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SUMMARY
The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in
numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organi-
zation into complexes, including constitutive interactions and those responding to genomic insult. Here, we
use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity pu-
rifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to
reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair
mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin
functions. We find that protein assemblies closely align with genetic dependencies in processing specific
genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-
up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The
DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/
ddram/).
INTRODUCTION

To maintain the integrity of the genome throughout cell function

and division, organisms have evolved a complex network of

machinery known as the DNA damage response (DDR). This ma-

chinery includes repair pathways for distinct types of DNA le-

sions, including direct reversal, base excision repair (BER),

nucleotide excision repair (NER), mismatch repair (MMR), inter-

strand crosslink repair (ICL), and double-stranded break (DSB)

repair.1,2 It also includes apparatus for damage sensing,3 signal

transducers that communicate the damage to repair factors and

downstream effectors4,5 and, when necessary, connections to

stress and/or apoptotic responses.6–8 DDR is also intimately

intertwined with basic cell support functions such as DNA repli-

cation, chromatin packaging, and cell-cycle checkpoints,9,10 ul-

timately involving thousands of gene expression and protein

modification changes.11,12 Finally, the DDR plays a critical role

in responding to chemotherapy-induced DNA damage and in
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dealing with elevated replication stress in cancer, motivating

an avid interest in targeting DDR to enhance cancer treatment

options.13–15

To copewith the complexity of the DDR and the constant influx

of new knowledge, significant investment has been made to

construct and maintain DDR reference maps, which provide

essential resources for cataloging the many proteins involved

and their organization as a hierarchy of sensing, signal transduc-

tion, and repair systems.16–19 A significant challenge faced by

currentmaps is that theyarebasedpredominantly on thecuration

of literature, requiring them to reconcile numerous and some-

times conflicting findings. Furthermore, literature curation neces-

sarily focuses on well-studied mechanisms and provides fewer

details for understudied proteins or promising candidates,20

which comprise a large part of the human proteome.21–23

Toward achieving a more complete map, many studies have

deployed genomic and proteomic screens that attempt to

comprehensively identify genes, proteins, and interactions
, June 21, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Overview

(A) AP-MS screen for protein interactions with DDR proteins in different cell

lines and before/after DNA damage induction.

(B) Collection of datasets representing four classes of interaction evidence

(columns), each consisting of specific data resources. Number of datasets

contributed by each resource given in parentheses. BioGRID, Biological

General Repository for Interaction Datasets; BioPlex, Biophysical Interactions

of ORFeome-derived complexes; HuRI, Human Reference Interactome; hu-

Map, Census of Human Soluble Protein Complexes; CCLE, Cancer Cell Line

Encyclopedia; GDSC, Genomics of Drug Sensitivity in Cancer; TCGA, The

Cancer Genome Atlas; GTEx: Genotype-Tissue Expression project; CPTAC,

Clinical Proteomic Tumor Analysis Consortium; DepMap, Cancer De-

pendency Map.

(C) Input feature networks are integrated into a proteome-wide weighted

network of protein-protein association scores (DAS, see text).

(D) Identification of hierarchically organized assemblies in the DAS network.

Colors matched between network regions in (C) and corresponding assem-

blies in (D).
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associated with the DDR or with a specific DNA repair process.

Although early screens were extensively carried out in budding

yeast and other model species for reasons of experimental trac-

tability,24–33 technical advances in genome editing and protein

mass spectrometry (MS) enable the global interrogation of

DDR pathways in humans.11,34–45 For example, Olivieri et al.44

recently analyzed human genome-wide CRISPR-Cas9 screens

across a large panel of DNA damaging conditions, leading to

890 genes for which loss modulates the cellular response to
2 Cell Systems 14, 1–17, June 21, 2023
DNAdamage.Many of these associations represent newdiscov-

eries, demonstrating that the current DDR reference maps can

be significantly expanded. Regardless, given the large volume

of existing data, it is critical that each screen or line of experi-

mental evidence is integrated alongside other relevant sources

in an inclusive, data-driven strategy.

Here, we develop such a data-driven resource of DDR sys-

tems, based on the generation of DNA damage-induced protein

networks and integrative analysis against a broad collection of

multi-omics data (Figures 1A and 1B). This analysis constructs

a hierarchical map of DDR protein assemblies at successive

levels of molecular organization, which we call the DDR assem-

blies map (DDRAM, Figures 1C and 1D).

RESULTS

Defining a network of DDR protein interactions
We used affinity purification MS (AP-MS) to comprehensively

map the protein interaction partners of 21 affinity-tagged DDR

proteins in a panel of tumorigenic (MDA-MB-231, MCF7) and

non-tumorigenic (MCF10A) human breast cell lines (STAR

Methods). The tagged proteins covered representative DDR

signaling and sensor proteins (DDB2, NBN, RPA2, and XPC),

regulation of cell-cycle checkpoints (CHEK2), and effectors of

DNA repair (BRCA1, BRIP1, CHTF18, ERCC1, FANCC, MLH1,

MSH2, MUS81, PALB2, RAD51C, RAD51D, SPRTN, and

XRN2), including members of the BAF complex (ARID1A,

SMARCB1, and SMARCD1), which localizes to sites of DNA

damage for chromatin remodeling and DNA repair factor recruit-

ment.46–49 Interactions were identified during treatment with eto-

poside, a DNA damaging agent that induces both single-strand

and double-strand DNA breaks via the inhibition of topoisomer-

ase II,50,51 activating various DDR pathways52 (Figure 2A). By

comparing the etoposide-treated network with an untreated

network generated with the same affinity-tagged proteins,53

we identified 99 ‘‘differential’’ interactions54 for which the inter-

action score significantly increased or diminished between con-

ditions; remaining interactions were robustly present in both

conditions and labeled as constitutive (Figure 2B; Table S1).

This approach identified a total of 405 interactions, 295 of which

had not been previously reported in protein interaction data-

bases such as BioGRID55 or BioPlex56 (Figure 2C; STAR

Methods). We found that the differential interactions were sub-

stantially more likely than the constitutive interactions to be ab-

sent from public databases (Figure 2D) and that the differentially

interacting proteins were distinct from the constitutive proteins in

their functions (Figure 2E).

To complement these AP-MS interaction data, we gathered a

collection of 112 datasets providing general evidence for pair-

wise gene and protein interactions in humans, leveraging the

work of multiple large consortia projects (Table S2; Figure 1B).

These multi-omic datasets included measurements of mRNA

co-expression, protein co-abundance, and gene co-essentiality

gathered across numerous human cell lines and tissues, as well

as biophysical protein-protein interactions gathered under basal

conditions (i.e., without external treatment with DNA damage).

These data thus represented an expansive summary of informa-

tion about human gene and protein interactions available in the

public domain.
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Figure 2. Systematic measurement of DNA damage-induced protein networks

(A) DDR-centric protein interaction network generated by AP-MS. Baits (black nodes) refer to affinity-tagged proteins, whereas preys (light blue nodes) refer to

interacting protein partners identified when targeting these baits. Green, magenta, or dashed edges represent interactions detected in untreated, etoposide-

treated, or both conditions, respectively.

(B) Pie chart summarizing numbers of constitutive versus differential protein interactions detected.

(C) Comparison of AP-MS network to interactions previously reported in public databases.

(D) Top pie shows proportion of differential interactions that are not previously reported in databases. Bottom pie shows this proportion for constitutive

interactions.

(E) Enriched functions (gene ontology biological process) of prey proteins identified in the differential (black) versus constitutive (gray) interaction networks. Text in

bold italics indicates GO terms found only in the respective group (differential or constitutive).
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All new and previous datasets were integrated to form a single

network using a framework based on random forest regression57

(Figure 3A; STAR Methods), with each pair of human proteins

given a quantitative DDR protein association score (DAS). The

DAS score combined all available interaction evidence in a

weighted manner, with the influence of each evidence type

trained for the best recovery of a previously published expert-

curated list of DDR pathways18 (Figure S1; STAR Methods).

We selected proteins that had high scoring or differential interac-

tions with canonical DDR factors (Figure 3B; STAR Methods),

yielding an integrated, fully connected, quantitative network of

605 proteins (Figures 1C and 3C). Although this network included

proteins not currently included in any of the current DDR refer-

ence lists,2,18,19 further inspection suggested that some of these

proteins nonetheless had been implicated in the DDR elsewhere

in the literature. Accordingly, we performed extensive text mining

to test each of the identified proteins for DDRmentions in the full

protein records of RefSeq, UniProt, Ensembl,58–60 and the gene

ontology subhierarchy ‘‘cellular response to DNA damage stim-
ulus.’’16 Screening against this more permissive list indicated

that 297 of the identified proteins had previous DDR annotations,

whereas the remaining 308 were being newly documented with

respect to DDR (Figure 3C; Table S3; STAR Methods).

