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Abstract

Gene set analysis is a mainstay of functional genomics, but it relies on manually curated databases of
gene functions that are incomplete and unaware of biological context. Here we evaluate the ability of
OpenAI’s GPT-4, a Large Language Model (LLM), to develop hypotheses about common gene functions
from its embedded biomedical knowledge. We created a GPT-4 pipeline to label gene sets with names
that summarize their consensus functions, substantiated by analysis text and citations. Benchmarking
against named gene sets in the Gene Ontology, GPT-4 generated very similar names in 50% of cases,
while in most remaining cases it recovered the name of a more general concept. In gene sets discovered
in ‘omics data, GPT-4 names were more informative than gene set enrichment, with supporting
statements and citations that largely verified in human review. The ability to rapidly synthesize common
gene functions positions LLMs as valuable functional genomics assistants.
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Introduction

A fundamental goal of the ‘omic sciences is to identify the sets of genes that are responsible for all of the
distinct biological functions of life, health and disease. In this vein, numerous mRNA expression
experiments over the past two decades have produced (and continue to produce) sets of genes that are
differentially expressed across conditions or that cluster by expression similarity. Similarly, proteomics
experiments produce lists of proteins that are co-abundant, co-modified, or physically interacting; CRISPR
gene knockout screens produce lists of genes required for fitness or a particular response, and so on. In
all of these cases, the basic premise is that the identified genes work coherently towards the same
biological process or function.

To understand these functions, one turns to functional enrichment analysis1–9. This approach seeks to
identify similarities between the gene sets of interest and those from a separate, pre-defined gene
function database, such as the Gene Ontology10,11 (GO), Molecular Signature Database12 (MSigDB),
Kyoto Encyclopedia of Genes and Genomes13–15 (KEGG), or Reactome16–18, which annotate genes to
known functional and pathway categories17,19–23.

Paradoxically, a gene set for which there is a very strong enrichment in a gene function database may be
of lesser interest, since the set and its function have already been well characterized by previous studies.
Of greater interest are gene sets that fail functional enrichment or overlap known functions only
marginally, because it is precisely from these ‘failures’ that new biological findings emerge. In these
cases, an immediate next step is to explore the biological literature, as well as complementary data sets,
to learn as much as possible about the genes in question. The goal is to mine knowledge pertinent to
each gene and then use this knowledge to synthesize mechanistic hypotheses for a function that might be
held in common by all or most genes in the set. As a result, new functional categories might be defined
and added to existing collections of functions. This protracted process of discerning relevant findings from
data and literature, then reasoning on this information to synthesize functional hypotheses, has not yet
been widely automated but is one of the central tasks performed by a genome scientist.

Highly relevant to these tasks is the recent advent of generative artificial intelligence (AI) models and
specifically Large Language Models (LLMs) such as GPT-424 and PaLM25, which are reshaping many
domains including computational biology. At its core, generative AI is an approach to machine learning in
which a model is trained to recognize underlying patterns in data in a manner that allows it to generate
new data with similar properties as the training data. The underlying technology behind LLMs is the
transformer architecture26–28, which uses a self-attention mechanism to understand context and handle
long-range dependencies in text, delivering significant advancements in tasks such as text translation,
summarization, and generation. Large-scale training of general-purpose LLMs such as GPT-4
incorporates information from an enormous corpus of sources, including the biomedical literature.

Here, we evaluate the degree to which LLMs provide insightful functional analyses of gene sets. First, we
develop a gene set analysis pipeline based on queries to GPT-4, as of this writing one of the most
capable general LLMs available24. We then test the ability of this system to propose succinct names and
analysis paragraphs for gene sets of interest. In addition, we formulate a separate GPT-4-based method
to orchestrate relevant literature search and to verify statements made in the primary analysis. Finally, we
discuss our findings and their implications for the general use of LLMs in functional genomics
applications.

Results

Development of a GPT-4 functional genomics pipeline. We designed a pipeline in which the GPT-4
model is instructed to formulate biologically descriptive names and supporting analysis text for a gene set
(Fig. 1a–b). A separate GPT-4-based system was implemented to validate statements made in the
analysis text with pertinent literature citations (Extended Data Fig. 1, Methods). The instruction to an
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LLM is called a “prompt” and can include data and examples to guide the response. Best practices for
formulating this prompt are the subject of ongoing experimentation29–31, but in this study our prompt simply
described desired properties of the name and analysis to be generated, including guiding phrases such
as “For each important point, describe your reasoning and supporting information” (Fig. 1a, Extended
Data Fig. 1e).

To assess this gene set analysis pipeline, we implemented evaluation workflows that score the quality of
names given by GPT-4 and assess statements in the summary analysis text. Reference gene sets were
derived from two primary sources. The first was literature curation, for which we evaluated sets of genes
drawn from Gene Ontology terms10,11 (Workflow 1; Fig. 1c). The second source was ‘omics analysis, for
which we evaluated gene sets identified by (1) similarity in mRNA expression data12, and (2) modular
community detection in protein interaction networks32 (Workflow 2; Fig. 1d). In both the literature-curation
and ‘omics-analysis workflows, GPT-4 performance for a gene set was measured by the semantic
similarity of its proposed name to the name proposed by human scientists. This performance measure,
“semantic similarity,” uses a numerical score in the range [0–1] to approximately capture how similar two
phrases are to each other in conceptual meaning within a language33 (see Online Methods). For
example, the word “socks'' is semantically closer to the word “shoes'' than it is to “airplane.”

