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Desmosomes are transmembrane protein complexes that contribute to cell-cell adhesion

in epithelia and other tissues. Here, we report the discovery of frequent genetic

alterations in the desmosome in human cancers, with the strongest signal seen in

cutaneous melanoma where desmosomes are mutated in over 70% of cases. In primary

but not metastatic melanoma biopsies, the burden of coding mutations on desmosome

genes associates with a strong reduction in desmosome gene expression. Analysis by

spatial transcriptomics suggests that these expression decreases occur in keratinocytes

in the microenvironment rather than in primary melanoma tumor cells. In further support

of a microenvironmental origin, we find that loss-of-function knockdowns of the

desmosome in keratinocytes yield markedly increased proliferation of adjacent

melanocytes in keratinocyte/melanocyte co-cultures. Thus, gradual accumulation of

desmosome mutations in neighboring cells may prime melanocytes for neoplastic

transformation.
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Transformation of melanocytes to skin cutaneous melanoma (SKCM) includes interaction with

numerous cells in the tumor microenvironment which can play important roles in progression1,2.

One important component of this microenvironment is the keratinocyte, which forms the major

cellular component of the epidermis, the top layer of skin. Nascent melanoma cells detach from

neighboring keratinocytes, regulating melanocyte homeostasis through paracrine signaling and

cell-cell adhesion3–9 and impacting tumor proliferation and invasion.

A primary adhesion structure that facilitates the physical interaction between melanocytes and

keratinocytes is the desmosome, an intercellular junction conserved across vertebrates10.

Desmosomes have a transmembrane core composed of cadherin proteins (desmogleins and

desmocollins) which is linked via plakoglobin and plakophilin proteins to keratin filaments in the

cytoplasm11 (Fig. 1a). Alterations to desmosome components can impair tissue strength and

have been documented to have both positive and negative effects on cell proliferation and

differentiation12. For example, increases in expression of desmosome cadherins can stimulate

release of plakoglobin followed by increased Wnt/β-catenin signaling, and overexpression of

plakophilin 3 (PKP3) has been associated with poor patient survival and advanced disease

stage in non-small cell lung carcinomas13. In contrast, upregulation of plakoglobin has been

found to suppress cell proliferation in bladder cancer cells in vitro14,15.

While these studies have focused on desmosome expression, a separate question is whether

the desmosome is impacted by genetic mutations. Recently, we performed an integrative

analysis of protein biophysical interactions and tumor mutations16, resulting in a map of 395

protein complexes under mutational selection in one or more cancer types. One of these

complexes pointed to the desmosome as a potential focal point for accumulation of mutations in
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melanoma; however, at the time we did not validate or further explore this observation

(Supplementary Fig. 1).

Here, to investigate the importance of mutations to the desmosome complex, we began with a

comprehensive survey of somatic non-synonymous mutations impacting any of the 13

desmosome genes in aggregate, across 32 tumor tissue types profiled by The Cancer Genome

Atlas (TCGA). By far the highest mutation recurrence was observed for skin cutaneous

melanoma (SKCM), in which 71% of tumors harbored a desmosome coding mutation. In

contrast, desmosome mutation rates were substantially lower in all other tissue types (<40%,

Fig. 1b).

Since melanomas are one of the tumor types with generally high genome-wide burden of

mutations17, we sought to assess the significance of desmosome mutation rates in several

ways. First, we computed the excess mutational load on the 13 desmosome genes using

MutSigCV17, which takes into account the genome-wide mutation burden, the type of mutational

signature(s)18, and gene-specific factors such as mRNA expression level and time of replication

during cell cycle. We found that as a group, desmosome genes are mutated significantly more

often than expected, again with the strongest signal in melanoma (Fig. 1c). Second, we

repeated this analysis in an independent melanoma cohort19, again finding that desmosome

genes are highly and significantly mutated (Supplementary Fig. 2). These patterns did not

depend on the particular mutational model for expected mutational frequency (P < 10-20 using

MutSigCV17 and P < 10−9 using oncodriveFML20). Third, ranking human genes by decreasing

mutation frequency in melanoma, we found that all 13 desmosome genes were among the top

quartile, on par with the distribution of well-established melanoma cancer genes (Fig. 1d).
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Notably, none of the desmosome genes had been previously reported to be significantly

mutated in melanoma when analyzed individually17,19,21, perhaps since the mutational signal is

spread across the desmosome complex.