Multi-scale organization of DDR proteins into 109
assemblies
We analyzed the integrated network using hierarchical commu-

nity detection,61,62 which identifies densely interacting protein

assemblies that emerge as the interaction score is progres-

sively relaxed (Figure 3D; STAR Methods). For example, small

stringent assemblies corresponding to the MutL homologs

(MLH-PMS complex) and replication factor C (RFC complex)

were identified at a high DAS score threshold which, as this

was reduced, joined to form a single larger assembly corre-

sponding to the overarching process of DNA MMR

(Figures 3E and 3F). Protein assemblies detected in this manner

were assessed for robustness under random perturbations to

the input data (statistical bootstrapping; STAR Methods);
Cell Systems 14, 1–17, June 21, 2023 3



Figure 3. DNA damage response assemblies map (DDRAM)

(A) All previously collected published datasets as well as the new AP-MS data are integrated to create a unified DAS score using supervised machine learning.

Following learning, the most important data types supporting an interaction can be revealed by the SHAP score.

(B) For each human protein, a ‘‘DDR proximity’’ is computed as the mean DAS score against a set of canonical DDR proteins (see main text). Blue: distribution of

DDR proximity scores for all proteins. Red: distribution for canonical DDR proteins only.

(C) Workflow to determine the number and annotation status of proteins in the DDRAM map.

(D) DAS network for mismatch repair proteins.

(E) Community detection reveals the hierarchical structure of protein assemblies, leveraging quantitative DAS information.

(F) Left: kaleidoscopic nested circle layout. Circles represent proteins (smallest) or protein assemblies (all other sizes). Assembly labels are assigned by alignment

to DDR reference databases. Right: same nested structure of protein assemblies visualized as a multi-scale hierarchy.

(G) Multi-scale hierarchical layout of DDRAM. Names shown for selected assemblies only. The full set of named assemblies is available at ccmi.org/ddram/.
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unstable assemblies were removed, yielding a robust hierarchi-

cal map of 109 protein assemblies which we call DDRAM (Fig-

ure 3G). Assemblies with at least an approximate match to a

known molecular complex or process were named accordingly

(STAR Methods). Twelve assemblies had no such match and

were thus named only by systematic number (e.g., Asm842
4 Cell Systems 14, 1–17, June 21, 2023
labeled in Figure 3G), similar to the systematic naming of ‘‘OR-

Faned’’ proteins without known function.

We noted that the largest assemblies of DDRAM capture the

parallel organization of DNA damage repair pathways, identi-

fying large protein communities corresponding to translesion

synthesis (TLS), double-strand repair (DSR), NER, BER, and

http://ccmi.org/ddram/


(legend on next page)
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MMR (right to left in Figure 3G). These assemblies had good

agreement with their counterparts in reference DDR databases

such as Wood et al.63 (Figure 4A), although DDRAM included

additional proteins (blue shading in Figure 3G). We also noted

an overarching ‘‘superassembly’’ formed from substantial

interaction crosstalk among the DSR, NER, BER, and MMR as-

semblies, consistent with the common involvement of these

pathways in processing DNA lesions. Other large assemblies

were associated with chromatin regulation, ubiquitin modifica-

tion, stress responses, proteasomal degradation, ribosomal

biogenesis, and vesicle-based signaling machinery, which

were not previously well covered by DDR databases (Figure 4A).

Regardless, proteins in each of these assemblies had high

network proximity to canonical DDR proteins (Figure 3B),

prompting their inclusion in the data-driven map. The majority

of large, top-level DDRAM assemblies factored into a hierarchy

of progressively smaller and smaller subsystems, which in

some cases (e.g., DSR, NER, and others) was several layers

deep. Assemblies at this smaller scale were generally more

numerous than their counterparts in DDR databases (Figure 4A).

For example, the Fanconi anemia (FA) pathway was represented

as a single group of proteins in the Wood reference63, whereas

DDRAM identified FA as a hierarchical structure of four differen-

tiated sub-assemblies that we named FA-I, FA-II, FA Core, and

FA Anchor.64 Conversely, several functions covered by the

DDR reference were not captured by DDRAM, including

those related to modulation of nucleotide pools and repair of

DNA-protein crosslinks (Figure 4A).

Because DDRAM depends on multiple types of evidence, we

sought to illuminate which particular evidence types were impor-

tant in determining its interactions and assemblies. We imple-

mented a feature ranking system based on SHAP scores

(shapely additive explanations, STAR Methods), a recent and

increasingly popular approach to interpret machine learning

models.65,66 For each protein-protein interaction in the DAS

network (Figure 1C), we computed a profile of SHAP values, rep-

resenting its relative support from each of the four major classes

of evidence (Figure 3A). This analysis revealed that the strongest

data type driving assembly formation was protein-protein phys-

ical association, which was of primary importance to themajority

of interactions forming assemblies in DDRAM (Figure 4B). The

other three classes of data showed greater heterogeneity in their

importance across assemblies. Genetic co-dependency was

particularly important in determining NER and DSR but less

important elsewhere. In contrast, protein co-abundance was

important for reconstituting components of DNA synthesis, the

CCT chaperonin complex, and the uncharacterized assembly

Asm839. RNA co-expression had a small SHAP contribution to

many assemblies but was never of the highest importance

(Figure 4B).
Figure 4. Comparison to DDR reference pathways and analysis of con

(A) Alignment (Jaccard fraction, blue-to-red colorbar) between DDRAM assemblie

Area with highest agreement magnified at right.

(B) Four DDRAMminiatures showing importance of each data type (grayscale inte

(C) DDRAM miniature with node color showing the fraction of interactions contrib

(D and E) Protein interaction networks for selected assemblies with high level of

(F) DDRAM miniature showing correspondence of DDRAM assemblies with ind

significant enrichment by hypergeometric test, Benjamini Hochberg FDR % 0.1.
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Within the general evidence type of physical association, we

also examined the specific contribution of the AP-MS interac-

tions we generated for the 21 DDR proteins. We recognized 37

assemblies that were significantly enriched for these interactions

(FDR % 0.1, Benjamini Hochberg correction), including nine

for which AP-MS data made up the majority of physical associ-

ations (Figure 4C). Several of these were uncharacterized, such

as a CHEK2-SPECC1-RAI14 assembly (Asm821) which brought

together the DNAdamage checkpoint kinase CHEK2with RAI14,

SPECC1, andMPRIP, three proteins not previously documented

in theDDR (Figure 4D). In other cases, the AP-MSdata expanded

a known DDR complex with an unexpected factor, such as the

association of MMR with the DExD-box ATP-dependent

RNA helicase DDX50 (Figure 4E).

To provide additional physical support for the collection of

DDRAM assemblies, we analyzed the 29,922 human protein-

protein interactions recently reported as part of the OpenCell

resource.67 This study had appeared in the literature after the

construction of DDRAM and thus represented an independent

dataset. We found that DDRAM assemblies were significantly

enriched for the independent interactions (29 assemblies at

FDR % 0.1, Benjamini Hochberg correction, Figure 4F) over a

wide range of community detection parameters (Figure S2).

This enrichment was observed despite notable differences in

ours versus the previous study, including different cell lines

and conditions as well as a few bait proteins targeted in com-

mon, since OpenCell had not focused on DDR specifically

(rather, much support came from OpenCell interactions that

interconnected DDRAMpreys). This general agreement between

OpenCell and DDRAM extended to Asm842, an ‘‘ORFaned’’ as-

sembly that had not matched to known subcellular complexes,

consisting of the prefoldin subunits PFDN1/2/5/6 together with

VBP1 (Von Hippel-Lindau tumor suppressor binding protein).

DDR assemblies associate with specific dependencies
to genotoxic stress
We next explored the relationship of DDRAM assemblies with

the function of these assemblies in the response to DNA

damaging agents. For this purpose, we accessed the genome-

wide CRISPR-Cas9 chemogenetic screens recently performed

by Olivieri et al.44 following exposure to each of the 27 genotox-

ins. This analysis identified many significant associations be-

tween protein assemblies in DDRAM and genetic dependencies

in processing different agents (Figure 5A, 647 assembly-agent

associations at FDR < 20%, covering 98 assemblies and all 27

agents). In each of these cases, an assembly was significantly

enriched for proteins for which a gene knockout causes

genotoxin sensitivity or resistance. Two-dimensional clustering

revealed six major groups of agents based on their common de-

pendencies on DDRAM assemblies (Figures 5Aand 5B). Given
tributing data types

s (rows) and reference DDR pathways documented byWood et al.63 (columns).

nsity) to protein assemblies (nodes). Assemblies discussed in text are labeled.

uted to each assembly by the DDR-centered AP-MS data from this study.

AP-MS support.

ependent protein-protein interactions from the OpenCell project. Bold ring:
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Figure 5. Association of protein assemblies with genotoxin functional dependencies

(A) Dependence of genotoxin responses on DDRAMprotein assemblies. Proteins for which genetic knockout causes sensitivity or resistance to each agent (rows)

were measured previously by genome-wide CRISPR-Cas9.44 Significant aggregation of these dependencies in DDRAM assemblies (columns) is shown by

hypergeometric enrichment (p value, heatmap color). Two-dimensional clustering reveals six major groups of agents (left border colors).