Workflow 1: Benchmarking GPT-4 names against names assigned by GO. For the first workflow, we
queried GPT-4 to propose names and supporting analysis text for 1000 human gene sets drawn randomly
from terms in the Gene Ontology Biological Process branch (GO:BP, 2022-10-07 release, sampling terms
from 3 to 500 genes; see Extended Data Fig. 2). On average, it took about 70 seconds for the GPT-4
model to process each gene set (Extended Data Table 1), after which time it returned a proposed
concise name and supporting analysis text. For example, the gene set annotated to GO term
“Acute-Phase Response” (GO:0006953) resulted in GPT-4 proposing a nearly exact match, “Acute Phase
Response” (differing from the GO name only in omission of the hyphen). GPT-4 also generated eight
paragraphs of supporting text describing the various lines of evidence for specific genes and their
common functional roles (Table 1).

To quantify the accuracy of name generation, we then computed the semantic similarity between the
GPT-4 proposed name and the name assigned by GO. These scores ranged from values as high as 1, in
cases where the GPT-4 name was an exact match to the GO name (e.g., “Mitochondrial tRNA
Modification”), to values below 0.2, in cases where the names were not intuitively similar (e.g., GPT-4:
“Hedgehog Signaling Pathway” versus GO: “Positive Regulation of Protein Import Into Nucleus”) (Table 2
and Supplementary Table 1). To calibrate this similarity, we ranked it against a background semantic
similarity distribution, defined by comparing the GPT-4 name against all 12,214 term names documented
in GO:BP (Fig. 1c, see Online Methods). For example, the GPT-4 name (“DNA Repair and Chromosome
Segregation”) had a semantic similarity to the assigned GO name (“Regulation of Sister Chromatid
Cohesion”) of 0.46, a score that was higher than 95% of alignments between the GPT-4 name and every
other term name in GO:BP (Fig. 2a). Using this scoring approach, we found that exactly half of the gene
set names proposed by GPT-4 were close matches to the corresponding GO term names, with semantic
similarities ranking in the 98th percentile (500/1000; Fig. 2b).

In many other cases, we observed that GPT-4 had suggested a name matching a more general ancestor
in the GO term hierarchy. For example, the gene set annotated to the GO term “Triglyceride Catabolic
Process'' resulted in the GPT-4 name “Lipid Metabolism and Regulation" with a semantic similarity of 0.47
ranking in the 96th percentile. The GPT-4 name matched most closely to the GO term “Lipid Metabolic
Process,” a less specific category higher in the ontology (Fig. 2c) and annotated by a larger set of genes
(Fig. 2d). This observation was reinforced by a systematic analysis of the 500 queries for which GPT-4
and GO names were less similar (bottom half by semantic similarity). In 47.2% of these cases, the best
matching GO name (i.e., that with the highest semantic similarity to the GPT-4 name) corresponded to a
gene set representing a broader ancestral concept in the GO hierarchy. Moreover, across all 1000
queries, the GO terms with the best matching names to GPT-4 often had significant gene set intersection
with the actual gene set queries (862/1000 cases or 86.2%, q-value < 0.1, hypergeometric test coupled
with Benjamini-Hochberg correction; Fig. 2e). Thus, even when the GPT-4 name is semantically
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dissimilar to the actual name assigned by GO, it often matches another GO name annotated by a similar,
sometimes broader, set of genes.

Workflow 2: Benchmarking GPT-4 names for ‘omics gene sets. In workflow 2, we tested the
performance of GPT-4 in naming and analyzing 100 gene sets informed by ‘omics approaches. The first
50 of these gene sets, drawn from MSigDB12, integrated information from clusters of coordinately
expressed genes identified in a broad collection of mRNA transcriptomic studies. Each gene set had been
reviewed and named by a panel of human authors based on their prior knowledge of biological
processes. The second set of 50 gene sets was drawn from the NeST collection of cancer protein
complexes, based on identifying communities of interacting proteins in a large protein interaction
network32. Here also, the corresponding gene sets had been named by a panel of human experts.
Together, these resources included gene sets covering a range of sizes (5 to 323 genes per set;
Extended Data Fig. 3 and Supplementary Table 2).

For each gene set, we instructed GPT-4 to propose a name and a supporting analysis (Fig. 1b). For
example, for the protein interaction cluster NeST:34 “Histone Modification,” GPT-4 proposed the name
“Epigenetic Regulation and DNA Repair” along with eight paragraphs of supporting text (Table 3). We
then compared the GPT-4 proposed name to the expert-determined name using semantic similarity (Fig.
1d, see Online Methods). Comparisons over the 100 ‘omics gene sets produced similarity scores in the
range of approximately 0.2 to 1.0, with a median of 0.5 (Fig. 3a). To calibrate and assess these scores,
we repeated the evaluation but replaced GPT-4 with a gene set enrichment analysis web service,
Enrichr8,34,35, using the name of the most enriched GO term as the proposed name for the ‘omics gene
set. In general, we observed that the similarities between GPT-4-proposed names and expert-determined
names were significantly higher than the similarities between most enriched GO term names and
expert-determined names (p = 1.2 10−2; Fig. 3a).×

Assessment and validation of GPT-4 supporting analysis text. We next transitioned from analysis of
GPT-4 naming to an examination of its supporting analysis text. We first noted that the fraction of genes
mentioned in a supporting analysis spanned a very large range, from below 10% to 100% (‘omics gene
sets; Fig. 3b). This fraction tended to be very high for the NeST protein interaction complexes in particular
(median 91%). As a benchmark for comparison, we examined the fraction of gene set queries that were
covered by the most enriched GO terms from the gene set enrichment analysis. Here, we found that this
coverage was significantly lower than the fraction covered by GPT-4 analysis (p = 1.1 10−7; Fig. 3b). For×
example, GPT-4 presented arguments for the involvement of all 36 members of the gene set “Hedgehog
Signaling” (GPT-4 name: “Neuronal Development and Axon Guidance”) while the most enriched GO term,
“Nervous System Development'' covered 11 of the 36 genes (31%; Fig. 3 and Extended Data Table 2).
Thus, GPT-4 actively assembles a broad synthesis of biological statements that typically include mention
of the majority of genes in the set, without being limited to a predetermined gene set database.