The finding that the desmosome is frequently mutated in melanoma was puzzling, since in

normal epidermis, desmosome function has been typically associated with keratinocytes rather

than melanocytes22. However, this is a point of some confusion, since melanocytes cultured in

the absence of other cell types have been shown to express the desmosomal cadherin Dsg223,24

leading to increased migration25. To more fully understand the patterns and cell types associated

with desmosome expression in melanoma tumors, we performed single-cell RNA sequencing

(scRNA-seq) on two human primary melanoma tumor biopsies encapsulating approximately

1,000 cells from each tumor using the inDrop system26,27 (Fig. 2a). Single-cell transcriptomes

were displayed using UMAP28 (Uniform Manifold Approximation and Projection) resulting in

clusters that matched pre-identified distinct cell types (Online Methods). Analysis against a

panel of established RNA markers for different human cell types distinguished clear populations

of immune, epithelial, muscle, keratinocyte and melanocyte tumor types (Fig. 2b). Examining the

expression profile of desmosome genes across these different types, we found desmosomes to

be predominantly expressed in keratinocytes (Fig. 2c-d). This analysis was corroborated by

published datasets of human metastatic melanoma29 and primary transgenic zebrafish tumors30,

in which we also found that desmosome expression is limited to keratinocytes (Supplementary

Fig. 3).

To investigate the relationship between desmosome expression and mutation, we next

examined multi-omics data collected from 472 melanoma tumors (104 primary and 368
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metastatic) by TCGA31. Analysis of these data indicated that the expression of the desmosome

system was significantly higher in primary than metastatic tumors (Fig. 3a). Examining the

matched somatic mutation data, we found that primary tumors with desmosome mutations had

significantly reduced expression of the desmosome complex in comparison to tumors without

such mutations (Fig. 3b). Moreover, in primary melanoma only, there was a strong inverse

relationship between the number of desmosome genes that are mutated in a tumor and overall

desmosome expression (Fig. 3c). Examining previously collected melanoma transcriptional

profiles29,32,33, we found that, in primary melanoma tumors, desmosome mutation associates with

significantly higher expression of genes related to cell proliferation (Fig. 3d). To determine if

these particular mutations are under evolutionary selection pressure, we calculated the ratio of

nonsynonymous to synonymous mutations (dN/dS)34 in the desmosome genes. We found that

dN/dS was approximately 2.5 in primary melanoma tumors, indicating strong positive selection,

and that this value was significantly larger than for metastatic melanoma tumors (Fig. 3e). These

results suggested that accumulation of mutations in the desmosome disrupt its expression in a

graded manner, and that these events are selected in primary, but not metastatic, melanoma.

We reasoned that the distinction between primary and metastatic melanoma could be due to at

least two explanations. First was the very different microenvironments of these two tumor

locales. Primary melanoma tumor biopsies tend to contain large numbers of surrounding

keratinocytes due to their growth within and below the epidermis, in contrast to metastatic

tumors which, apart from cutaneous metastases, lack the epidermal component and are

typically purer35. In this case, the decrease in desmosome expression could be due to loss of

desmosomal expression in keratinocytes. A second explanation was related to cancer-specific

transcriptional states of melanocytes. Since melanoma tumors can assume distinct
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transcriptional programs29,33,36, the effect on desmosome expression could be due to a change in

transcriptional state of melanocytes between primary and metastatic cancer.