(B) DDRAM miniature showing assembly-to-agent mappings. Agent clusters from (A).

(C) Detailed genotoxin dependency profiles for selected gene knockouts impacting the Fanconi anemia core assembly (FA, left columns) or chromatin regulator

assembly (right columns). For each knockout, the relative sensitivity (positive Z scores, purple shades) or resistance (negative Z scores, orange shades) across

agents (rows) is shown.

(D) Relationship between a protein’s number of assemblies and the number of dependent agent responses. Contingency table (left) shows that proteins inmultiple

assemblies have�43 higher odds of conferring a requirement for processingmultiple genotoxic agents. Box-and-whiskers plots (right) provide a complementary

view of the same data. The middle line shows the median. The lower and upper hinges correspond to the 25th and 75th percentiles. Upper and lower whiskers

extend from the hinge to the largest and lowest value no further than 1.5 times the interquartile range, respectively. Analysis excludes DDRAM proteins that are

essential and thus not covered by the chemogenetic screens.

(E) DDRAM miniature showing locations of NBN and PCNA, two multi-assembly/multi-agent proteins.
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that the repair mechanisms triggered by different genotoxic

agents are diverse and in many cases incompletely understood,

we reasoned that the clusterings should reinforce known or
hypothesized mechanisms as well as suggest new relationships.

For instance, ultraviolet radiation (UV), illudin S, and benzo(a)pyr-

ene-diol-epoxide (BPDE) were part of the same cluster based on
Cell Systems 14, 1–17, June 21, 2023 7
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similar genetic dependencies induced by these agents on

protein assemblies involved in NER and transcription-

coupled NER (TC-NER). While this result might have been ex-

pected given the common ability of these agents to create tran-

scription-blocking DNA lesions,68,69 illudin S has typically been

classified apart from BPDE and UV based on their separate

mechanisms of action (illudin S: transcription-interfering;

BPDE, UV: helix distorting lesion).44 Another cluster was formed

by the alkylating agents cisplatin, methyl methanesulfonate

(MMS), and N-methyl-N0-nitro-N-nitrosoguanidine (MNNG) due

to their common reliance on FA assemblies for processing, as

predicted many decades ago.70 Although cisplatin is often clas-

sified by its activity as a DNA crosslinker,71 here, it clustered

strongly with other alkylating agents rather thanwith other cross-

linkers such as formaldehyde (Figure 5A). Onemight have further

expected that cisplatin would be processed predominantly via

NER, whereas MMS andMNNG processed via BER.72 However,

we noted the CRISPR screen had implemented a long exposure

to these genotoxins at a relatively mild dose (5 days, LD20),

revealing a complex cellular response including a strong addi-

tional requirement for HR and FA assemblies. This analysis

shows how DDRAM assemblies can be combined with genetic

screens to gain insights into the usage, crosstalk, and balance

of DDR mechanisms in response to, and in the processing of,

different genotoxins.

We found that assembly-agent associations could alsoprovide

specific support for proteins newly associated with DDR (Fig-

ure 5A). Among these was the PHD-finger chromatin factor

PHF10, a protein not annotated as a DDRprotein in reference da-

tabasesandonly first associatedwith thisprocesswhileour study

was in review.73Here, PHF10was implicated as aDDRcandidate

by its inclusion in the DDRAM hierarchy of chromatin regulator

complexes (Table S3). Knockout of PHF10 conferred a pattern

of genotoxin sensitivities that was very similar to that seen for

other chromatin factors in its assembly (Figure 5C), corroborating

the DDRAM structural assignment with functional evidence from

the genotoxicity screen. Another example was provided by the

heterotrimeric protein complex we had labeled ‘‘STK11 G1 ar-

rest,’’ consistingof theserine-threoninekinaseSTK11 (alsocalled

LKB1), the pseudo-kinase STRADA (STE20-related kinase

adapter protein alpha), and the calcium-binding scaffolding pro-

tein CAB39.74 Our analysis implicated this complex in the re-

sponses to many genotoxins, particularly hydrogen peroxide

(H2O2, Figure 5A), due to common sensitizing effects of all three

gene knockouts and particularly severe effects for CAB39 (z =

�10.9).44 Given that STK11 has been implicated in related re-

sponses, such as to ionizing radiation and reactive oxygen spe-

cies (ROS),75–77 our findings highlight a role for this assembly,

and for CAB39 in particular, in safeguarding DNA replication.

Notably, neither of these examples (PHF10, CAB39) had been

investigated in the Olivieri et al. study beyond their inclusion

with the full screening dataset provided in supplemental informa-

tion. Including PHF10 and CAB39, the assembly-agent associa-

tionsprovidedsupport for 28newlydocumentedDDRcandidates

(Figure 5A; Table S3).

The Olivieri chemogenetic screen had identified a substantial

number of gene knockouts that affect responses tomultiple gen-

otoxins, leading the original authors44 and later investigators78 to

propose that some of these genes govern multiple DDR func-
8 Cell Systems 14, 1–17, June 21, 2023
tions or phenotypes.We considered that these predictionsmight

be further tested by DDRAM, in which approximately 40% of

proteins participate in multiple assemblies (Table S3). Indeed,

cross-comparison of DDRAM and the Olivieri screen showed

that proteins in multiple assemblies were four times more likely

than chance to have a requirement in processing multiple types

of damage, a very significant association (p = 9 3 10�11, Fig-

ure 5D). A known multi-function protein highlighted by this anal-

ysis was nibrin (NBN), a component of the MRN complex

(MRE11-RAD50-NBN) that has been implicated at distinct

sequential steps of DSR (as a sensor, signal transducer, and

effector) as well as in control of cell-cycle checkpoints.79 Consis-

tent with these multiple roles, NBN knockout conferred sensi-

tivity to a very large number of damaging treatments in Olivieri

et al. (12 agents), and it was observed in multiple distinct assem-

blies in DDRAM (Figure 5E). Other examples included DSCC1

(DNA replication and sister chromatid cohesion 1) and PALB2

(partner and localizer of BRCA2). DSCC1 had been implicated

in the response to 18 genotoxic agents, the largest number iden-

tified for any human gene,44 but without a clear mechanistic

explanation. This protein was also one of the most prolific in

DDRAM, where its multiple assemblies related to DSR, single-

strand repair (SSR), stress, and ribosomal complexes provide

support for the earlier functional finding of Olivieri et al. and

give insight into its multiple roles. A total of 82 proteins with

both structural (DDRAM assemblies) and functional (DDR ge-

netic dependencies) evidence for multiple roles are provided in

Table S3. This supplemental analysis also includes a number

of multi-assembly proteins, such as proliferating cell nuclear an-

tigen (PCNA, Figure 5E), which are essential and therefore could

not be tested in the chemogenetic gene knockout screens.

Validating DDRAM proteins with specific readouts of
repair
We next explored the mapping between membership in specific

assemblies and specific DNA repair readouts. For this purpose,

we selected 28 proteins from various assemblies across DDRAM

(Figure 6A) and tested their activities in specific assays for either

SSR, DSR, or both. This list contained a mixture of known DDR

factors and undocumented candidates, and it prioritized pro-

teins with demonstrated nuclear localizations, direct interactions

to AP-MS baits, and strong interaction (DAS) scores, as well as

proteins without knockout fitness defects (STAR Methods).

To assay SSR function and dynamics, we created fusions of

each protein with EGFP (enhanced green fluorescent protein),

enabling its localization in live cells following laser induction of

single-strand DNA breaks81 (Figure 6B). By this approach, pro-

teins recruited to sites of DNA damage exhibit a dynamic fluores-

cent signal that is spatially localized to the site of micro-irradia-

tion (Figures 6C and S3). Significant recruitment signal was

observed for five proteins selected from assemblies enriched

for BER and short-patch BER proteins, including APLF, LIG3,

PNKP, POLb (DNA polymerase beta), and XRCC1 (Figure 6D).

With the exception of PNKP, we found that recruitment of these

factors depends on the activity of PARP1, the major signal trans-

duction enzyme that marks DNA damage with poly-ADP-ribose

(PAR) chains (Figure S4A). Recruitments of POLb and LIG3

were also abrogated by XRCC1 knockout (Figure S4A), suggest-

ing an additional requirement for XRCC1 scaffolding to facilitate
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Figure 6. Function in single- and double-strand DNA breaks

(A) DDRAM map highlighting assemblies from which proteins were sampled for functional testing.

(B) Recruitment analysis of fluorescently tagged proteins after induction of single-stranded DNA breaks by 405 nm laser-induced micro-irradiation. Selected

proteins tagged with enhanced green fluorescent protein (EGFP).

(C) Confocal fluorescent microscopy images showing EGFP intensity dynamics following laser micro-irradiation. Scale bars, 10 mm.