In interpreting these results, an important concern with LLMs is their documented tendency to
“hallucinate,” i.e., generate plausible but unverifiable or nonfactual statements24. To gain insight into the
accuracy of the analysis text, we performed a structured review process for 50 paragraphs drawn from
the analysis of 10 ‘omics gene sets (see Online Methods). For each paragraph, a human scientist
attempted to verify each statement by a manual literature search. As a conservative criterion, we
considered a paragraph “verified” if the reviewer found evidence for every statement. The reviewer also
classified the paragraph as to whether, in their judgment, one or more of its statements supported the
argument for the proposed name. Verification of accuracy and name support were evaluated
independently, i.e., supportive paragraphs could include unverified statements. Of the 50 paragraphs
evaluated, 39 were verified, and 44 were judged supportive (Supplementary Table 3). Examination of
the 11 unverifiable paragraphs revealed a variety of misleading statements of 2 major types, related to (a)
possible miscategorization of gene functions or (b) assertion of unverified biophysical interactions. In one
case relevant to type (a), GPT-4 stated that “MMUT catalyzes the conversion of homocysteine to
methionine” when in fact, it breaks down methionine to succinyl-CoA. Relevant to type (b), GTP-4’s
statement “CDK5RAP1 also interacts with TRMT61B…” could not be verified, although such an
interaction is plausible as both modify tRNA36,37. Thus, the verbose GPT-4 analysis paragraphs, with their
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many statements covering a high percentage of genes in a query set, appear to be largely but not entirely
verifiable by human examination of the literature.

Identification and assessment of relevant citations. Given the need to verify statements in GPT-4’s
analysis text, we developed a separate GPT-4-based system to identify publications that provide evidence
for statements made in the analysis text (Extended Data Fig. 1, see Online Methods). This system was
tested on the corpus of GPT-4 analysis paragraphs generated from the 100 ‘omics gene sets in Workflow
2. We recorded an average of 77 seconds to find and evaluate references for a gene set, approximately 9
seconds per paragraph (Extended Data Table 1). Out of 908 paragraphs, there were 187 for which the
citation module did not detect any gene symbols or recognizable functions (e.g., see paragraphs 1 and 8
in Table 3). For nearly all remaining paragraphs (720/721), it returned at least one reference passing its
evaluation criteria (see Online Methods).

To assess the relevance of these references, we performed a manual examination of selected citations
(Supplementary Table 4) in which we required that the cited abstract must clearly and directly support
one or more statements in the corresponding GPT-4 analysis paragraph. We did not require that the
abstract be primarily about the statement; it was sufficient that a supporting fact was present. Of the 50
citations examined, we found that in 40 cases, the abstract and/or title indeed provided evidence for
statements in the corresponding GPT-4 analysis paragraph. For example, the statements that GATA1
“regulates the expression of genes involved in RBC development, such as HBB, HBD, and ALAS2” and
“is crucial for the differentiation of erythroid progenitor cells into mature RBCs” were supported by Zhang
et al.38, "Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation."

Discussion

The evaluations performed here suggest that GPT-4 indeed has notable potential as an automated
assistant for understanding gene function. In the analysis of gene sets from the Gene Ontology (GO),
GPT-4 produced highly similar names in 50% of instances, and in the majority of other cases, its name
mapped to a term with a similar gene set, often a broader concept in the hierarchy. For gene sets
emerging from transcriptomic and proteomic analyses, GPT-4 suggested names that compared favorably
to gene set enrichment. Its accompanying analysis paragraphs provided supporting statements that were
found to be largely factual, although its occasional generation of unverifiable statements (in approximately
22% of analysis paragraphs in our tests) suggests it should be coupled to some type of fact-checking or
reference validation, whether automated or manual. In what follows, we discuss specific considerations
related to computation time and scalability, comparison to gene set enrichment, interpretation of
mismatches between GPT-4 and GO, and limitations of the present assessment.

Relative to humans, GPT-4 is very fast in synthesizing common functions for gene sets. The time
for GPT-4 to name, analyze, and find references for a gene set was variable depending on the service’s
response time but typically in the range of two to four minutes (Extended Data Table 1). By comparison,
the time required for a human scientist to produce a comparable analysis is far greater, easily on the
order of hours to build a sufficient understanding of the biological functions relevant to a gene set.
Although this time estimate varies greatly depending on the analyst's experience, the size of the gene set,
and the specific gene functions involved, it includes (at minimum) multiple rounds of literature search,
reading, and hypothesis generation, followed by authorship of a page of coherent summary analysis text.
Interpretation of large numbers of gene sets, such as those produced by transcriptomics or proteomics
(the technologies exemplified in Workflow 2), requires a significant commitment of human resources. In
contrast, the detailed analysis of 100 gene sets performed in Workflow 2 was completed in roughly five
hours.

GPT-4 versus gene set enrichment: apples versus oranges. While GPT-4 may be fast compared to
human operators, it is slow compared to gene set enrichment, which is based on straightforward
closed-form statistical equations requiring fractions of a second on a modern computer. The type of
analysis offered by GPT-4 is very different from enrichment analysis, however. The goal of enrichment
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analysis is to identify the agreement of a gene set with those stored in reference databases. In contrast,
GPT-4 predicts common functions for genes based on active reasoning over a large corpus of biomedical
knowledge, producing results even in cases where the gene set does not resemble any recorded in
reference databases. Accompanying the proposed functions is a rationale, given in the form of a
summary analysis with arguments that can be critiqued, and subsequently validated or rejected by human
investigators.