To distinguish between these two possibilities, we performed a spatial transcriptomics analysis

on primary tumor biopsies drawn from a cohort of eight melanoma patients. Samples were first

characterized by bulk whole-exome sequencing, identifying three tumors with desmosome

mutations and five without (Fig. 4a, Supplementary Table 1). Paraffin-embedded sections of

each tumor were stained using specific markers to identify cancer melanocytes (S100B marker),

keratinocytes (pan-cytokeratin marker), or immune cells (CD45 marker). Using these markers,

48 regions of interest (ROIs, 4-8 per tumor ⨉ 8 tumors) were selected to enrich for melanocytes,

keratinocytes or a combination of both cell types (Fig. 4b). We then used the NanoString GeoMx

Spatial Profiler37 to measure the mRNA expression of 18,695 genes in each ROI.

Analysis of the spatial RNA data showed that the expression profiles of ROIs were

well-clustered according to cell type and desmosome expression levels (Supplementary Fig. 4).

Desmosome expression was very high in keratinocyte-enriched ROIs but barely detectable in

melanocyte-enriched ROIs (Fig. 4c), corroborating our earlier findings with scRNA-seq (Fig.

2b-c). Moreover, desmosome expression in keratinocyte ROIs was significantly lower in tumors

with desmosome mutations than in tumors lacking such mutations (Fig. 4d, P<0.05). In contrast,

we did not see substantial change in desmosome expression in melanocyte ROIs when

comparing mutated versus unmutated samples (Fig. 4d). Therefore, the spatial profiling data

supported a model in which desmosome mutation leads to a reduction in desmosome

expression specifically in keratinocytes.
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We next examined whether such loss of desmosome expression in keratinocytes could

influence the behavior of neighboring melanocyte tumor cells. For this purpose, we created a

keratinocyte cell line (HaCaT human immortalized keratinocytes, Online Methods) and

subjected this line to transient knockdown of the desmoplakin gene using small interfering RNAs

(DSP siRNAs, Supplementary Table 3). We chose to knockdown DSP since, out of all

desmosome-encoding genes, it was the one that had been shown previously to effectively

disrupt desmosome structure38, and it also had the single largest mutation burden in melanoma

patients (Fig. 1c-d). After confirming that DSP gene expression was significantly reduced by

siRNA knockdown (Supplementary Fig. 5, Online Methods), we examined the effect on cell

proliferation. For this purpose we characterized growth of both melanocytes and keratinocytes,

in both monoculture and co-culture conditions (Fig. 5a). In monocultures, DSP knockdown led to

a decrease in proliferation in keratinocytes but not in melanoma cells (Supplementary Fig. 6). In

contrast, when melanocytes and keratinocytes were grown together in co-culture, we found that

proliferation of melanoma cells increased by more than two-fold upon DSP knockdown in

keratinocytes (Fig. 5b). These results indicated that loss of desmosome expression in

keratinocytes can promote neighboring melanocyte growth (Fig. 5c).

Typically, studies of the cancer genome have focused on identifying frequent genetic alterations

in single genes, or associations between individual gene alterations and tumor functional

outcomes39–42. The main challenge of these gene-by-gene approaches is that most cancer

mutations are rare. However, consideration of groups of genes, corresponding to discrete

cellular components such as protein complexes and signaling pathways, provides an expanded

means of understanding mutational effects16,43–45. Using such a strategy we have shown that the

desmosome complex is frequently impacted by coding mutations in primary melanoma samples,
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associated with a substantial decrease in expression of desmosome components. Spatial

transcriptomic profiling indicates these expression decreases occur predominantly in

keratinocytes in the tumor local microenvironment rather than in melanocyte tumor cells. These

observations are corroborated by genetic disruptions showing that loss of the DSP desmosome

subunit in keratinocytes has the effect of amplifying the proliferation of adjacent melanocytes in

co-culture.