(D) Peak recruitment intensity for EGFP-tagged proteins. Positive signals were observed for BER-related proteins (orange); *p % 0.05, **p % 0.001, NS, not

significant. The wide line denotes the mean and the whiskers denote +/� standard error of the mean (SEM).

(E) Assay for homology-directed repair (HDR) activity in repair of DNA double-strand breaks. As HDR works to restore a functional GFP, fluorescence intensity

correlates with relative HDR efficiency. I-SceI, cut site for Intron-encoded restriction endonuclease from Saccharomyces cerevisiaemitochondria. SceGFP, GFP

gene cassette interrupted by I-SceI site; iGFP, internal fragment of GFP gene.

(F) Assay for single-strand annealing (SSA) activity in repair of DNA double-strand breaks. DI-SceI, deletion of I-SceI site. (E) and (F) adapted from Gunn and

Stark.80

(legend continued on next page)
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binding. In contrast to proteins in the BER assemblies, little or no

signal was observed for other DDRAM proteins, which had been

drawn from seven other assemblies widely distributed in themap

(Figures 6A and 6D). These results suggested that recruitment to

DNA single-strand breaks is a highly specific property consistent

with the assembly structure of DDRAM.

To assay for DSR function, we used the I-SceI assay,80 which

evaluates the ability to repair an induced DNA DSB in a GFP re-

porter construct (STAR Methods). One version of the reporter

could be restored to function (expression of GFP) by homol-

ogy-directed repair82 (HDR, Figure 6E), whereas a second re-

porter required single-strand annealing (SSA, Figure 6F), an

alternative DSR mechanism.83 In either case, proteins were

knocked down by delivery of small interfering RNAs (siRNAs) in

cell cultures, which were subsequently imaged to count the frac-

tion of fluorescent nuclei, indicative of repair-competent cells

(Figure 6G). Knockdown of BRCA1 impaired both HDR and

SSA readouts, consistent with its known roles in both path-

ways,84 whereas knockdown of BRCA2, which functions selec-

tively in HDR, caused a compensatory increase in SSA85

(Figures 6H-6J). Similarly, knockdown of RIF1, a well-known pro-

tein involved in non-homologous end joining (NHEJ),86 led to a

compensatory increase in HDR.

Having verified that these well-known factors alter reporter

activity in predictable ways, we then turned to candidates not

yet shown to function in DSR. Of 15 tested proteins, knock-

down of 12 significantly altered DNA repair efficiency as

measured by the HDR or SSA reporters (Figure 6J). A

preponderance of these knockdowns increased HDR efficiency

while simultaneously decreasing SSA efficiency (6 proteins:

ELAVL1, DDX50, DPF2, HNRNPDL, RAI14, and RBBP7). One

knockdown that reduced the efficiency of both reporters, like

the BRCA1 control, was that of Myeloid Leukemia Factor 2

(MLF2, Figures 6H–6J, S4B, and S4C; Table S4). In general,

proteins with activity in the DSR assays were distributed

broadly across the DDRAM map, including expected effects

from proteins in HR and NHEJ assemblies and major unex-

pected effects from those in the CHEK2-SPECC1-RAI14 as-

sembly (Asm821), stress response, and vesicle trafficking as-

semblies. This result was in contrast to the high specificity

we had observed for SSR assays, which identified proteins

exclusively in BER assemblies (Figure 6D).

Navigating the multi-scale map
We developed an interactive web-based system (ccmi.org/

ddram) to enable the research community to access and analyze

the DDRAM resource (STAR Methods). The system offers facil-

ities for visualization, search, and enrichment analysis (HiView,

Figure 7) as well as data export. Visually, the collection of protein

assemblies at different scales of analysis is represented as a

kaleidoscopic series of nested circles (see also Figure 3F). For
(G) Scoring of HDR and SSA reporters using fluorescencemicroscopy and image a

‘‘isolate non-reporter channel’’ is 25 mm.

(H) HDR activity after indicated siRNA knockdowns. Knockdown of BRCA1 is exp

factor, increases reliance on HDR (control +); NTC, non-targeting control (contro

(I) SSA activity for gene siRNA knockdowns. Knockdown of BRCA2 is expected t

Other controls and notation as for (I).

(J) Genes selected for HDR/SSA analysis and summary of results.
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each assembly (circle), the supporting network of DAS scores

is shown in a separate pane on the right. Individual protein inter-

actions in the network can be selected to reveal the most sup-

portive data types as determined with the SHAP method (see

above), increasing the transparency with which any given protein

is assigned to a particular assembly. Users can opt to color pro-

teins by their assembly assignments or by alternate information,

such as the predominant evidence type supporting the inclusion

of the protein, whether a protein is involved in multiple assem-

blies, whether it is an AP-MS bait or prey, or whether it was pre-

viously documented in DDR.

DISCUSSION

This work deploys an integrative multi-omics strategy to identify

a compendium of DDR factors and organize them into a hierar-

chical map of protein assemblies at progressive physical scales.

The resulting resource, DDRAM, complements current protein

function databases in three interrelated ways. First, DDRAMpro-

vides a data-driven definition for whether a protein is assigned to

DDR, based on quantitative and reproducible rules for weighing

the strength of the experimental evidence (Figure 3A; STAR

Methods). Second, DDR proteins are assigned to modular as-

semblies that are themselves identified by quantitative, repro-

ducible rules (Figure 3F). For both of these reasons, DDRAM is

not restricted to well-studied proteins or known functional cate-

gories but readily incorporates new elements through systematic

consideration of the integrated data. Third, the systematic

formulation of DDRAM means it is also scalable, in that it can

be regularly updated to incorporate future large-scale experi-

ments in an automated and sustainable manner.

Although DDRAM includes most previously recorded DDR

proteins and their specific assignments to repair systems (Fig-

ure 4A), it also captures proteins not yet annotated to DDR (Fig-

ure 3C; Table S3). Our experiments with the HDR and SSA EGFP

reporters (Figures 6E–6J) provide, to our knowledge, the first

direct experimental evidence of the involvement of 12 of these

candidates in modulating the repair of DNA DSBs. All but two

(SFN/14-3-3s and ELAVL1/HuR) have yet to be associated

with DDR generally.87,88 Some of these proteins were highlighted

by their inclusion in smaller highly robust systems. The CHEK2-

SPECC1-RAI14 assembly (Asm821), for example, was identified

based on our AP-MS pull-downs of the cell-cycle checkpoint

protein CHEK2 (Figure 4D) and includes the proteins sperm an-

tigen with calponin homology and coiled-coil domains 1

(SPECC1) and retinoic acid induced 14 (RAI14), for which the

functions have been largely uncharacterized. Knockdown of

these proteins caused significant increases in HDR activity,

with effects for SPECC1 in excess of the RIF1 positive control

(Figure 6H). These proteins may be substrates of CHEK2 or,

alternatively, modulators of its kinase activity or subcellular
nalysis. The scale bar for ‘‘collection of imaging data’’ is 1mm; the scale bar for

ected to decrease activity (control �), whereas knockdown of RIF1, an NHEJ

l 0). *p % 0.05, **p % 0.01, ***p % 0.001 versus NTC by Mann-Whitney U test.

o direct resected DNA to the SSA pathway, increasing SSA activity (control +).

http://ccmi.org/ddram
http://ccmi.org/ddram


Figure 7. Interactive visualization of DDRAM

(A) Visualization of the hierarchical multi-scale structure of DDRAM as a circle packing layout. Protein assemblies appear as circles. Containment of one circle by

another represents containment of one assembly by another. Blue shading indicates depth of nesting (lighter, deeper nesting).

(B) Data view shows the network underlying the currently selected assembly (FA cluster, orange circle outline in A). Protein color denotes sub-assembly structure

(shown) or other properties such as curation status in literature-curated DDR databases.

(C) Panel with advanced search functions for proteins and assemblies. Following a search for specific protein IDs, the matching proteins are highlighted in bright

colors (red, green, orange in A).

(D) Control panel for inspection and analysis of the selected assembly. Selecting the interaction between any given two proteins in (B) will display the respective

SHAP analysis in (D).
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location. Apart from these proteins, the majority of HDR/SSA-

validated proteins (7/12) are contained within the ‘‘DNA repair

superassembly’’ which encompasses the major DNA repair

pathways. In some cases, these experiments are further sup-

ported by results from previously published ‘omics datasets.

MLF2, for example, has been reported to be transcriptionally up-

regulated in response to DNA damage89,90 but, until our study,

had not yet shown to have direct protein-protein associations

or functional effects within DNA repair. Here, we observed a sig-

nificant requirement for both HDR andSSA, similar to BRCA1 but

with a milder phenotype (Figure 6H). A more common pattern

among protein knockdowns was to increase HDR while

decreasing SSA in a compensatory fashion. This result supports

these proteins as SSA factors or, alternatively, suppressors of

HDR. Another possibility is that some of the proteins function

at cell-cycle checkpoints, as such factors can also score signif-

icantly in HDR/SSA assays. Notably, none of the knockdowns

tested were particularly toxic to cells in the absence of a dou-

ble-stranded DNA break (Figure S4C), suggesting that any ef-

fects on cell proliferation are linked to DNA damage.