On the one hand, enrichment analysis could be said to be highly “transparent” because it uses
well-defined statistical methods and documented reference databases of gene sets that researchers can
review. In contrast, the knowledge accessed by the GPT-4 is not directly subject to definition or
inspection, as it is embedded in the latent space of the model, and the mathematical calculation behind a
given output is practically opaque. On the other hand, there is another sense in which an LLM analysis is
extremely transparent because it presents a de novo narrative of facts and reasoning that considers all of
the genes of interest, assisted by reference citation tools such as the one developed in this study.
Ultimately, how an analysis was performed may be less relevant if the output is useful and its statements
are supported by reasoned arguments and verifiable literature citations. Indeed, these are the criteria we
apply to analyses produced by human researchers; we can see their output but not the operation of their
minds.

Mismatch of GPT-4 and GO names for gene sets: bug or feature? For GO gene sets in which GPT-4
names were approximate matches to the names given by GO curators but conceptually more general (as
many as one-fourth of queries we examined; Fig. 2c–e), it is possible this behavior should be called a
GPT-4 failure mode. However, in detailed examinations of some of these instances, it remains unclear to
us whether the GPT-4 name tends to be overly general or the GO name overly specific. In addition to the
examples detailed above in our Results, consider the set of 36 genes annotated to GO:0048536: Spleen
development, named “Regulation of cell cycle and apoptosis” by GPT-4 (Supplementary Table 1). We
found that the majority of genes in this set, such as CDKN2B, BCL2L11, and ABL1, play established roles
in cell cycle, apoptosis, and other processes with functions well outside of a specific organ system like the
spleen39–41. In evaluating the choice of a broader rather than more specific name for such gene sets, we
found the GPT-4 analysis paragraphs to be quite useful as a starting point for subsequent critical
evaluation by human investigators. In comparison, it is not immediately clear how to access the rationale
used by the GO curators in naming a GO term, although some of this information can be reconstructed
indirectly by tracing the evidence codes and citations of each gene annotation.

Limitations of this study. It is important to stress that our evaluation of the GPT-4 model was based on
single queries using prompts developed by informal experimentation. Further research should investigate
more sophisticated prompting strategies such as “chain of thought”42 for gene set analyses and the use of
methods that apply external tools and orchestrate multiple LLM interactions43–49, such as integrating
literature searches into the LLM analysis rather than as a post hoc verification method. Our study also
makes the implicit assumption that all gene sets emerging from a biological study have a coherent
function to be summarized. What about gene sets that emerge erroneously from an ‘omics screen and
are not functionally coherent, i.e., a type of false positive? One could imagine first asking the LLM to
decide if the gene set has a common function and, even if the evidence is in favor, ask whether there are
non-coherent genes that should be removed from the set or, alternatively, functionally similar genes that
are missing and might be added. Finally, a critical consideration not yet addressed by our work is that
gene functions are typically not universal but are specific to experimental conditions and biological
contexts. Our study has not attempted to prompt LLMs with the contexts in which the gene set was
discovered, information that might emerge as highly valuable to the quality of the analysis. Such
knowledge is also absent from gene set functional enrichment tools, since their pre-existing mapping of
gene sets to functions cannot encode the practically infinite space of biological conditions.

Conclusions. When applied to study gene function, one might have suspected that LLMs might produce
statements, hypotheses, and references that hallucinate so uncontrollably as to be unusable. In fact, in
our evaluations, GPT-4 typically did not, showing reasonable and often exemplary performance over a
series of complementary benchmarks. We thus conclude that, given appropriate framing, the current
general platform provides researchers with a new and powerful tool for gene set interpretation.
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Online Methods

Choosing the large language model. We used the ‘gpt-4-0314’ version of the OpenAI GPT-4 large
language model for naming and analyzing gene sets, as a state-of-the-art model accessible using a
well-defined API. GPT-4 has been reported to exhibit enhanced “steerability” over the earlier GPT–3
models24, meaning it can better infer a user's intentions without extensive prompt tuning.

Controlling the variability of GPT-4 responses. The OpenAI API enables queries to set a “temperature”
parameter that controls the variability of the generated response, with lower temperatures producing more
reproducible and reliable responses50,51. Exploring the effect of temperature on GPT-4 analyses is outside
the scope of this study, and therefore our queries used the lowest, most conservative/reproducible,
temperature value = 0.0. In a manual inspection of repeated queries at temperature 0.0, we found that
GPT-4 names and analyses were conceptually equivalent, but the specific text could vary, from near
identity to considerable differences in phrasing. Additionally, we made our manual review process
manageable by forcing the responses to be concise. For this purpose, we set the maximum number of
tokens (roughly corresponding to words) in each response to be 1,000.

Calculation of semantic similarity. Semantic similarity between names was determined using the
SapBERT model52. SapBERT produces embeddings of each name and then computes the cosine
similarity between the embeddings, yielding a similarity score ranging from 0 (no similarity) to 1 (identical).
SapBERT is a domain-specific language representation model that has been pre-trained on large-scale
biomedical data, including Unified Medical Language System (UMLS), a massive collection of biomedical
ontologies with 4M+ concepts. Since models like BERT are trained on vast amounts of textual data, they
can learn general patterns and relationships and also capture context by considering surrounding words,
providing a measure of similarity based on semantics rather than lexical matching. Although both
SapBERT and GPT-4 are LLMs, they are two separate models with different purposes, model
architecture, and training objectives and data. However, to address potential concerns that one language
model was used in evaluating another, we performed the following test. For each ‘omics gene set in
workflow 2, a panel of three humans conducted an independent and blinded evaluation of whether the
GPT-4 determined name, or the most enriched term name, best matched the expert-determined name
assigned in the MSigDB or NeST publications12,32. In 75/100 (75%) of these gene sets, the consensus of
the independent panel matched the result of SapBERT semantic similarity testing (Extended Data Table
3). When SapBERT and the human panel disagreed, the disagreements were not significantly biased in
favor of GPT-4 or gene set enrichment (p = 0.21, binomial test).