The observed interplay between keratinocytes and melanocytes stands in contrast to the usual

mode by which somatic mutations are thought to promote cancer, by direct selection in a clonal

population of tumor cells. Our results are however consistent with earlier findings that non-tumor

cells can indeed carry cancer-causing mutations, predominantly in genes associated with tumor

initiation rather than clonal expansion46–48. For example, a study of melanocyte transformation

identified that non-tumor cells close to a melanoma tumor have significantly greater numbers of

mutations than those farther away, including mutations in oncogenes such as BRAF49. Our

findings not only support the notion that tumors arise from a collection of cells rather than a

clonal population50–53, but they extend that notion to other cell types which are not necessarily

the cell type of origin. By such a model, mutations in complementary cellular communities may

alter expression programs and growth profiles which, in turn, help determine the order in which

specific mutations arise within the complex cancer tissue.
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Online Methods:

Statistical framework for desmosome enrichment. The enrichment of coding mutations in the

desmosome system was computed for each TCGA cancer cohort, as follows. We first used the

MutSigCV software17 to calculate the number of tumor samples expected to show mutations for

each desmosome gene, assuming that gene was not under positive selection. In deriving this

expectation, MutSigCV takes into account the local mutational signatures, DNA replication time

and mRNA expression level relevant to the gene in question. Next, we computed the difference

between this expected mutation count and the actual count of tumors for which that gene had

somatic coding mutations. Genes were sorted in decreasing order of (observed – expected)

mutation counts. In order to calculate significance, a bootstrapping approach was applied;

Briefly, the average ranks of the desmosome genes were then compared to 100,000 permuted

lists to produce a p-value for each TCGA cancer cohort. P-values were corrected for multiple

hypothesis testing using Benjamani-Hochberg procedure to yield Q-values.

Single-cell RNA sequencing of primary melanoma tumors. Melanoma tumors were collected

post-operatively from two patients who consented and signed 604 IRB. To obtain single-cell

suspensions, samples were washed in PBS and cut into small pieces (4-5 mm3) followed by

dissociation using the Miltenyi human tumor dissociation kit according to manufacturer

instructions. Red blood cells were depleted using ACK lysis buffer for 3 minutes. Dead cells

were removed, if needed, using the Milyenty dead cell separator. Single cell encapsulation and

library preparation were performed using the inDrop platform26,27 followed by sequencing on an

Illumina NextSeq. Sequencing reads were de-multiplexed, aligned and counted using a custom

pipeline as described previously33 to produce a raw count matrix for each tumor. Quality control

was also performed as described previously54. The raw matrix count was first transformed to
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UMIs (Unique Molecular Identifiers) to correct for library preparation duplications55. Cells with

>750 distinct UMIs, mitochondrial transcripts <20% and ribosomal transcripts <30% were

selected for analysis. UMI counts for the selected cells were normalized by the total number of

transcripts per cell, and a scale factor equivalent to the median number of transcripts across all

cells was applied (transcripts per median, TPM). Expression was transformed using the

Freeman-Tukey transform as described previously56.

UMAP 2D projection and annotation of single-cell mRNA-seq data. We selected genes with both

above-mean mRNA expression level and above-mean Fano factor (a standardized measure of

variance). These genes were then used as features to project cells onto two dimensions using

the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) technique

with default parameters28. Ten communities of cells were clearly discernible in the resulting

UMAP projection (Fig. 2b,c). To label the cell type represented by each community, we identified

the top differentially expressed genes in each (p < 10−6, Kolmogorov Smirnov test; effect size >

0.2, Cohen’s d). These genes were cross-referenced against a collection of published gene

expression markers of known cell types29,30,36,57,58, allowing unambiguous assignment of each

community to one of five types: immune (markers: CD45, CD4, CD8A), epithelial (EPCAM),

muscle (MYH11), melanocyte (SOX10, SOX2, S100B) or keratinocyte (KRT4, KRT5, KRT17,

KRT19). To further annotate a subset of melanocytes as malignant, we inferred copy-number

variations (CNV) from the RNA-seq profiles with inferCNV59, using all other cells from the same

tumor sample as a reference. All three melanocyte communities were found to have a common

pattern of aneuploidy in their CNV profiles, indicating cancer.
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Spatial transcriptomics by GeoMX platform. Formalin-fixed paraffin-embedded (FFPE) samples

of eight primary melanomas were chosen and sectioned (clinical information provided in

Supplementary Table 2). Three sections were taken from each tumor: two were processed for

whole-exome sequencing to determine desmosome mutation status, and one was retained for

the digital spatial profiling workflow to determine desmosome expression. Digital spatial profiling

was performed using the GeoMX system as previously described60. Immunofluorescent

visualization markers for keratinocytes (PanCK), melanocytes (S100B, PMEL) and immune cells

(CD45) were used to guide the selection of regions of interest (ROIs) containing either pure or

mixed areas of each cell type (keratinocyte, melanocyte) followed by RNA profiling using the

GeoMx human whole assay.