In contrast to the HDR/SSA assays, which corroborated pro-

teins and assemblies across the DDRAM map, the DNA break

recruitment assay very specifically highlighted proteins in the
BER and short-patch BER assemblies (Figures 6A–6D). Although

the recruitment of the scaffold protein XRCC1 to sites of DNA

damage is known to be PAR-dependent,91 we found that the

XRCC1-binding proteins POLb and LIG3 are also recruited in a

PAR- and XRCC1-dependent manner and that APLF is depen-

dent on PAR but less so on XRCC1 (Figure S4A). These findings

suggest a model whereby the recruitment of the BER assembly

to sites of DNA damage is primarily dependent on PAR formation

and, for some factors, further dependent on XRCC1 (Figure 6D).

As an exception, our experiments show that PNKP is recruited

mostly independent of PAR and of XRCC1, despite the physical

interaction between XRCC1 and PNKP at multiple contact

sites.92 Regardless, the close alignment between the BER as-

sembly in DDRAM and the DNA break recruitment assay serves

as a proof-of-concept for how readers might select other

DDRAMsystems of interest and pair themwith specificmatching

readouts for further study.

Another source of experimental support for DDRAM was pro-

vided by chemogenetic screens, which complement the protein

assemblies along several lines. First, chemogenetic screens

benefit DDRAM by serving to functionally validate any assem-

blies that are specifically enriched for proteins required for

a given genotoxic response. Indeed, we noted that the
Cell Systems 14, 1–17, June 21, 2023 11
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organization of DDRAM assemblies was closely aligned to the

genotoxicity response profiles, providing support for many as-

semblies (Figures 5A and 5B). Second, DDRAM benefits chemo-

genetic screens by structurally organizing their hits (i.e., proteins

determined to regulate a genotoxic response). The ability to

organize hits into common protein assemblies suggests a com-

mon mechanistic role. A third result of integrating DDRAM with

chemogenetics is to classify genotoxins into distinct groups ac-

cording to their common dependencies on protein assemblies.

This classification reinforces known mechanisms of action while

representing a distinct, data-driven organization complementary

to the literature. In this vein, future studies (guided by protein as-

semblies and agent reclassification) have the potential to identify

new hits missed by the original screen.

A notable finding raised by DDRAM is the association of DDR

with mitochondrial function, including physical and functional in-

teractions of DDB2 and CHTF18 with multiple mitochondrial pro-

teins (SLC25A1, SLC25A10, MRPL11, NDUFA10, SSBP1, and

CYC1; Figure 4D). These results are supported by, and corrobo-

rate, prior reports of mitochondrial dysfunction in syndromes

with defective DDR and cancer predisposition.93 For example,

knockout of genes whose proteins localize to the mitochondrion

were shown to modify the cellular response to multiple DNA

damaging agents by inducing either resistance or sensitivity.94,95

Additionally, the abolition of mitochondrial fusion caused a sub-

stantial defect in ATM-mediated DDR signaling, impairing the

formation of BRCA1 and 53BP1 foci on genotoxic stress induc-

tion96; loss of mitochondrial complex I resulted in significant

sensitivity to olaparib in ovarian cancer cells97; and downreg-

ulation of mitochondrial genes was found in Fanconi anemia

patients.98 Finally, in prior results using fluorescence-based

protein microscopy (Human Protein Atlas: proteinatlas.org),

CHTF18 was localized to the cytosol, including mitochondria

as well as the nucleus, further supporting its mitochondrial

connection.

Limitations of the study
Given that DDRAM can systematically implicate proteins in

DDR, including previously unannotated ones, does this mean

it is completely unbiased? The answer to this question is almost

certainly ‘‘no,’’ since one clear bias lies in selection of the

21 proteins targeted by AP-MS experiments (‘‘baits’’), which

were focused on known DDR factors by design. Given this

initial selection, the interacting proteins (‘‘preys’’) are identified

in an unbiased proteome-wide fashion, however. Furthermore,

these targeted experiments are backstopped by the multi-

omics data, which add connections not covered by the tar-

geted experiments, prioritized by the strength of support

across multiple lines of evidence. Another potential bias lies

in the choice of breast cells for the AP-MS studies or the choice

of etoposide as DNA damaging agent. Etoposide triggers a

broad cellular response invoking multiple DDR-related path-

ways,52 a fact reflected in our own analysis (Figure 5A). It is

also a prominent chemotherapy in treatment of breast cancer

and many other tumor types; hence, the relevance of these

conditions for this initial DDRAM map. Regardless, the explora-

tion of further cellular and genotoxic contexts is clearly desir-

able and will be greatly aided by ongoing efforts to improve

the efficiency and cost of protein interaction mapping.99–102
12 Cell Systems 14, 1–17, June 21, 2023
Moreover, as such technology improves, the framework pre-

sented here might be further generalized and extended,

providing a template for construction of multi-scale maps for

other biological processes and diseases.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Reagents

Fetal bovine serum Bio-Techne Cat. No. S11150

DMEM Corning Cat. No. 15-017-CV

L-glutamine Thermo Fisher Scientific Cat. No. 25030-081

Penicillin/streptomycin Thermo Fisher Scientific Cat. No. 15140-122

Dimethyl Sulfoxide Thermo Fisher Scientific Cat. No. BP231-1

ABT-888 (Velipirab) Selleckchem Cat. No. S1004

Polybrene Sigma Cat. No. 107689

4-chamber glass bottom vessel Thermo Fisher Scientific Cat. No. 155382

Bromodeoxyuridine (BrdU) Sigma-Aldrich Cat. No. B5002

OptiMEM Thermo Fisher Scientific Cat. No. 31985062

Lipofectamine3000/P3000 Thermo Fisher Scientific Cat. No. L3000015

Paraformaldehyde 4% in PBS Thermo Fisher Scientific J61899-AP

S100A9 taqman assay Thermo Fisher Scientific Cat. No. 4453320; Target Hs00610058_m1

NUP188 taqman assay Thermo Fisher Scientific Cat. No. 4448892; Target Hs00299469_m1

CETN3 taqman assay Thermo Fisher Scientific Cat. No. 4448892; Target Hs01055319_m1

DRG1 taqman assay Thermo Fisher Scientific Cat. No. 4448892; Target Hs02563393_s1

DST taqman assay Thermo Fisher Scientific Cat. No. 4448892; Target Hs00156137_m1

CSTA taqman assay Thermo Fisher Scientific Cat. No. 4448892; Target Hs00193257_m1

BRCA1 taqman assay Thermo Fisher Scientific Cat. No. 4453320; Target Hs01556193_m1

BRCA2 taqman assay Thermo Fisher Scientific Cat. No. 4453320; Target Hs00609073_m1

RIF1 taqman assay Thermo Fisher Scientific Cat. No. 4448892; Target Hs00871714_m1

GAPDH taqman assay Thermo Fisher Scientific Cat. No. 4453320; Target Hs02786624_g1

SFN taqman assay Thermo Fisher Scientific Cat. No. 4453320; Target Hs00968567_s1

MLF2 taqman assay Thermo Fisher Scientific Cat. no. 4448892; Target Hs1088031_g1

RAI14 taqman assay Thermo Fisher Scientific Cat. no. 4448892; Target Hs00210238_m1

RBBP7 taqman assay Thermo Fisher Scientific Cat. no. 4448892; Target Hs00171476_m1

ZC3H15 taqman assay Thermo Fisher Scientific Cat. no. 4448892; Target Hs00218440_m1

DDX50 taqman assay Thermo Fisher Scientific Cat. no. 4448892; Target Hs00997319_g1

HNRNPDL taqman assay Thermo Fisher Scientific Cat. no. 4448892; Target Hs00943609_m1

SPECC1 taqman assay Thermo Fisher Scientific Cat. no. 4448892; Target Hs01060510_m1

DPF2 taqman assay Thermo Fisher Scientific Cat. no. 4448892; Target Hs01091979_g1

ELAVL1 taqman assay Thermo Fisher Scientific Cat. no. 4453320; Target Hs00171309_m1

siGENOME Human S100A9 Horizon M-011384-02-0005

siGENOME Human NUP188 Horizon M-032297-01-0005

siGENOME Human CETN3 Horizon M-011832-00-0005

siGENOME Human DRG1 Horizon M-019818-01-0005

siGENOME Human DST Horizon M-011596-02-0005

siGENOME Human CSTA Horizon M-010020-01-0005

siGENOME Human BRCA1 Horizon M-003461-02-0005

siGENOME Human BRCA2 Horizon M-003462-01-0005

siGENOME Human RIF1 Horizon M-027983-01-0005

siGENOME Human SFN Horizon M-005180-00-0005

siGENOME Non-Targeting siRNA Pool #1 Horizon D-001206-13-05

siGENOME Human MLF2 Horizon M-012703-02-0005

(Continued on next page)
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siGENOME Human RAI14 Horizon M-013919-00-0005

siGENOME Human RBBP7 Horizon M-011375-01-0005

siGENOME Human ZC3H15 Horizon M-020777-01-0005

siGENOME Human DDX50 Horizon M-004255-00-0005

siGENOME Human DPF2 Horizon M-004444-00-0005

siGENOME Human ELAVL1 Horizon M-003773-04-0005

siGENOME Human HNRNPDL Horizon M-012070-01-0005

siGENOME Human SPECC1 Horizon M-015803-01-0005

CellTiter Glo Promega Cat. No. G9242

Cell line growth media

DMEM with 10% FBS, 80u Penicillin/80mg

Streptomycin 2mM L-Glutamine

This study Media #1

Media #1 supplemented with

Puromycin (1.0 mg/ml)

