chromosome 5, DYNC1I1 on chromosome 7, KIF5A on

chromosome 12, CLN3 on chromosome 16, and KIF3B on chromosome 20 (Fig 3). This sys-

tem, considered as a whole, represented greater genetic signal than any of the supporting

SNPs, which individually had not been implicated in previous GWAS analysis [32,33].

The third system associated with COPD contained three genes involved in Skeletal Muscle
Atrophy (GO:0014732, FWER < 0.01047). One of these, IREB2, was at the 15q25.1 locus with

SNPs that were also genome-wide significant when considered individually (S2 Fig). The pro-

tein encoded by IREB2 is an RNA-binding protein (IRP2) involved in maintaining iron

homeostasis, and it had previously been associated with COPD and lung function in multiple

studies including GWAS, analysis of mRNA expression and murine functional studies [35–

38]. The fourth associated system was Synaptic Transmission Involved in Micturition
(GO:006008, FWER < 0.01098). This system contained three genes, CHRNB2, CHRNB3, and

CHRNB4, encoding neuronal acetylcholine receptor (nAChR) subunits involved in the

response to acetylcholine neurotransmitters and nicotine [39]. One of these nAChR genes,

CHRNB4, was at the same genome-wide significant locus, 15q25.1, as was the aforementioned

IREB2. Looking beyond the four reported systems using a relaxed threshold of significance, we

noticed that among the ten most associated systems, five contained genes near 15q25.1. Fur-

ther inspection suggested that the COPD association scores of all of these systems were pre-

dominantly due to this single genetic locus. Indeed, 15q.25.1 was the first locus to be

implicated in a COPD GWAS [35] and has been replicated [40–42].

SNPs converge specifically on transport of vesicles and not other organelles

We noted that the system Vesicle Transport Along Microtubule (GO:0047496) was a child (“is

a” relationship) of Organelle Transport Along Microtubule (GO:0072384). Since both systems

were significantly associated with COPD (Fig 2), we considered that these might be redundant

results based on the same underlying constellation of SNPs. Alternatively, it was possible that

Table 1. Top ten systems most significantly associated with COPD status.

System GO Branch Genes p-value p-value Bonferroni

adjusted

p-value in validation

set

p-value in ontology

permutation test

Vesicle Transport Along Microtubule (GO:0047496) BP 37 1.36E-

07

0.001 0.001 0.01

Organelle Transport Along Microtubule (GO:0072384) BP 58 1.02E-

06

0.01 0.373 0.01

Skeletal Muscle Atrophy (GO:0014732) BP 3 1.12E-

06

0.01 0.026 0.01

Synaptic Transmission Involved in Micturition

(GO:0060084)

BP 3 1.18E-

06

0.011 0.013 0.01

Striated Muscle Atrophy (GO:0014891) BP 5 2.89E-

05

0.269 0.826 Not tested

Muscle Atrophy (GO:0014889) BP 6 4.69E-

05

0.437 0.838 Not tested

Regulation of Erythrocyte Differentiation (GO:0045646) BP 33 6.65E-

05

0.619 0.537 Not tested

Paranode Region of Axon (GO:0033270) CC 6 1.00E-

04

0.931 0.574 Not tested

Chemorepellent Activity (GO:0045499) MF 22 1.16E-

04

1 0.863 Not tested

Skeletal Muscle Adaptation (GO:0043501) BP 6 1.24E-

04

1 0.757 Not tested

https://doi.org/10.1371/journal.pone.0286064.t001
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the parent system integrated SNPs in the child with SNPs in yet other genes or systems in

determining an overall effect on phenotype. To distinguish between these two alternatives, we

implemented a pair of additional association tests to evaluate the phenotype association of

each system in the context of its most associated child system or annotated gene, respectively

(Methods). In particular, the “Top child test” removed all SNPs assigned to the most associated

child system (if any) and repeated the association analysis in this reduced genetic context. The

“Top gene test” did the same but for the most associated gene. These additional association

tests were run on all of the ten most significantly associated systems (Fig 4).

When disregarding its top child, the parent system Organelle Transport Along Microtubule
lost all association with COPD. In contrast, the child, Vesicle Transport Along Microtubule, lost

very little signal when disregarding its own four children or its top gene. Moreover, these four

children exhibited relatively low COPD association when considered individually (Fig 4B).