DSP functional assays. For desmoplakin (DSP) knockdown studies we used Dharmacon

ON-TARGETplus SMARTpool siRNAs (n = 4 distinct DSP-targeting siRNAs, n = 4 non-targeting

control siRNAs, Supplementary Table 3), with cells treated according to manufacturer

instructions. Briefly, melanoma (A375) or keratinocyte (HaCaT) cell types were seeded

overnight in regular media with no antibiotics in six-well dishes as monocultures. Cells were then

transfected with either DSP-targeting or non-targeting control siRNA pools along with

DharmaFECT 1 transfection reagent (Horizon #T-2005-01) in serum-free media. After 72 hours,

siRNA-treated cells were administered a second dose of siRNA followed by a 48-hour

incubation. DSP knockdown efficiency was measured using qPCR (Supplementary Fig. 5). Cells

treated with DSP siRNAs (melanoma or keratinocyte) were then co-cultured with the opposite

cell type treated with non-targeting control siRNA (keratinocyte or melanoma). Melanoma cells

and keratinocytes were plated in a 1:5 ratio and incubated for 48 hours, then harvested prior to

confluency.
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A375/HaCaT phospho-histone H3 (pH3) immunostaining. Cells were fixed in 4% PFA and

stained simultaneously using the following antibodies: phospho-histone H3 primary antibody

(1:1000; Millipore #05-806); anti-human SOX10 (ThermoFisher #PA5-84795); anti-human

KRT17 conjugated to Alexa Fluor 546 (Santa Cruz Biotechnology #sc-393002 AF546). Cells

were placed overnight at 4⁰C and then counterstained with AlexaFluor 647 anti-mouse IgG (Cell

Signaling #4410), after which >10 images per condition were acquired in a Zeiss AxioObserver

fluorescence microscope. The number of mitotic cells was quantified by calculating

double-positive cells (SOX10+, AlexaFluor647+ or KRT17+, AlexaFluor647+) as a fraction of the

total number of SOX10+ or KRT17+ cells in each field. To quantify cells, 2000 or 5000 cells/well

(melanoma cells or keratinocytes) were plated in a 96-well plate followed by 72-96 hour

incubation. Proliferation was measured using the Cyquant Cell Proliferation assay as per

manufacturer instructions. Fluorescence was read using a BioTek Synergy 96-well plate reader,

with all values normalized to the control conditions.
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Data Availability:

All ‘omics datasets relevant to this study will be deposited to relevant public databases upon

acceptance of this article for publication. Principal ‘omics datasets are:

Dataset Database Accession Number

Single-cell RNA sequencing
of primary melanoma tumors

Gene Expression Omnibus TBD

Spatial transcriptomics by
GeoMX platform

Gene Expression Omnibus TBD

Code Availability:

All code used for this work, including custom algorithms and analysis scripts, has been

distributed on GitHub at the URL: http://github.com/MaayanBaron/desmosome_paper.git.
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Figures:

Fig. 1: The desmosome system and its patterns of mutation.
(a) Illustration of the desmosome complex, which is composed of proteins of three different families:

cadherins (DSGs and DSCs), armadillo proteins (PKPs and JUP) and the plakin protein desmoplakin
(DSP).