This study Media #2

Media #1 without Penicillin and Streptomycin This study Media #3

Cell lines (description)

U2OS (Human osteosarcoma tumor cell line) ATCC Media #1

U2OS/RealPAR (U2OS cells

expressing the PAR probe, RealPAR)

PMID: 34731617 Media #1

U2OS/EGFP-POLB (U2OS cells expressing

an EGFP-POLB fusion protein)

This study Media #1

U2OS/XRCC1-EGFP (U2OS cells expressing

a XRCC1-EGFP fusion protein)

This study Media #1

U2OS/EGFP-APLF (U2OS cells expressing

an EGFP-APLF fusion protein)

This study Media #1

U2OS/EGFP-LIG3 (U2OS cells expressing

an EGFP-LIG3 fusion protein)

This study Media #1

U2OS/PNKP-EGFP (U2OS cells expressing

a PNKP-EGFP fusion protein)

This study Media #1

U2OS/APTX-EGFP (U2OS cells expressing

an APTX-EGFP fusion protein)

This study Media #1

U2OS/XRCC1-KO (U2OS cells Cas9

and a XRCC1 gRNA)

PMID: 31287140 Media #2

U2OS/XRCC1-KO/EGFP-POLB (U2OS/XRCC1-

KO cells expressing an EGFP-POLB fusion protein)

This study Media #2

U2OS/XRCC1-KO/EGFP-APLF (U2OS/XRCC1-

KO cells expressing an EGFP-APLF fusion protein)

This study Media #2

U2OS/XRCC1-KO/EGFP-LIG3 (U2OS/XRCC1-KO

cells expressing an EGFP-LIG3 fusion protein)

This study Media #2

U2OS/XRCC1-KO/PNKP-EGFP (U2OS/XRCC1-

KO cells expressing a PNKP-EGFP fusion protein)

This study Media #2

U2OS/XRCC1-KO/APTX-EGFP (U2OS/XRCC1-

KO cells expressing an APTX-EGFP fusion protein)

This study Media #2

U2OS DR/SA-GFP PMID 22941618 Stark lab

Vectors (Description)

pLV-CMV-EGFP/POLB-Hygro (EGFP Fused

to the N-Terminus of Human POLB & a

Hygromycin Resistance Cassette)

PMID: 34731617 Sobol lab stock 1573

pLV-CMV-XRCC1/EGFP-Hygro (EGFP Fused

to the C-Terminus of Human XRCC1 & a

Hygromycin Resistance Cassette)

PMID: 34731617 Sobol lab stock 1726

(Continued on next page)
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pLV-EF1A-RealPAR-Hygro (PAR Binding

Domain Fused to EGFP & a Hygromycin

Resistance Cassette)

PMID: 34731617 Sobol lab stock 1727

pLV-EF1A-EGFP/APLF-Hygro (EGFP Fused

to the N-Terminus of Human APLF & a

Hygromycin Resistance Cassette)

This study Sobol lab stock 2027

pLV-EF1A-EGFP/LIG3-Hygro (EGFP Fused

to the N-Terminus of Human LIG3 & a

Hygromycin Resistance Cassette)

This study Sobol lab stock 2028

pLV-EF1A-PNKP/EGFP-Hygro (EGFP Fused

to the C-Terminus of Human PNKP & a

Hygromycin Resistance Cassette)

This study Sobol lab stock 2030

pLV-EF1A-APTX/EGFP-Hygro (EGFP Fused

to the C-Terminus of Human APTX & a

Hygromycin Resistance Cassette)

This study Sobol lab stock 2031

pEXPLVX-DDB2 (WT)-3xFLAG (3xFLAG

Was Fused to the C-Terminus of Human DDB2

(WT) & a Puromycin Resistance Cassette)

This study CCMI #874

pEXPLVX-DDB2 (R273H)-3xFLAG (3xFLAG

Was Fused to the C-Terminus of Human DDB2

(R273H) & a Puromycin Resistance Cassette)

This study CCMI #875

pEXPLVX-3xFLAG-SPRTN (WT) (3xFLAG

Was Fused to the N-Terminus of Human SPRTN

(WT) & a Puromycin Resistance Cassette)

This study CCMI #876

pEXPLVX-3xFLAG-SPRTN (E112A) (3xFLAG

Was Fused to the N-Terminus of Human SPRTN

(E112A) & a Puromycin Resistance Cassette)

This study CCMI #877

pEXPLVX-NBS1-3xFLAG (3xFLAG Was Fused

to the C-Terminus of Human NBS1 & a

Puromycin Resistance Cassette)

This study CCMI #878

pEXPLVX-3xFLAG-MUS81 (3xFLAG Was Fused

to the N-Terminus of Human MUS81 & a

Puromycin Resistance Cassette)

This study CCMI #879

pEXPLVX-ERCC1-3xFLAG (3xFLAG Was Fused

to the C-Terminus of Human ERCC1 & a

Puromycin Resistance Cassette)

This study CCMI #880

pEXPLVX-TDP2-3xFLAG (3xFLAG Was Fused

to the C-Terminus of Human TDP2 & a

Puromycin Resistance Cassette)

This study CCMI #881

pEXPLVX-3xFLAG-CHTF18 (3xFLAG Was Fused

to the N-Terminus of Human CHTF18 & a

Puromycin Resistance Cassette)

This study CCMI #882

Software and Algorithms

CliXO 1.0, Author: Fan Zheng PMID: 34591613 https://github.com/fanzheng10/CliXO-1.0

CompPASS (version 0.0.0.9000) GitHub https://github.com/dnusinow/cRomppass/

blob/master/R/co mppass.R

SAINTexpress (version 3.6.1) Sourceforge https://sourceforge.net/projects/saintapms/files/

MaxQuant (version 2.0.3.1) Jurgen Cox Lab https://www.maxquant.org/

GraphPad Prism GraphPad Version 8, (Mac OS X)

MIDAS PMID: 34731617 https://zenodo.org/record/5534950

alignOntology, Author: Michael H. Kramer PMID: 23242164 https://github.com/mhk7/alignOntology

HiView, Contributors: Keio Ono, Anton

Kratz, Christopher Churas, Jing Chen,

Rudolf T. Pillich, Dexter Pratt, Trey Ideker

GitHub https://doi.org/10.5281/zenodo.7762010
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Human DNA Repair Genes, Last Modified

Wednesday, 10th June 2020

MD Anderson http://www.mdanderson.org/documents/

Labs/Wood-Laboratory/human-dna-

repair-genes.html

BZ-X Analyzer Keyence http://keyence.com

Deposited Data

DDRAM (DNA Damage Response Assemblies

Map) hierarchy

This study NDEx: https://doi.org/10.18119/N9X31K

DAS (DDR Protein Association Score)

Scores for All Human Protein Pairs

This study DRYAD: https://doi.org/10.6076/D17304

Mass Spectrometry Raw Data Files and Search

Results of AP-MS of 15 DDR Protein Baits (CHEK2,

SMARCB1, BRCA1, MSH2, RAD51C, RAD51D,

PALB2, XPC, ARID1A, BRIP1, FANCC,MLH1,

XRN2, RPA2, SMARCD1) from Etoposide-Treated

MCF10A, MCF7, and/or MDA-MB-231 Cells

This study http://www.proteomexchange.

org/, PXD028064

Mass Spectrometry Raw Data Files and Search

Results of AP-MS of 7 Additional DDR Protein Baits

(CHTF18, DDB2, SPRTN, MUS81, NBN, ERCC1,

TDP2) from MDA-MB-231 Cells with or

without Etoposide Treatment

This study http://www.proteomexchange.

org/, PXD037494
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Trey

Ideker <tideker@health.ucsd.edu>.

Materials availability
Plasmids generated in this study are available upon request under material transfer agreement.