Fig 2. Subhierarchy of significantly associated systems. System color corresponds to unadjusted p-value. Systems with FWER< 0.05 are

highlighted with red outline.

https://doi.org/10.1371/journal.pone.0286064.g002

PLOS ONE Hierarchical association of COPD to principal genetic components

of biological systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0286064 May 25, 2023 6 / 19

https://doi.org/10.1371/journal.pone.0286064.g002
https://doi.org/10.1371/journal.pone.0286064


Fig 3. Association results for the Vesicle Transport Along Microtubule system (GO:0047496). (A) Manhattan plot of

the standard GWAS results for the primary COPD cohort. SNPs assigned to genes associated with GO:0047496 are

highlighted in red. Horizontal line marks the standard GWAS significance threshold, p = 5 × 10−8. (B) Contributed

effects of SNPs in the principal component regression model (system genetic components) for GO:0047496. SNPs are

sorted by genomic position. Horizontal distance between SNPs does not correspond to genomic distance. SNP effect is

the change in log odds ratio per minor allele copy contributed to the principal component regression for the entire

system.

https://doi.org/10.1371/journal.pone.0286064.g003

Fig 4. Conditional association test results. (A) Comparison of association results for the original uncorrected analysis

(red) and conditional tests (blue, green) for the top 10 most associated systems. (B) Conditional test results for the vesicle

transport subhierarchy. P-values are unadjusted. Shaded bars for the “top child” test indicate the system had no children

and thus no correction was applied.

https://doi.org/10.1371/journal.pone.0286064.g004
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These results indicated that Vesicle Transport Along Microtubule was the appropriate resolu-

tion (i.e. level of specificity) at which SNPs at different genetic loci converge to affect COPD.

For other systems among the top ten, the additional significance tests showed that some

were indeed better explained by a single significant child system or gene. For example, the

group of related systems including Skeletal Muscle Atrophy,Muscle Atrophy, and Skeletal Mus-
cle Adaptation appeared to be predominantly driven by the single gene IREB2 (although for

Skeletal Muscle Atrophy perhaps not entirely, S3 Fig). In other cases such as Synaptic Transmis-
sion Involved in Micturition, the genetic signal was more clearly preserved across the child and

top-gene tests, supporting a specific COPD association at the resolution of the entire system.

Comparison to other genetic analysis methods using gene sets. We also evaluated the

results we had obtained with the Higana approach against the gene set association tests imple-

mented in PLINK [8] or MAGMA [9]. At the same 0.05 FWER cutoff used thus far, MAGMA

reported no systems (S3 Data), and PLINK reported a single system (GO:0035094; Response to
Nicotine, S4 Data), versus the four significant systems that had been reported by Higana

(Table 2). At a more relaxed significance threshold, PLINK and MAGMA reported a larger

number of systems. For example, at p< 0.001 (uncorrected for multiple hypothesis testing)

PLINK reported 73 systems, versus 48 and 16 for Higana and MAGMA, respectively. How-

ever, given the number of tested systems the corresponding FWER was greater than 1, indicat-

ing a very high rate of false positive (type I) errors at this relaxed significance threshold.

We also evaluated the congruence of systems reported by each method and found that the

results were largely complementary (S4 Fig). No systems were reported in common by PLINK

and Higana at the corrected FWER < 0.05 cutoff, while 12 common systems were reported at

the relaxed p< 0.001, representing 16% and 25% of systems reported by PLINK and Higana,

respectively. The top two systems identified by Higana, Vesicle Transport Along Microtubule
and Organelle Transport Along Microtubule, were not identified by other methods even at the

relaxed cutoff. The Response to Nicotine system identified by PLINK was partially overlapping

with the Synaptic Transmission Involved in Micturition system identified by Higana, both con-

taining nAChRs (CHRNB2, CHRNB3, and CHRNB4). Comparing the complete set of system

association outcomes for each method (i.e. the complete vector of association p-values over all

systems), we observed moderate agreement between Higana and MAGMA (Pearson ρ = 0.56)

and between Higana and PLINK (ρ = 0.54) with less agreement between PLINK and MAGMA

(ρ = 0.36).

We found that Higana required significantly less computation time than PLINK but signifi-

cantly more computation time than MAGMA. Further inspection suggested that the long run-

time of PLINK is due to the large number of permutations needed to achieve accurate

estimates of significance. The majority of the computation time needed by Higana is devoted

to singular value decomposition of SNPs to formulate system genetic components. We found

that this decomposition could be made significantly more efficient by using the approximate

method of randomized matrix decomposition, at the cost of a small decrease in accuracy

(Methods).