(b) Desmosome mutation frequency for each of 32 tumor types, with mutations aggregated across the 13
desmosome genes. Inset: Mutation frequency of each desmosome gene in skin cutaneous melanoma
(SKCM). Other cancer type abbreviations: ACC - Adrenocortical carcinoma (n = 92), BLCA - Bladder
urothelial carcinoma (n = 413), BRCA - Breast invasive carcinoma (n = 1108), CESC - Cervical
squamous cell carcinoma and endocervical adenocarcinoma (n = 310), CHOL - Cholangiocarcinoma
(n = 51), COADREAD - Colorectal adenocarcinoma (n = 640), DLBC - Lymphoid neoplasm diffuse
large B cell lymphoma (n = 48), ESCA - Esophageal carcinoma (n = 186), GBM - Glioblastoma
multiforme (n = 619), HNSC - Head and neck squamous cell carcinoma (n = 530), KICH - Kidney
chromophobe (n = 113), KIRC - Kidney renal clear cell carcinoma (n = 538), KIRP - Kidney renal
papillary cell carcinoma (n = 293), LAML - Acute myeloid leukemia (n = 200), LGG - Brain lower
grade glioma (n = 530), LIHC - Liver hepatocellular carcinoma (n = 442), LUAD - Lung
adenocarcinoma (n = 586), LUSC - Lung squamous cell carcinoma (n = 511), MESO - Mesothelioma
(n = 87), OV - Ovarian serous cystadenocarcinoma (n = 617), PAAD - Pancreatic adenocarcinoma (n
= 186), PCPG - Pheochromocytoma and paraganglioma (n = 184), PRAD - Prostate adenocarcinoma

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2023. ; https://doi.org/10.1101/2023.09.19.558457doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.19.558457
http://creativecommons.org/licenses/by-nc-nd/4.0/


(n = 501), SARC - Sarcoma (n = 265), STAD - Stomach adenocarcinoma (n = 478), TGCT - Testicular
germ cell tumors (n = 156), THCA - Thyroid carcinoma (n = 516), THYM - Thymoma (n = 124), UCEC
- Uterine corpus endometrial carcinoma (n = 549), UCS - Uterine carcinosarcoma (n = 57), UVM -
Uveal melanoma (n = 80).

(c) Excess number of tumors with a mutated desmosome gene (colored points) above the number
expected by chance (Online Methods). Horizontal black line indicates median value across
desmosomal genes. Top ten most frequently mutated tumor types from (b) are shown. Significance
determined using bootstrap analysis (*, q-value<10–10, Benjamani-Hochberg correction for multiple
testing).

(d) Ranked SKCM mutation frequencies of each human gene. Desmosome genes, red; known SKCM
driver genes22, blue.
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Fig. 2: Single-cell analysis of desmosome gene expression in human melanomas.
(a) Tumor biopsies from two patients, one male and one female, processed using scRNA-Seq.
(b) Uniform Manifold Approximation and Projection (UMAP) analysis of 1109 individual cells from

Melanoma 1, with color indicating inferred cell type. “Cancer” denotes melanoma cells.
(c) Same UMAP as (b), with color indicating the expression of desmosome genes in transcripts per

median (TPM, Online Methods).
(d) Correspondence of desmosome gene expression to cell types. Color indicates mean expression

per cell (log2). Point size indicates fraction of cells in cell type expressing each desmosome gene.
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Fig. 3: Relationship of desmosome expression to tumor grade and mutational status.
(a) Violin plot of average desmosome gene expression in primary (left, n = 104) or metastatic (right, n

= 362) melanoma tumors in TCGA. Significance determined by two sample t-test (****, P<10–4).
TPM, transcripts per median.

(b) Same as (a) distinguishing wild-type (WT, gray) and desmosome-mutated (white, n = 62 for
primary tumors, n = 277 for metastatic tumors) tumors in the TCGA cohort. Significance
determined by two sample t-test (****, P<10–4; *, P<0.05; ns, not significant).

(c) Average desmosome gene expression (TPM) as a function of the number of desmosome genes
with coding mutations. Shown separately for primary (light blue) versus metastatic (dark blue)
melanoma tumor populations. Regression lines for each of these populations are shown: Primary
melanoma, slope = –0.66; metastatic melanoma, slope = 0.03; significant difference with P<0.01.
Error bars represent standard deviation and the shaded areas capture 95% confidence intervals.