Calibrating the similarity between GPT-4 names and GO names. To evaluate the performance of the
GPT-4 model in recapitulating GO names, we computed the semantic similarity between the GPT-4 name
and the assigned name of the GO term query, using SapBERT as described above. We then performed
this semantic similarity calculation for the same GPT-4 name against every other GO term name in the
Biological Process branch (GO:BP), yielding a background distribution of semantic similarity scores. The
actual and background similarities were then concatenated into a single list, sorted in descending order
(largest to smallest), and the rank of the actual similarity was recorded and expressed as a percentile.
This percentile score is thus the percentage of GO:BP term names that are less similar to the GPT-4
name than to the assigned name of the GO term query.

Obtaining top enriched GO terms for the ‘omics gene sets. We used the Enrichr web service to
perform gene set enrichment. The most enriched GO:BP term for the queried gene set was obtained
using the “gp.enrichr” function from GSEAPY package53 with the parameter settings {gene_sets =
'GO_Biological_Process_2023', organism='human'}. The best-matching GO term was selected based on
the adjusted p-value and treated as the proposed GO name for the predominant biological process of the
gene set.

Identification and validation of relevant references (citation module). The process of identifying and
evaluating references for a given gene set involved several steps (Extended Data Fig. 1a–d). Firstly, we
engineered a GPT-4 prompt to request two types of keywords from each analysis paragraph (as had been
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generated by an earlier GPT-4 query): (1) gene symbols explicitly mentioned in the paragraph and (2) up
to three keywords associated with gene functions or biological processes, ordered by their importance.
The prompt also gave the instruction that paragraphs should be skipped if they did not yield at least one
gene symbol and one functional keyword and that the model should yield ‘unknown’ in those cases. The
prompt to extract gene function keywords incorporated an example paragraph and corresponding answer
as a guide. Following identification of gene symbols and function keywords, these were assembled in a
series of logical query expressions, one per function, in which all gene symbols were combined using the
'OR' operator and linked with a function keyword by 'AND' (Extended Data Fig. 1b). The search then
iterated over the query expressions, querying PubMed via its web API to find scientific publications in
which the title or abstract matched the query expression, sorted by relevance (Extended Data Fig. 1c).
The search process terminated when all query expressions were tried. Upon finding a match, the abstract
of the relevant publication was extracted and provided to the GPT-4 model. This model was asked to
assess whether the abstract agreed with one or more statements in the analysis paragraph (Extended
Data Fig. 1d). A maximum of three references were returned per paragraph.

Reviewer fact-checking of GPT-4 analysis text. We performed a structured review of 50 paragraphs
selected randomly from GPT-4 generated analysis text, gathered in a scoring table (Supplementary
Table 3). In this analysis, a reviewer recorded scores for each paragraph based on two Boolean criteria,
“Verified” and “Supporting,” in corresponding columns. Citations and other literature evidence were
recorded in an “Evidence” column. The scoring rubric was as follows:

● Verified: Are all statements in the paragraph verified by literature review?
a. Verified paragraphs were scored as “1”, otherwise “0”.
b. Simple per-gene statements were checked against information from NCBI Gene content

maintained by the National Library of Medicine, http://www.ncbi.nlm.nih.gov.
i. For example, “Oxytocin (OXT) is a neuropeptide hormone that binds to its

receptor, oxytocin receptor (OXTR).” can be quickly verified by the NCBI Gene
entries for the two genes.

ii. If the NCBI entry verified one or more statements, the URL for the entry was
added to the Evidence column, e.g., “NLM: OXT
http://www.ncbi.nlm.nih.gov/gene/5020”

c. For statements not verified by NCBI Gene, the reviewer searched PubMed for
publications to provide evidence for the statement.

d. Search strategies included:
i. Search using gene-keyword pairs, such as “TP53 cell cycle”.
ii. For paragraphs that discuss multiple genes, search for review articles with

phrases such as “acute phase response proteins.”
iii. Search for family member proteins together, such as “TAS2Rs bitter taste”.

e. If no evidence for a statement could be found within roughly ten minutes of searching,
this was noted in the Evidence column.

● Supportive: In the reviewer's judgment, do any of the statements in the paragraph support the
gene set name proposed by GPT-4?

a. Paragraphs judged supportive were scored as “1”, otherwise “0”.
b. Supportive paragraphs could include unverified statements.

Data availability

Publicly available gene sets were used in this study. Gene Ontology (2022-10-07 release) is available at
http://release.geneontology.org/2022-10-07/ontology/index.html. MSigDB can be found here:
https://www.gsea-msigdb.org/gsea/msigdb and the selected NeST gene set is available to download from
https://github.com/idekerlab/llm_evaluation_for_gene_set_interpretation/blob/main/data/NeST_table.txt.
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Code availability

The pipeline for running the gene set interpretation and citation search is available at
https://github.com/idekerlab/llm_evaluation_for_gene_set_interpretation, along with the code for running
the evaluation.
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Figures and Tables