Validation with a second independent cohort. The COPD Gene study also interrogated

an independent African-American validation cohort for COPD (821 cases, 1749 controls). We

thus examined this cohort separately to validate our results, defining cases and controls in the

same manner as the non-Hispanic white cohort and using the same covariates and GO struc-

ture. Higana results on this cohort confirmed three out of four of the globally significant sys-

tems (Vesicle Transport Along Microtubule, Skeletal Muscle Atrophy, and Synaptic
Transmission Involved in Micturition) as also significant in the African American cohort

(Table 1 and S5 Fig). The globally significant system that did not validate was Organelle
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Transport Along Microtubule, which had been discarded earlier as the redundant parent term

of Vesicle Transport Along Microtubule.
Finally, we asked whether there was significant overlap in borderline significant systems

with an association p-value< 0.1. A total of 2017 systems in the non-White Hispanic cohort

and 1345 systems from the validation cohort met this criterion. Of these, 232 systems were in

agreement between the two datasets, representing significant overlap (hypergeometric p = 8.28

× 10−6). This overlap suggests that relaxing the significance of association may indeed be a via-

ble strategy for nominating additional functions associated with a disease phenotype.

Simulation results. We tested the difference in performance between a “one-step” one

step statistical procedure such as the one that Higana implements and “two-step” procedure as

employed by PLINK/Magma. In two simulation schemas, one where the SNPs were indepen-

dently simulated and another where SNPs were simulated with an Ising model the one step

simulation consistently was more powerful than the two step approach across all values of

noise (S7 Fig).

Discussion

We have described a simple yet powerful genetic analysis framework based on hierarchical

knowledge of biological systems, in which genetic components of each system are subject to

direct and conditional tests for associations with phenotype. When applied to a COPD case

control study, the approach reports four systems as significantly associated with disease cases.

Two of these systems related to microtubule transport have not been implicated previously in

COPD, as individual genetic variants in these systems have levels of significance that are some-

times impressive (p� 5 × 10−5, Fig 3A) but do not beat the strict genome-wide significance

threshold of a conventional GWAS in the COPD populations and population sizes examined

thus far.

Subsequent conditional tests show that the responsible SNPs are contained completely in

the smaller of the two microtubule systems, Vesicular Transport Along Microtubules, which

nests hierarchically within the larger Organelle Transport Along Microtubules. Within vesicular

transport the genetic signal is spread over many loci and genes, with the strongest association

observed in the gene encoding cytoplasmic dynein 1 intermediate chain 1 (DYNC1I1), part of

the cytoplasmic dynein 1 complex responsible for moving various cargoes along the cytoskele-

ton (Fig 3B). A recent analysis of the UK Biobank population has found that an intron variant

in this gene, rs6961619, associates with another pulmonary trait, forced vital capacity (FVC)

[43]. On the other hand, COPD depends not so much on FVC as forced expiratory volume

(FEV1) and the FEV1 / FVC ratio.

In the case of the third significant system, Skeletal Muscle Atrophy, conditional testing

determined that a single gene encoding an iron response element, IREB2, was responsible for

most of the association, although other genes in this system, such asMYOG and ACTN3, may

play a minor role. While the link between IREB2 and pulmonary disease is still unclear, we see

at least three potential mechanisms which are not mutually exclusive. Firstly, cigarette smoking

has been associated with higher levels of iron in the lungs which may, in turn, contribute to

Table 2. Number of significant systems by each method for different significance criteria.

Method p<5e-6, Bonferroni adjusted p<0.05 p<0.001 Computation time

Higana 4 48 2 hours, 32 minutes

PLINK 1 73 5 days 16 hours

MAGMA 0 16 2 minutes, 29 seconds

https://doi.org/10.1371/journal.pone.0286064.t002
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oxidative injury and pulmonary obstruction [44,45]. Secondly, skeletal muscle dysfunction is a

common comorbidity of COPD [46] suggesting that genetic variation impacting this system

may provide a common cause for the two conditions. Thirdly, the association of Skeletal Mus-
cle Atrophy with COPD could be explained not by IREB2 but by linkage disequilibrium with

SNPs near CHRNA3 and CHRNA5 [42], encoding nicotinic acetylcholine receptors that

respond to the acetylcholine neurotransmitter as well as nicotine [47]. These nAChRs have

been linked to nicotine dependence in genetic association studies [48–51] and this locus has

also previously been associated with COPD [35,41]. Overall, the locus containing IREB2 and

nAChRs is a complicated genomic region, with mediation analysis suggesting the likely pres-

ence of two separate signals [52].