Data and code availability
d All mass spectrometry raw data files and search results from this study are deposited in the PRIDE partner ProteomeXchange

repository103 (http://www.proteomexchange.org/). ProteomeXchange records can be accessed with the identifiers

PXD028064 and PXD037494. The DAS network is available at https://doi.org/10.6076/D17304. All data reported in this paper

will be shared by the lead contact upon request.

d The DDRAMhome page at ccmi.org/ddram provides links to (1) DDRAMas aCytoscape-compatible network onNDEx (https://

doi.org/10.18119/N9X31K) and (2) DDRAM viewed in the HiView web application.

d The HiView source code is available under an open source license at https://doi.org/10.5281/zenodo.7762010

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

AP-MS for DDR proteins
The cDNAs of selected bait proteins were cloned into doxycycline-inducible 3xFLAG-tagged lentiviral vectors and transduced into

MDA-MB-231 cells. After doxycycline-induced expression, anti-FLAG-based affinity-purification was performed as previously

described.53 To examine the effects of DNA damage, cells were either untreated or treated with the DNA damaging agent etoposide

(2.5 uM, 16 hrs) before harvesting. Co-associated ‘‘prey’’ proteins were identified by mass spectrometry and scored to select high-

confidence interactions. In particular, protein spectral counts as determined by MaxQuant (version 2.0.3.1) were used for protein-

protein interaction (PPI) confidence scoring by both SAINTexpress104 (version 3.6.1) and CompPASS105 (version 0.0.0.9000). For

SAINTexpress, control samples in which bait protein was not induced by doxycycline were used. For CompPASS, a statistics table

representing all non-doxycycline-induced samples (at least one per each bait) was used as background control. To produce a PPI

dataset of high quality, we required PPIs to pass stringent criteria by both SAINT and CompPASS algorithms. We defined a PPI score

on a scale between 0 and 1, wherein WD (from CompPASS) and BFDR (from SAINTexpress) were equally weighted:

PPI score = ½WD per bait percentile + ð1 -- BFDRÞ�=2
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WD is a metric calculated from total spectral counts, which incorporates the reproducibility, specificity and abundance of each

interaction. BFDR is a Bayesian False Discovery Rate. To define DDR interaction networks (Figure 2), we included protein pairs

for which PPI scoreR 0.9 in either treatment condition. For these pairs we also calculated a differential interaction score Sdiff accord-

ing to the formula:

Sdiff = Streated ✕ ð1 -- SuntreatedÞ
where Streated and Suntreated are the SAINTexpress confidence scores determined for each respective interaction. Sdiff was assigned a

Bayesian false discovery rate (BFDR) estimate as described,104 with interactions having Sdiff BFDR % 0.2 defined as ‘‘differential’’.

Functional enrichment analysis of interaction partners (preys) was performed via overrepresentation test using the PANTHER GO

Biological Process Complete database (version 17.0).106 GO terms were reanalyzed by Revigo (Tree Map) to identify cluster-repre-

sentative terms.107 For the AP-MSperformed in untreated conditions, data for some baits were newly collected here (CHTF18, DDB2,

ERCC1, MUS81, NBN, SPRTN, TDP2), whereas data for remaining baits had been collected earlier using an identical pipeline.53 For

TDP2 AP-MS experiments, no interactions passed the selection criteria described above (save for pulldown of TDP2 itself); therefore

TDP2 was excluded from further analysis.

Collection of multi-omics datasets
We compiled a collection of 112 feature vectors describing interactions among all pairs of proteins encoded by the human genome

(Human Genome Organization gene symbols as of Feb. 2017; 19,035 unique symbols). Interaction evidence was categorized by four

major classes: physical interaction, co-expression, co-abundance and co-essentiality (Figure 1B; Table S1).

Physical interaction (8 features)

We selected four studies for the physical interaction feature class: BioGRID v4.4.209 (restricted to high-confidence PPIs in the ‘‘multi-

validated’’ category),55 BioPlex 2.0,108,109 hu.Map,110,111 and the Human Reference Interactome (HuRI).112 The result was a

vector of scores on 181,156,095 human protein pairs for each of the four studies. For BioGRID and HuRI, scores were

provided as binary values (1 = interaction / 0 = non-interaction), whereas for BioPlex and hu.Map scores were provided as real

numbers in the range [0, 1]. We also created embedded representations of each of the four studies using node2vec113 with standard

parameters.

mRNA co-expression (91 features)

For mRNA co-expression features, we selected four sources: cell line collections from the CCLE114 (16 features), GDSC115

(20 features), human tumor samples from the TCGA project116 (28 features), and healthy human tissues from GTEx117 (27 features).

Co-expression was calculated as Pearson correlation.

Protein co-abundance (3 features)

Protein co-abundance was calculated using the Pearson correlation, drawing proteomics data from two studies from the Clinical Pro-

teomic Tumor Analysis Consortium (CPTAC) in breast118 and ovarian119 cancer samples, and an additional breast cancer cell line

study.120

Genetic co-essentiality (10 features)

The genetic co-essentiality feature class included CRISPR/Cas9 gene loss-of-function screens, which have examined the effects on

cell proliferation of knockouts of each non-essential human gene across different cell lines121 (DepMap) or genotoxic conditions.44

For each gene pair in DepMap, we computed the pairwise ‘‘co-essentiality’’ as the Pearson correlation of dependency scores across

cell lines. Separate gene-gene correlations were computed for the cell lines belonging to each DepMap tissue type (7 features) and

also for all cell lines, regardless of tissue, as a single global profile (1 feature). A similar gene-gene co-essentiality scorewas computed

using the z-scores measured for each gene across genotoxic agents profiled by Olivieri et al.,44 including an embedded represen-

tation of the Olivieri screen using node2vec113 with standard parameters (2 features). NB: To avoid circularity, the cross-comparison

of DDR protein assemblies with the Olivieri chemogenetic screen (Figure 5) used an alternative version of DDRAM built without these

features as input.

Integration of evidence to build the DAS score
The DDRAP-MS andmulti-omics data (see above sections) were integrated to obtain a single quantitative DAS score for each protein

pair (Figure 3A), as follows. First, the DDR AP-MS interactions were added to the BioGRID physical interaction feature, by setting this

feature to its maximum value of 1 for all protein pairs identified by the DDR AP-MS to interact in either condition, untreated or etopo-

side. Following this step, the node2vec embedded representation of BioGRID was recomputed as well. [NB: The rationale for

including the new AP-MS data in this way is that BioGRID is a general protein interaction database that attempts to summarize

data from all prior published interaction studies. Here we thus performed a pre-publication update to BioGRID, since following pub-

lication of our study the public BioGRID repository would soon contain our data.] Following this update, the entire set of multi-omics

features was used as inputs to a random forest regression model trained to predict protein-protein functional similarity. As a ‘‘bronze

standard’’ for functional similarity, we used the hierarchical ontology of DDR functions previously curated from literature by a com-

mittee of human experts.18 This ontology contained 75 functions spread across 5 increasingly specific layers (Figure S1), with func-

tions annotated for a total of 424 DDR proteins. To broaden training, we added to this ontology an ‘‘outgroup’’ of the same number of

proteins (n=424), each annotated directly to the root. Outgroup proteins were selected arbitrarily from those not in the Pearl reference

and not annotated with subcellular locations in the nucleus according to the Human Protein Atlas,122 making them less likely to be
e5 Cell Systems 14, 1–17.e1–e8, June 21, 2023
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DNA repair proteins. Given this annotated hierarchy, the pairwise similarity sa,b for proteins (a, b) was calculated using the Resnik

semantic similarity score123 as:

sa;b = --log2 ð
��Fa;b

���jFRjÞ
|X| The size of function X in number of proteins annotated to it or its hierarchical descendants.

Fa,b The smallest common ancestor function of all functions annotated to a and b.

FR The root function of the hierarchy.

The random forest regression model was trained to predict this Resnik similarity score from the collection of input features. The

random forest was implemented using the ‘‘RandomForestRegressor’’ class from scikit-learn124 with the number of estimators (num-

ber of trees in the forest) set to 100 and tree depth set to 25 (determined to be the smallest number for optimal out-of-bag prediction).

Following training, the outputs of the random forest were taken as the collection of DAS scores for all human protein pairs (https://doi.

org/10.6076/D17304).

Multi-scale community detection
We used CliXO 1.061,62 to identify the multi-scale (hierarchical) structure of communities present in the network of DAS scores.CliXO

1.0 has four parameters which influence the breadth (a), depth (b) and sensitivity (m and z) of the clustering (Figures S2A and S2B). To

select these, we generated 320 maps systematically scanning over different parameter combinations. These maps were evaluated

according to a variety of criteria, including the agreement with reference databases of DDR gene function and independent sources of

protein interactions. For example, we noted significant enrichment for protein-protein interactions measured by OpenCell,67 with

such enrichment seen over the entire range of CliXO parameter settings (Figure S2C). We selected the map with parameter set

{a = 0.125, b = 0.500, m = 0.020, z = 0.050}, as it scored relatively high by such alignment criteria while at the same time having

one of the smallest numbers of assemblies overall and thus preserving parsimony. The result was a directed acyclic graph (DAG),

in which nodes represent protein assemblies and directed edges (a/b) represent containment, i.e. assembly a contains assembly

b. This DAG, together with the labels assigned to the assemblies (see next section), was taken as themapwe call DDRAM (Figure 3G).