(d) Degree of proliferative gene expression (defined previously32) in desmosome WT (gray, n = 42) or
desmosome mutant (white, n = 62) primary melanoma tumors (points) in the TCGA cohort.
Significance determined by two sample t-test (*, P<0.05). The boxes in the plot contain the 25th
to 75th percentile, the middle line denotes the 50th percentile, and the whiskers mark the 5th and
95th percentiles.

(e) Ratio of fixed nonsynonymous-to-synonymous mutations (dN/dS) in primary (light blue, n = 12
genes across 104 patients) or metastatic (dark blue, n = 12 genes across 362 patients)
melanoma tumors in the TCGA cohort. The distributions of dN/dS across the population of tumors
are shown by box plots, using similar display convention to panel d. Significance determined by
two sample t-test (*, P<0.05).
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Fig. 4: Spatial transcriptomics of tumors with mutated or wild-type desmosomes.
(a) Eight primary melanoma tumors were processed using whole exome sequencing and digital

spatial profiling to characterize a total of 48 regions of interest (ROIs).
(b) Example ROIs (roman numerals) enriched for melanocytes (i,iii), mixed melanocytes and

keratinocytes (ii), or keratinocytes (iv), overlayed on image. Fluorescent markers label nuclei
(blue), cancer cells (yellow), immune cells (red), or keratinocytes (green).

(c) Average mRNA expression levels of desmosome genes in each ROI, stratified by keratinocyte
(green, n = 15), mix (gray, n = 12) or melanocyte (yellow, n = 21) ROIs. In the boxplots, lower and
upper box boundaries delineate the 25th and 75th percentiles, the middle line denotes the 50th
percentile, and whiskers mark the 5th and 95th percentiles. Significance determined by two
sample t-test (**** P<10–4, ** P<10–2).

(d) Average mRNA expression levels of desmosome genes in each ROI, stratified by keratinocytes
(left, n = 15) and melanocytes (right, n = 21) and further subdivided based on whether ROIs are
from tumors with wild-type (WT, dark gray, n = 10 for keratinocytes and n = 14 for melanocytes) or
mutant desmosomes (light gray, n = 5 for keratinocytes and n = 7 for melanocytes). Within each
category the set of ROI values is summarized by box plot, following the convention of panel c.
Significance determined by two sample t-test (*, P<0.05, ns, not significant).
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Fig. 5: Effects of DSP gene disruption in melanoma-keratinocyte co-cultures.
(a) Schematic of co-culture experiment. To generate the data shown in subsequent figure panels

(b,c), melanoma cells were co-cultured with keratinocytes exposed to either non-targeting control
(NTC) siRNA or DSP siRNA gene disruptions. Cell-type populations were isolated and
characterized by phospho-H3 cell proliferation assay.

(b) Phospho-H3 assay of melanocyte (left) versus keratinocyte (right) cell proliferation, shown for
co-cultures in which keratinocytes were treated with NTC siRNA (dark gray) versus DSP siRNA
(light gray). Each bar summarizes 5 distinct wells ⨉ 3 biological replicates for n = 15 replicate
co-culture measurements. *** P<0.001, ** P<0.01. Error bars represent 95% confidence intervals.

(c) Representative co-culture images staining keratinocytes (cyan, KRT17 marker), melanocytes
(purple, SOX10 marker), and proliferating cells (yellow, phosphoH3 readout). White color reflects
all cell nuclei (DAPI). Images correspond to the NTC experiment.

(d) Suggested model in which desmosome mutations in keratinocytes lead to
keratinocyte-melanocyte decoupling and decreased keratinocyte adhesion which, in turn,
promote melanocyte proliferation.
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Supplementary Table 1: Number of missense variants detected in eight melanoma tumors.
Related to Fig. 4.
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Supplementary Table 2: Clinical information on the eight melanoma tumors.
Related to Fig. 4.