Fig. 1. Use and evaluation of GPT-4 for functional analysis of gene sets. a, The prompt provided to
GPT-4 for its input fields “System” and “User.” The specific list of genes is inserted into the {gene_set}
field at the end of the prompt template. b, Generation of a proposed name for a gene set, with an
accompanying analysis, using GPT-4. c, Benchmarking against GO gene sets: Calculation of semantic
similarity between the GPT-4 proposed name and the name assigned by the GO curators (Left yellow
star). Calibration of this similarity against the distribution of semantic similarities between the GPT-4 name
and every term name in GO:BP. d, Benchmarking against ‘omics gene sets (MSigDB hallmark gene sets,
NeST cancer systems): Computation of semantic similarity between the GPT-4 proposed name and the
name curated by human experts (Right yellow star). Additional comparison to the name assigned by gene
set enrichment analysis using the Enrichr web service.
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Fig. 2. Evaluation of GPT-4 in recovery of GO term names. a, The raw semantic similarity between the
GPT-4 name and the assigned GO name (blue dashed line, x-axis) is converted to the percentage of all
names in the GO database with lower similarity to the GPT-4 name (blue dashed line, y-axis). Plot shown
is for the GPT-4 name “DNA Repair and Chromosome Segregation”, generated for the GO term
“Regulation of Sister Chromatid Cohesion.” b, Cumulative number of GO term names recovered by
GPT-4 (y-axis) at a given similarity percentile (x-axis). 0 = least similar, 100 = most similar. Blue curve:
semantic similarities between GPT-4 names and assigned GO term names. Grey dashed curve: semantic
similarities between GPT-4 names and random GO term names. The red dotted line marks that half of the
1000 sampled GO names are recovered by GPT-4 at a similarity percentile of 98%. c, Hierarchical view of
the GO term “Triglyceride Catabolic Process” and its ancestors. Blue box: gene set query, yellow box:
gene set of best match GO name (most similar GO name to GPT-4 name), dashed lines with arrows:
semantic similarities between names, red text: GPT-4 proposed name. d, Venn diagram showing overlap
between the gene set query (blue, LEFT) and gene set of best match GO name (yellow, RIGHT). The
false discovery rate (q-value) is obtained from the hypergeometric test between the two gene sets. e,
Significance (q-value by hypergeometric test) of overlap between the gene set with the best match GO
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name and the gene set query (y-axis). Red dashed line: significance cutoff at q = 0.1
(Benjamini-Hochberg correction). Black horizontal line within violin plot shows median q-value (Best
match GO: 1.40 10−8, Random GO: 1.0). **** p = 1.18 10−279 by Mann–Whitney U test.× ×

Fig. 3. Evaluation of GPT-4 for analysis of gene sets discovered in ‘omics data. a, Violin plots
showing the distribution of semantic similarity scores between GPT-4 names and expert-determined
names (LEFT) or between most enriched GO:BP term name and expert-determined names (RIGHT) for
gene sets discovered in ‘omics studies (points, n = 100). Blue: Gene sets based on expression clusters
(MSigDB). Red: Gene sets based on protein interaction clusters (NeST). Horizontal lines denote median ±
upper and lower quartiles. b, Distribution of the percentage of genes informed by GPT-4 analysis (LEFT)
or gene set enrichment analysis (RIGHT). Plots elements same as panel a. For both panels, p-values are
determined by Wilcoxon nonparametric two-sample comparison. * p=10–3; ** p=10–7.
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Table 1. Example of successful GO name recovery (GO:0006953 “Acute-Phase Response”).

Genes
(n = 48)

A2M, AHSG, APOL2, APCS, ASS1, CD163, CEBPB, CNR1, CRP, EPO, EDNRB, F2,
F8, FN1, HAMP, HP, IL1A, IL1B, IL6, IL6R, IL22, INS, ITIH4, LBP, MBL2, MRGPRX1,
ORM1, ORM2, PLSCR1, PTGER3, PTGES, PTGS2, REG3A, REG3G, SAA1, SAA2,
SAA4, SERPINA1, SERPINA3, SERPINF2, SIGIRR, TFRC, TFR2, TNF, TNFRSF11A,
TNFSF11, TRPV1, UGT1A1

GPT-4 Name
(Semantic Similarity)

Acute Phase Response
(0.99)

GPT-4 Analysis Paragraph

The most prominent biological process performed by this system of interacting proteins is the acute phase
response (APR), which is a rapid inflammatory response to tissue injury, infection, or inflammation. The APR is
characterized by the increased production of acute phase proteins (APPs) by the liver, which play a crucial role in
the body's defense against pathogens and tissue repair.

1. Acute phase proteins: Several proteins in the list are well-known APPs, such as SERPINA1, SERPINA3, CRP,
SAA1, SAA2, SAA4, ORM1, ORM2, HP, and A2M. These proteins are primarily synthesized in the liver and are
involved in various aspects of the immune response, including opsonization, complement activation, and
neutralization of proteases.

2. Cytokines and inflammation: The list includes several cytokines and their receptors, such as IL1A, IL1B, IL6,
IL6R, IL22, TNF, and TNFRSF11A, which are key mediators of inflammation and regulate the synthesis of APPs.
For example, IL6 is a major inducer of the APR and stimulates the production of CRP and other APPs.

3. Coagulation and fibrinolysis: Proteins like F2, F8, and SERPINF2 are involved in the coagulation cascade,
which is activated during the APR to prevent blood loss and facilitate tissue repair. Additionally, the fibrinolytic
system is regulated by proteins such as SERPINA1 and SERPINF2, which inhibit plasminogen activators and
plasmin, respectively.

4. Iron homeostasis: Proteins like TFRC, TFR2, and HAMP are involved in iron homeostasis, which is altered
during the APR to limit the availability of iron for pathogens. HAMP, also known as hepcidin, is an APP that
regulates iron absorption and distribution by binding to ferroportin and inducing its internalization and degradation.

5. Lipid metabolism and transport: Proteins like APOL2, APCS, and AHSG are involved in lipid metabolism and
transport, which is essential for the immune response and tissue repair. For example, APOL2 is an apolipoprotein
that plays a role in lipid transport and metabolism, while APCS is involved in the clearance of apoptotic cells.