The nAChR gene family more clearly explains the significance of the fourth system, Synap-
tic Transmission Involved in Micturition, which on further inspection reduces to yet another

three nAChR genes, the beta receptor subunits CHRNB2, CHRNB3, and CHRNB4. These

genes arise here in the context of a micturition pathway, as nicotinic acetylcholine receptors

are involved in autonomic control of urinary bladder [37]. However, we have no reason to

expect that micturition and lung function are related other than through the pleiotropic func-

tions of the CHRNB genes. This anecdote argues that the label given a system by a knowledge-

base like GO can be misleading, since that label is assigned without disease context. Persisting

despite the label, we see that the set of genes in the system corresponds to a rational nicotine

receptor family on which genetic variants converge in COPD. It is perhaps surprising that

functions related to nicotine response emerge from the analysis, since an individual’s current

smoking status and total lifetime pack-years were included as covariates in the hierarchical

genetic association procedure (Methods). The fact that we still observe such systems in the sig-

nificant results suggests that the impact of smoking on COPD incidence is more complex than

is modeled by these two standard covariates.

When comparing Higana to PLINK and MAGMA in genetic analysis of COPD, we find

that Higana and PLINK have greater power than MAGMA (Table 2). This finding contradicts

the evaluation in the original MAGMA manuscript [9], where MAGMA was found to have

more power than PLINK in a Crohn’s disease cohort. This discrepancy may be due to a differ-

ence in population sizes, effect sizes, or the sizes and numbers of tested gene sets. The

increased sensitivity of Higana may be attributed to the detection of multi-locus effects that

become apparent only when the principal components of genotypes are calculated at the sys-

tems level. For example, system components can represent the cumulative burden of genetic

variants on the collection of genes in a system, even when none of those variants individually

show significant (if any) differences in incidence between cases and controls. Such cumulative

genetic effects arise among pathways under selection for somatic mutations in cancer [53],

and they may play a similar role in a germline context. Furthermore, since system components

are regressed using a logistic regression (logit) function, not only can the total number of vari-

ants be counted (per patient per system) but AND/OR logic functions can be learned as well,

e.g. a system that transmits its phenotypic effect given the right combination of haplotypes at

two loci A (AND) B.

We note that in both of our simulation schemas, both independent and Ising model gener-

ated, the one-step Higana approach outperformed the two-step approach. The Fisher’s p-value

combination methods are known to have difficulty when hypotheses are not independent could

explain the performance in the Ising model case. However, the one-step procedure outperforms

in the independent case as well. This suggests that the combination into principal components

versus the averaging-type procedure of the log probabilities serves to denoise the signal more

effectively. Furthermore, we suggest that the collapse of different numbers of correlated vari-

ables from LD-blocks of various sizes, as well as variable gene set sizes to a limited number of
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principle component variables decreases the heterogeneity of the statistical test, allowing for a

more uniform application of the method to widely variable numbers of input SNPs.

Currently in the GWAS community there is a debate about the correct null model for test-

ing the significance of association of a gene set. MAGMA utilizes a "competitive" null model,

which states that the genes in the set are no more associated with the phenotype than other

genes, accounting for variable heritability of phenotypes. However, such a model appears to

come at the price of power in comparison to "self-contained" null models that seek to disprove

the null hypothesis that no SNPs (or genes) are associated with the phenotype after accounting

for all confounders [14]. Higana represents a unique entry in this debate, as it does not rely on

gene-level tests for its initial identification of candidate gene sets; thus it avoids both power

loss and anomalies due to genomic proximity of genes assigned to the same pathways [26].

We note that computing PCs for each gene set may have the effect of differentially weight-

ing the contribution of different genes to the overall gene-set p-value. Such differential weight

is a feature of the approach–i.e. to capture and properly weight the true causal variants within

the gene set. On the other hand, this approach could also assign genes more weight if they

have denser LD. Such bias is alleviated by the top gene test, which rejects gene sets driven by a

single very dominant gene. Nonetheless, an interesting question for exploration in a future

study is whether an additional correction for LD density across genes is desirable.