Tumor ID Age Sex Tumor site
Tumor

thickness Mitotic rate
MKD1 40 M Back 1.0 mm 1 / mm2

MKD2 61 M Back 1.1 mm 2 / mm2

MKD3 75 M Left arm 0.9 mm 5 / mm2

MKD4 60 M Back 2.1 mm >10 / mm2

MKD5 86 F Right shoulder 0.7 mm 0 / mm2

MKD6 56 M Back 0.5 mm 1 / mm2

MKD7 54 F Right arm 0.9 mm 2 / mm2

MKD8 84 F Chest 3.4 mm 8 / mm2
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Supplementary Table 3: DSP siRNA sequences.
Related to Fig. 5.

siRNA ID Target Sequence
siRNA A-019800-13, DSP GCUCCAUGGUAGAAGAUAU

siRNA A-019800-14, DSP UCACUGAGCUAGUAGAUUC

siRNA A-019800-15, DSP CGAUGUACUUGUUUGGUUU

siRNA A-019800-16, DSP CGAUGUACUUUAAGGUGUC
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Supplementary Fig. 1: Interactions defining desmosome system and context in NeST hierarchy.
(a) Nested Systems in Tumors (NeST) map showing all mutated systems identified across TCGA

cohorts, published previously16. Nodes represent protein systems, identified in the previous study
from dense communities of interacting proteins. Node size indicates the size of the system in
number of proteins. Red intensity scale indicates significance of system mutation frequency in the
skin cutaneous melanoma (SKCM) cohort. Gray arrows represent hierarchical containment (i.e.
system 1 → system 2 denotes that system 1 is contained by system 2). For systems contained by
multiple others (pleiotropy), each additional containment relation is connected by a dashed arrow.

(b) Zoom detail of NeST hierarchy relevant to the desmosome system and its larger containing
compartments (left). Adjacent is the specific protein interaction network that defines the
desmosome system (right). Colors denote interaction types: Red: physical protein-protein
interactions; green: correlation in mRNA expression; purple: correlation in protein abundance;
cyan: protein sequence similarity; brown: co-dependency interactions, connecting proteins for
which loss-of-function gene knockouts result in similar patterns of growth dependency across cell
lines. See original publication16 for more details.
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Supplementary Fig. 2: Desmosome mutation frequencies in multiple melanoma cohorts. Counts of
mutated tumors per each desmosome gene (colored points) in the largest published melanoma cohort
(Conway19, left) compared to the SKCM-TCGA cohort (right). Significance determined using bootstrap
analysis (*, P<10–10). Related to Fig. 1.
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Supplementary Fig. 3: Single-cell RNA sequencing analysis of melanoma samples.
Shows desmosomes are expressed predominantly in keratinocytes rather than melanocytes in zebrafish
primary tumors. Related to Fig. 2.

(a) t-distributed stochastic neighbor embedding (tSNE) analysis of approximately 7500 individual
cells from zebrafish melanoma cells. Reanalysis of data published previously33. Color indicates
inferred cell type.

(b) Same tSNE plot as panel (a), colored by the expression of desmosome genes.
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Supplementary Fig. 4: Principal Component Analysis (PCA) of spatial transcriptomic data.
Related to Fig. 4.

(a) Profiles of mRNA expression for each ROI (covering 18,695 genes total) are reduced to the first
two principal components (PC1 versus PC2). A total of 48 ROIs are drawn from 8 tumor biopsies.
Color indicates average expression of desmosome genes.

(b) Same PCA as (a), color indicates tumor ID.
(c) Same PCA as (a), color indicates cell type identified by antibody staining.
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Supplementary Fig. 5: Quantitative PCR assay of DSP expression. DSP relative expression level
after treatment of keratinocytes with DSP siRNA (light gray, right, n = 3 replicates) versus NTC siRNA
(dark gray, left, n = 3 replicates). Significance determined based on two sample t-test (***, P<0.001).
Related to Fig. 5.
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Supplementary Fig. 6: Proliferation assay in monocultures. Proliferation of keratinocytes (left) or
melanocytes (right), using non-targeting control siRNA (dark gray) or DSP siRNAs (light gray).
Significance based on two sample t-test (n = 6 replicates, **, P<0.01; ns, not significant). Related to Fig.
5.
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