6. Cellular stress response: Proteins like CEBPB and HSP90AA1 are involved in the cellular stress response,
which is activated during the APR to protect cells from damage and promote their survival. CEBPB is a
transcription factor that regulates the expression of several APPs, while HSP90AA1 is a molecular chaperone that
assists in protein folding and stabilization.

In conclusion, the acute phase response is the most prominent biological process performed by this system of
interacting proteins, as evidenced by the presence of numerous acute phase proteins, cytokines, and other
proteins involved in inflammation, coagulation, iron homeostasis, lipid metabolism, and cellular stress response.
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Table 2. Best and worst GPT-4 names for GO terms by semantic similarity.

GO Name
(# of genes)

GPT-4 Name
(% of genes captured)

Semantic
Similarity

Rank among
all GO terms
(n = 12,214)

GPT-4 Names with Highest Similarity to GO Names

Mitochondrial tRNA Modification (9) Mitochondrial tRNA Modification
(100%) 1.00 1

Acute-Phase Response (48) Acute Phase Response (56%) 0.99 1

Branched-Chain Amino Acid Catabolic
Process (21)

Branched–Chain Amino Acid
Catabolism (100%) 0.99 1

Homocysteine Metabolic Process (14) Homocysteine Metabolism (93%) 0.99 1

Tryptophan Catabolic Process (9) Tryptophan Catabolism (100%) 0.98 1

GPT-4 Names with Lowest Similarity to GO Names

Ovulation From Ovarian Follicle (10) Regulation of Cell Proliferation and
Apoptosis (100%) 0.16 11,431

Positive Regulation of Prostaglandin
Biosynthetic Process (7) Inflammation Regulation (100%) 0.16 11,945

Positive Regulation of Protein Import Into
Nucleus (39) Hedgehog Signaling Pathway (97%) 0.15 11,324

Positive Regulation of Norepinephrine
Secretion (4)

Oxytocin Signaling and Regulation
(100%) 0.14 11,964

Positive Regulation of Histone H4
Acetylation (6)

DNA Repair and Transcription
Regulation (100%) 0.13 11,887
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Table 3. Representative analysis for protein interaction clusters (NeST:34 “Histone Modification”).

Genes
(n = 30)

BARD1 BCL11B BRD4 CHD4 CREBBP DNMT1 DNMT3A DNMT3B E2F1 EMSY EZH2
HDAC1 HDAC2 HDAC3 HIST3H3 ING1 IRF2 KDM5A MTA1 PALB2 PARP1 PHF6 PRDM1

RB1 RUNX1 SMARCA1 TERT TP53 ZBTB2 ZNF217

Analysis
Method Assigned Name Semantic

Similarity
# Genes
Covered

GPT-4 Epigenetic Regulation and DNA Repair 0.50 30

Gene set
enrichment

Negative Regulation Of Transcription By RNA
Polymerase I 0.25 20

GPT-4 Analysis Paragraph

The primary biological process performed by this system of interacting proteins is epigenetic regulation and DNA
repair. The proteins involved in this system play crucial roles in modulating gene expression, chromatin
remodeling, and maintaining genomic stability.

1. Chromatin remodeling and histone modification: CHD4, SMARCA1, and ING1 are involved in chromatin
remodeling, which is essential for regulating gene expression. HDAC1, HDAC2, and HDAC3 are histone
deacetylases that remove acetyl groups from histones, leading to chromatin condensation and transcriptional
repression. CREBBP is a histone acetyltransferase that adds acetyl groups to histones, promoting transcriptional
activation. EZH2 is a histone methyltransferase that catalyzes the addition of methyl groups to histone H3, leading
to gene silencing. KDM5A is a histone demethylase that removes methyl groups from histone H3, allowing for
gene activation.

Curtis et al., "The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular
Wnt signaling." Molecular and cellular biology, 2012, pp. 1312-20.

Larsen et al., "The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA
damage." The Journal of cell biology, 2010, pp. 731-40.

Zhang et al., "Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic
target of histone modification in aggressive B-Cell lymphomas." Cancer cell, 2012, pp. 506-523.

2. DNA methylation: DNMT1, DNMT3A, and DNMT3B are DNA methyltransferases that add methyl groups to
cytosine residues in DNA, leading to gene silencing. This process is crucial for maintaining genomic stability and
regulating gene expression.

Dura et al., "DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit
to spermatogenesis." Nature genetics, 2022, pp. 469-480.

Zhang et al., "Structural basis for DNMT3A-mediated de novo DNA methylation." Nature, 2018, pp.
387-391.

Madsen et al., "An Important Role for DNMT3A-Mediated DNA Methylation in Cardiomyocyte
Metabolism and Contractility." Circulation, 2020, pp. 1562-1578.

3. Transcriptional regulation: E2F1, IRF2, PRDM1, RB1, RUNX1, TP53, and ZBTB2 are transcription factors that
bind to specific DNA sequences and regulate gene expression. BCL11B and ZNF217 are also involved in
transcriptional regulation through their interactions with other transcription factors and chromatin modifiers.

Choo et al., "The role of IRF1 and IRF2 transcription factors in leukaemogenesis." Current gene therapy,
2006, pp. 543-50.
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Wang et al., "Prognostic analysis of E2F transcription factors E2F1 and E2F3 in four independent
pediatric neuroblastoma cohorts." BMC pediatrics, 2022, pp. 376.

Owens et al., "Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic
development." Nature communications, 2022, pp. 773.

4. DNA repair and genomic stability: BARD1, BRD4, EMSY, MTA1, PALB2, and PARP1 are involved in DNA
repair pathways, such as homologous recombination and non-homologous end joining. These proteins help
maintain genomic stability by repairing DNA damage and preventing mutations.