In computing the genetic components for each system, we adopted an unsupervised

approach using Principal Component Analysis, rather than an approach supervised by the

phenotype case/control label. An unsupervised approach makes it straightforward to adjust for

confounding variables and to avoid the use of permutation tests for estimating significance.

This design also allows later testing for association against many different phenotypes without

the necessity to recompute the many principal components of each system, an important capa-

bility in analysis of cohorts with many measured phenotypes such as the UKBioBank cohort

[54]. Conversely, a disadvantage is that one is unlikely to discover associations with large sys-

tems covering many genes, since the unsupervised projection preserves the dimensions with

the highest variation over genotype, not the highest explanatory power over phenotype. The

larger the set of genes, the more closely its projection resembles that of the genome-wide set of

SNPs used to estimate (and correct for) the overall population structure. The use of principal

component analysis may also favor SNPs with greater minor allele frequencies insofar as they

contribute greater variance to the data matrix. Accordingly, another compelling future direc-

tion may be to explore supervised projection of data in formulating the genetic components of

a system, perhaps recursively by examining the components of the system’s children and/or

parents. Alternatively, we note that Principal Component Analysis is but one choice for an

unsupervised projection of a data matrix, and it is likely worthwhile to explore other unsuper-

vised projections in future work.

While GO provides a broad model of cellular processes, it misses important associations

due to incomplete knowledge of the cell and tissue biology of the disease, as well as poor or

missing function definitions or gene annotations. Indeed, 20% of all human genes were not

annotated to a system with 100 or fewer genes (S6 Fig) and thus were excluded from our analy-

sis. Such omission is evidenced by the lack of COPD-associated systems including FAM13A
on chromosome 4, despite there being two genome-wide significant SNPs within 10 kb of this

gene [55] and supporting functional studies [56,57]. Increasing the maximum gene set size

used for drawing systems from GO would be one way to address this problem (Methods). A

preferable longer-term solution would be to identify and model the hierarchy of biological sys-

tems directly from primary experimental datasets, designed to elucidate disease pathways in

highly relevant biological conditions and environmental contexts.
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Materials and methods

Ethics statement

The COPDGene study protocol was approved by the institutional review boards at the 21 par-

ticipating clinical centers. All COPDGene participants provided written informed consent.

Experimental design

COPD cohort and data. We obtained genotype and phenotype data from 6670 non-His-

panic white subjects enrolled in the COPDGene study [32]. All subjects were long-time smok-

ers of at least 10 pack-years with varying degrees of COPD assigned according to the Global

Initiative for Chronic Obstructive Lung Disease (GOLD) stages [58] Case individuals were

determined as those with GOLD grades 2–4 (moderate to very severe COPD, n = 2812), while

control individuals were defined as smokers with normal spirometry (n = 2534). Individuals

that did not fit these case/control categories were excluded from further analysis. Genotypes

were collected for each study participant using a custom SNP array, which after filtering and

quality control resulted in a total of 630,369 distinct SNP variants. We refer to [32] for a

detailed description of the study design and data collection methodology.

Defining the functional hierarchy. We adopted the hierarchy of human biological sys-

tems provided by the Gene Ontology (GO) knowledgebase (The Gene Ontology Consortium

2018), which included 16,451 systems, known as GO terms, at time of download (release 2019-

01-01). Systems were interconnected using “is a” and “part of” relations documented in GO,

where each of these relations connects a more general "parent" to a more specific "child". The

three aspects of GO (Molecular Function, Cellular Component and Biological Process) were

combined under a common root to obtain a single, unified hierarchy. Sets of genes annotated

to each system were also obtained from GO, using all annotation evidence codes except

“inferred from electronic annotation” (IEA). Gene annotations were propagated through the

hierarchy recursively, such that each system inherits all annotations of its children. After this

operation, the set of genes assigned to each system was the union of the genes annotated to

that system by GO and all genes annotated to any of its descendants. All systems with fewer

than 3 or greater than 75 genes were removed, wishing to exclude systems too small to distin-

guish from a gene-level analysis and systems too general to functionally interpret. Further-

more, we removed systems for which the gene set was very similar to that of a child system.

Specifically, we first defined the degree of parent-child similarity as S(P, C) = |AC| / |AP |, where

AP and AC are the sets of genes annotated to the parent and a child system, respectively. All

parent systems with similarity S(P, C)� 0.9 with respect to one or more children were then

removed, connecting all children of that system to all of its parents to maintain continuity of

the hierarchical structure. After these operations, the resulting ontology had 9312 systems

remaining (S1 Fig).