Labeling protein assemblies
Protein assemblies were labeled with informative names in a multi-stage process. In the first stage, we assigned names by aligning

DDRAM to the reference ontology of DDR functions18 (Figure S1). An ontology ‘‘alignment’’ was defined as amapping of each assembly

in DDRAM to at most one assembly in the reference, and vice versa. Ontology alignment was performed using the alignOntology algo-

rithm125 with parameters {similarity value accepted= 0.01,modeof alignment= ‘‘criss_cross’’}. For successful 1:1 alignments, the name

of the DDR reference function was transferred to the label of the DDRAM assembly. For assemblies that still did not have a label, this

initial stage was followed by a second stage of labeling. In this second stage, the alignment procedure was repeated substituting the

Pearl et al. referencewith the DDR branch of theGeneOntology v2022-03-2216 (subhierarchy under ‘‘GO 0006974: Cellular response to

DNA damage stimulus’’). Following these two stages of automated labeling, all DDRAM assembly labels were validated individually by

the authors, with labels adjusted as necessary to best capture the state of knowledge of the assembly with respect to DDR pathways.

Assembly robustness analysis
We sought to prune from DDRAM those assemblies whose identification was not robust to random perturbations to the input fea-

tures. For this purpose, we generated 100 different multi-omic input sets, each using different random seed parameters to

compute the node2vec embeddings. From each bootstrapped input feature set, we built a novel instance of DDRAM with the

same community detection parameters as determined previously; each bootstrapped DDRAM instance was then aligned to the

original non-bootstrapped DDRAM using ontology alignment (community detection and ontology alignment are described in above

sections). The mean alignment score of each assembly over the 100 bootstrapped alignments was denoted as the assembly

‘‘robustness’’. We noted 25 assemblies with low robustness score <25% which were also incoherent functionally with insignificant

enrichment in any branch of the Gene Ontology (save for one assembly, Vesicles and Secretion); these incoherent assemblies

were removed from DDRAM. [NB: Removing an assembly did not remove any proteins from DDRAM, as these defaulted to anno-

tate their ancestor assemblies.]

Analysis of important evidence types
SHapley Additive exPlanations scores (SHAP)65,66 were used to understand which of the multi-omic input features were most impor-

tant in driving the DAS score of any particular pairwise protein-protein interaction. A DAS score was deconvolved into a set of 112

SHAP scores (one for each input feature, see above) using GPUTreeExplainer.126 To derive the importance score of an assembly

(Figure 4B), we selected the 2000 interactions with the highest SHAP scores for each input feature class (physical, co-expression,

co-abundance, dependency), then calculated the fraction of these interactions in each assembly. To determine the information

that should be displayed when selecting a particular protein-protein interaction in the DDRAM visualization system (HiView, see

below), we elected to show the input features with largest relative SHAP scores (absolute value larger than the median SHAP score

plus one standard deviation).
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Lentivirus transduction
Lentiviral vectors (VectorBuilder, Inc.) were designed for expression of proteins of interest (Figure 6A) as EGFP fusions. Lentiviral

particles were generated by co-transfection of plasmids into 293-FT cells using the TransIT-X2 Transfection reagent. These cor-

responded to the packaging vectors pMD2.g (VSVG), pVSV-REV and pMDLg/pRRE together with the appropriate shuttle vectors

(key resources table). Forty-eight hours after transfection, lentivirus-containing supernatant was collected and passed through

0.45 mM filters to isolate viral particles as described previously.127–129 Lentiviral transduction was performed in U2OS cells ar-

rayed in 6-well plates at �23105 cells/well. Approximately 24h later, lentiviral particles were mixed with polybrene (8mg/ml),

added to the cells, and incubated at 32�C overnight. Cells were then cultured for at least 2 weeks at 37�C prior to further exper-

imental analysis.

Laser microirradiation
To assay for single-strand repair functions (Figures 6B–6D), approximately 53104 U2OS cells (expressing EGFP-fusion proteins, as

indicated above) were seeded into an 8-chamber glass bottom vessel. After 24 hours, media were removed and replaced with fresh

media optionally containing the PARP1/PARP2 inhibitor ABT-888 (10mM, Veliparib) or an equal volume of DMSO for controls. Cells

were incubated for 1h at 37�C, after which laser microirradiation was performed using a 405nm laser (1/8s stimulation). Time-lapse

images (20X objective) were collected every 15s during a 20m interval using a Nikon A1r confocal microscope (selected time points

shown in Figure S3). Images of focal recruitment were quantified using an in-house image analysis workflow (MIDAS) to detect focal

recruitment and statistically analyze image results.81 Individual cells (2 sets of 10 cells, each performed on 2 separate days for a total

of 40 cells analyzed) weremicro-irradiated and analyzed to generate recruitment profiles and kinetic parameters. Time to peak (mean

±SEM) and half-life of recruitment (mean±SEM) were determined using MIDAS. Statistical comparisons (one-way ANOVA followed

by Tukey’s post-hoc test) and graphical representations were generated using GraphPad Prism.

Double-strand repair assays
To assay for double-strand repair functions (Figures 6E–6J), U2OS cells were reverse transfected by plating 13105 cells in antibiotic-

free media in wells of a 24-well plate containing preformed transfection complexes with 15 pmol siRNA and 1.5 mL Lipofectamine

3000 Reagent (Invitrogen) in Opti-MEM (Fisher Scientific). This mixture was refreshed 24 hours post-transfection then, 48 hours

post-transfection, 1.5 mg I-SceI expression vector was delivered to each sample. Cells were incubated with transfection complexes

for 24 hrs at 37�C. Cells were replated onto 96-well optical plates (Corning) and allowed to grow for an additional 48 hours. Trans-

fection of each construct was performed in triplicate (biological replicate), and each replicate was plated to a total of four wells across

two plates (technical replicates). Cells were then stained with Hoechst33342 (Thermo) washed twice with PBS, fixed with 4% para-

formaldehyde (ThermoFisher) in PBS, and washed two more times with PBS. Cells were imaged using a Keyence microscope with a

10x Plan Apochromat Objective. DNA repair activity was assessed by quantification of the percentages of GFP+ cells, normalized by

plate and then to negative controls. Unnormalized percentages of GFP+ cells are shown in Table S4.

Cell viability assays to determine siRNA tolerance
U2OS cells were reverse transfected by plating 104 cells in antibiotic-free media in wells of a 96-well plate containing preformed

transfection complexes with 3 pmol siRNA and 0.3 mL Lipofectamine 3000. Media was replaced after 24 hours; after a further

24 hours, cells were replated into two 96-well plates. Transfection of each construct was performed in five separate wells (biological

replicate), and each replicate was plated to a total of twowells, one in each of two plates (technical replicates). Growth wasmeasured

using a Tecan Infinite M200 Pro using CellTiter-Glo (Promega) following the manufacturer’s protocol. Luminescence was normalized

by plate-matched negative control wells.

Quantitative Real-Time PCR (qRTPCR) to determine siRNA efficacy
U20S cells were reverse transfected by plating 105 cells in antibiotic-free media in wells of a 6-well plate (Corning) containing pre-

formed transfection complexeswith 75 pmol siRNA and 7.5 mL Lipofectamine 3000.Mediawas replaced after 24 hours; after a further

24 hours, cells were harvested. Total RNAwas extracted using an RNAEasyMini Plus Kit (Qiagen), and a cDNA library was generated

using an iScript cDNA synthesis kit. Relative RNA levels of GAPDH (control) and transcripts of interest (key resources table) were

assessed using a CFX96 real-time system with a C1000 Touch Thermal Cycler (Bio-RAD), with different fluorescent probes for

GAPDH and the transcript of interest registered to different wavelengths in the same well. Each sample was measured in triplicate.

Error was estimated by propagating the standard error of the mean of each change in critical threshold (dCt) value through subtrac-

tion and exponentiation.

Architecture of the interactive web portal
The DDRAM interactive portal is based on HiView, an application that users run in a web browser. The HiView front-end interface was

developed using the React framework (http://reactjs.org/) and designed to be easily deployed to Apache (http://httpd.apache.org/)

or Nginx (http://www.nginx.com/) web servers. The UI is based on a high-performance circle-packing rendering engine which pro-

vides an intuitive representation of multi-scale (hierarchical) relations among biological objects. This front end communicates with

back-end servers through RESTful APIs. To store and serve the DDRAM hierarchy and the associated DAS network, the back

end relies on the Network Data Exchange (NDEx, http://ndexbio.org/), a public cyberinfrastructure for biological network data.
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The back end also contains a data processing microservice written in Java. Source code for the HiView framework and the specific

DDRAM instance is available at https://github.com/idekerlab/hiview/tree/ddram-revise under an Open Source license.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analyses are described in the respective figure legends.

ADDITIONAL RESOURCES

The DDRAM map is available at http://ccmi.org/ddram.
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