Ray Chaudhuri et al., "The multifaceted roles of PARP1 in DNA repair and chromatin remodelling."
Nature reviews. Molecular cell biology, 2017, pp. 610-621.

Tarsounas et al., "The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication." Nature
reviews. Molecular cell biology, 2020, pp. 284-299.

Zada et al., "Parp1 promotes sleep, which enhances DNA repair in neurons." Molecular cell, 2021, pp.
4979-4993.e7.

5. Telomere maintenance: TERT is the catalytic subunit of telomerase, which is responsible for maintaining
telomere length and preventing cellular senescence.

Duan et al., "TERT-mediated and ATRX-mediated Telomere Maintenance and Neuroblastoma." Journal
of pediatric hematology/oncology, 2018, pp. 1-6.

Wang et al., “The association of telomere maintenance and TERT expression with susceptibility to
human papillomavirus infection in cervical epithelium." Cellular and molecular life sciences : CMLS,
2022, pp. 110.

Goldstein et al., "Association of germline variants in telomere maintenance genes (POT1, TERF2IP,
ACD, and TERT) with spitzoid morphology in familial melanoma: A multi-center case series." JAAD
international, 2023, pp. 43-51.

6. Protein-protein interactions: PHF6 and HIST3H3 are involved in protein-protein interactions that modulate the
activity of other proteins in this system.

Wendorff et al., "Phf6 Loss Enhances HSC Self-Renewal Driving Tumor Initiation and Leukemia Stem
Cell Activity in T-ALL." Cancer discovery, 2019, pp. 436-451.

Gan et al., "Chromatin-Binding Protein PHF6 Regulates Activity-Dependent Transcriptional Networks to
Promote Hunger Response." Cell reports, 2020, pp. 3717-3728.e6.

Aillaud et al., "Tau Aggregation Inhibiting Peptides as Potential Therapeutics for Alzheimer Disease."
Cellular and molecular neurobiology, 2023, pp. 951-961.

In summary, this system of interacting proteins plays a critical role in epigenetic regulation and DNA repair,
ensuring proper gene expression and maintaining genomic stability.
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Extended Data Figures and Tables

Extended Data Fig. 1. Schematic of the citation module. a, GPT-4 is asked to provide gene symbol
keywords and functional keywords separately. b, Multiple gene keywords are combined with ‘OR’ and
then with one function using ‘AND’. c, PubMed is searched for relevant titles and/or abstracts in the
scientific literature. d, GPT-4 is queried to evaluate the abstract, saving supporting references. e, Prompts
used for each query of the GPT-4 model.
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Extended Data Fig. 2. Distribution of GO term gene sizes. a, Distribution of number of genes per GO
term among all terms in GO:BP (n = 12,214; y axis). b, Distribution of number of genes per GO term
among selected 1000 GO terms (y axis).

Extended Data Fig. 3. Distribution of ‘omics gene set sizes. Number of genes per gene set among all
‘omics gene sets considered in this study. (n=100).
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Extended Data Table 1. Estimated time and dollar usage for GPT-4 gene set analysis.

Estimate time usage
(second/gene set)

Estimate cost
($/gene set)

Query gene set interpretation 70 0.54

Reference search and validation 77 1.04

Extended Data Table 2. Representative names from ‘omics gene set analysis.

Expert
determined name

GPT-4
determined name

Most enriched
GO term name

# of
Genes

% of Genes Captured

GPT-4 Most enriched
GO term

Hedgehog Signaling Neuronal Development
and Axon Guidance

Nervous System
Development 36 100% 31%

Notch Signaling Notch Signaling
Pathway Notch Signaling Pathway 32 34% 100%

Ubiquitin regulation of
p53 activity

Protein Degradation
and Regulation

Protein Modification By
Small Protein Conjugation 9 100% 67%

p53 regulation of cell
cycle Cell Cycle Regulation Cellular Response To UV 5 100% 80%

Pancreas Beta Cells
Pancreatic Islet Cell
Development and

Function

Regulation Of Insulin
Secretion 40 95% 23%

Interferon Alpha
Response

Antiviral Immune
Response

Defense Response To
Virus 97 35% 34%

RAS-RAF-MAPK MAPK/ERK Signaling
Pathway MAPK Cascade 7 100% 71%

ATM-independent
DNA repair

DNA Damage
Response and Repair DNA Repair 32 97% 63%

Estrogen Response
Early

Cell Proliferation and
Differentiation Vascular Transport 200 5% 5%

Nucleus DNA Damage
Response and Repair

Regulation Of
Transcription By RNA

Polymerase II
194 72% 51%
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Extended Data Table 3. Evaluation of SapBERT for determination of semantic similarity.

SapBERT Human panel Number of gene sets

GPT-4* > Enrichment** GPT-4 > Enrichment 47 (agreement)

GPT-4 > Enrichment GPT-4 < Enrichment 15 (disagreement)

GPT-4 < Enrichment GPT-4 > Enrichment 10 (disagreement)

GPT-4 < Enrichment GPT-4 < Enrichment 28 (agreement)

* GPT-4 determined name
** Most enriched GO term name

Supplementary Information*

Supplementary Table 1
Complete GPT-4 analysis of GO terms (related to workflow1, Fig. 2).
Supplementary Table 2
Complete GPT-4 analysis of omics gene sets (related to workflow2, Fig. 3).
Supplementary Table 3
Reviewer fact-checking of GPT-4 analysis text.
Supplementary Table 4
Reviewer evaluation of citation relevance.

*All the supplementary material can be found in
https://github.com/idekerlab/llm_evaluation_for_gene_set_interpretation/tree/main/supplementary_inform
ation
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