Computing system principal components. For each system, we built a matrix G of

dimensionality N × S representing all SNPs within 10 kb of any gene annotated to that system,

where N is the number of individuals in the cohort and S is the number of SNPs annotated to

that system, in arbitrary order. Each SNP matrix was projected onto its principal component

(PC) decomposition, T = GW, using the technique of singular value decomposition, where W

is of dimensionality S × k and represents the contribution of each SNP to each principal com-

ponent. T is of dimensionality N × k and represents the projection for each of N individuals in

the k dimensional PC space. The first k PCs were kept, where k is the number of PCs needed to

explain 95% of the variance, limited to at most 50 PCs. The rationale for this dimensionality

reduction was two-fold. Firstly, by discarding some of the variance, it accounts for LD between
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SNPs and mitigates collinearity between predictors in the regression model. Secondly, it con-

centrates significance when testing large SNP matrices having many degrees of freedom. To

reduce computation time for large data sets we also included the option to use randomized sin-

gular value decomposition [59] implemented in the rSVD R package [60]. This option drasti-

cally reduces the principal component computation at the cost of reduced accuracy.

Statistical analysis

Hierarchical association analysis. We next computed the association of each system with

phenotypic outcome using a generalized linear model [61,62]. For each system, we trained a

model f1: g(y) = Tα+Cβ +s, where y is the vector of phenotypic outcomes for each of the N
individuals, T is the principal component matrix defined above, C is a matrix holding an N × c
set of clinical covariates, α is a vector of genetic effects for each of the k system PCs, β is a vec-

tor of effects for the c covariates, s is the vector of residuals for each of the N individuals, and g
is the link function, chosen to be logit to model a binary case/control phenotype. This model

was compared to the null model f0: g(y) = Cβ + s using a logistic regression likelihood ratio

(χ2) test. C included covariates of age, sex, current smoking status, and total pack-years, as well

as the first 10 population principal components computed from the entire genome-wide set of

variants to account for population structure. For each system determined to have significant

genetic contribution (i.e. for which f1 is significant), we decomposed α as a SNP’s effect vector

e = Wα, noting that the columns of W are the first k eigenvectors of TT. The resulting vector e

captures the total effect contributed by each SNP to this model while accounting for LD. It

should be noted that, while this is the amount of total genetic effect captured by the PCs, it is

not true of the total genetic effect captured by the SNPs in the gene set (since some PC that

account for less than 95 percent of the variance are pruned away).

Empirical assessment of significance via permutation testing. The type I error rate of

this association test was estimated empirically using permutation testing. For this procedure,

we repeated the association test 10,000 times while randomly permuting the outcome variable

while balancing the clinical covariates as described in [63] to generate a null distribution with

no disease-associated SNPs. The type I error rate was taken as the mean fraction of systems

with p< 0.05 over all permutations. This mean was 0.052 (σ = 0.00185), suggesting the error

rate was well-controlled. We also produced log-qqplots (S7 Fig) to demonstrate the permuted

null’s p-values adherence to a uniform distribution, while the actual cohort’s p-value are

inflated, suggesting a true signal.

In addition, to confirm that the specific gene sets identified by the above tests were signifi-

cant relative to random gene sets of the same size and position in the ontology hierarchy, we

generated 100 random ontologies in which gene-system assignments were randomly permuted

while retaining the hierarchical structure (parent-child relationships between the systems). For

each system reported as significant in the earlier analysis, we then performed the same Higana

process (see Computing system principal components and Hierarchical association analysis,

above) for each of the 100 permuted ontologies, resulting in 100 p-values of association. This

null distribution of 100 p-values was then used to recalibrate the actual p-value of association

obtained previously. This adjustment procedure thus implemented a "competitive" test, i.e. to

reject the null hypothesis that genes of equal size and position in the hierarchy could produce

the observed association [26].

Nested association tests. A common challenge with Gene Ontology-based analysis is the

prevalence of very similar (nested or overlapping) gene sets reported as significant. Such analy-

sis will often result in not just one significant gene set, but several highly related sets nested

within the same subhierarchy, all of which reflect the same functional concept but at different
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resolutions of generality/specificity. We also noted that a single gene containing a strongly

associated variant might drive the significance of a gene set, even in the absence of convergent

signal from other genes. To overcome these artifacts, we implemented two additional tests for

identifying systems for which the signal is mainly driven by a child system or single gene:

1. Top child test: In this association test, we identified the most significant child system for

each system under consideration and excluded SNPs near genes annotated to the top child.

2. Top gene test: We computed an association score for each gene by repeating the association

where each gene set is a single gene (S2 Data). We then identified the most significant gene

for each system and excluded all SNPs near that gene.

In cases where a SNP is near both a gene or system identified for removal and one that

should be kept, we chose to be strict and always exclude the SNP regardless.

Test by simulation. In order to test our method in a controlled scenario, we devised two

simulation schemas. In both schemas, we simulated 10 binary SNPs associated with a pheno-

type for 1000 case samples and 1000 control samples, representing a system that is associated

with a hypothetical phenotype. In the first schema, the SNPs were generated independently,

but with a probability of 0.02 for case versus 0.01 for controls. For the second schema, in order

to simulate correlation structure, SNPs were generated with an Ising model using the Ising-

Sampler package in R, with a random connectivity graph with connectivity probability of 0.5

between all nodes, and a threshold parameter of -3.5 for case and -5 for control, resulting in

more case SNPs than control SNPs [64]. To both of these simulated SNP probabilities, we

added increasing ammounts of noise, swept between zero and 0.1. This whole process was

repeated 100 times for statistical stability.

Once the SNPs were simulated, we tested two contrasting approaches; one- and two- step

statistical analysis. One-step analysis is the approach taken by Higana, that is, PCA followed by

a chi-squared analysis. Two-step analysis represents the competing approaches (PLINK and

MAGMA) which derive per-SNP or per-gene summary statistic, and then use Fisher’s method

to combine the relevant statistics for a system of genes (S8 Fig). Power was calculated as 1-(the

proportion of tests that failed to reject the null hypothesis with a p-value of 0.05).

Supporting information

S1 Fig. Distribution of size of systems in the hierarchy constructed from Gene Ontology.

(a) All systems. Horizontal axis is log-scaled. (b) Restricted to systems of up to 75 genes.

(TIF)

S2 Fig. Manhattan plot of case-control association analysis of COPDGene non-Hispanic

White genotype data. Horizontal line denotes p = 5x10-8.

(TIF)

S3 Fig. Conditional association test results for the muscle atrophy subhierarchy. Bar

heights indicate -log10(p-value). P-values are unadjusted. Comparison of association results

for the original uncorrected analysis (red) and conditional tests (blue- “top child”, green- “top

gene”). Shaded bars for the “top child” test indicate the system had no children and thus no

correction was applied.

(TIF)

S4 Fig. Comparison of significant systems returned by Higana, PLINK and MAGMA. (a)

Venn diagram of systems returned at strict FWER < 0.05 for all methods. (b) Venn diagram of

systems returned with relaxed p< 0.001. (c-e) Log-scaled p-values for all tested systems. is the
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Pearson correlation coefficient between the log-scaled p-values of each pair of systems.

(TIF)

S5 Fig. Subhierarchy of significantly associated systems from the non-Hispanic White

cohort and more general ancestor Colored by p-value of association in the African Ameri-

can validation cohort. System color corresponds to unadjusted p-value.

(TIF)

S6 Fig. Number of distinct genes covered by the systems hierarchy when including systems

up to a certain gene set size

(TIF)

S7 Fig. Higana Log QQ-plots (a) The p-values of association of all terms in the COPD non-

Hispanic white cohort, plotted against the expected uniform distribution. (b) The p-values of

association of all terms from 10000 covariate balanced permutations, plotted against the

expected uniform distribution.

(TIF)

S8 Fig. Simulation results a. Case or control SNPs were simulated using both an independent

model or a correlated Ising model. Then these SNPs were passed to either one- and two-step

evaluation procedures. b. Power calculation for simulations in the independent and c. Ising

models

(TIF)

S1 Data. Complete associations of terms with COPD in the non-Hispanic White cohort.

(XLSX)

S2 Data. Single Gene association with COPD in the non-Hispanic White cohort.

(XLSX)

S3 Data. MAGMA association of terms with COPD in the non-Hispanic White cohort.

(XLSX)

S4 Data. PLINK association of terms with COPD in the non-Hispanic White cohort.

(XLSX)

S1 Text.

(DOCX)
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