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A longstanding goal of biomedicine is to understand how alterations in molecular and cellular networks give rise to the
spectrum of human diseases. For diseases with shared etiology, understanding the common causes allows for improved
diagnosis of each disease, development of new therapies and more comprehensive identification of disease genes.
Accordingly, this protocol describes how to evaluate the extent to which two diseases, each characterized by a set of
mapped genes, are colocalized in a reference gene interaction network. This procedure uses network propagation
to measure the network ‘distance’ between gene sets. For colocalized diseases, the network can be further analyzed to
extract common gene communities at progressive granularities. In particular, we show how to: (1) obtain input gene sets
and a reference gene interaction network; (2) identify common subnetworks of genes that encompass or are in close
proximity to all gene sets; (3) use multiscale community detection to identify systems and pathways represented by each
common subnetwork to generate a network colocalized systems map; (4) validate identified genes and systems using a
mouse variant database; and (5) visualize and further investigate select genes, interactions and systems for relevance to
phenotype(s) of interest. We demonstrate the utility of this approach by identifying shared biological mechanisms
underlying autism and congenital heart disease. However, this protocol is general and can be applied to any gene sets
attributed to diseases or other phenotypes with suspected joint association. A typical NetColoc run takes less than
an hour. Software and documentation are available at https://github.com/ucsd-ccbb/NetColoc.

Introduction

Many biological studies result in groups of genes linked to phenotypes of interest. For example,
genome-wide association studies (GWAS) identify common variations in DNA, which may be
mapped to relevant genes, that are associated with particular diseases or traits1. As whole-exome and
whole-genome sequencing studies are increasingly performed, genes containing rare variants asso-
ciated with disease have also been identified2. Similarly, studies of mRNA expression levels, first using
microarrays and now using next-generation sequencing, often result in sets of genes whose expression
levels are altered in a disease or in response to perturbations3.

Interpreting these gene sets can be a complicated and time-consuming process, often involving an
extensive literature review to contextualize results with known biology. Functional enrichment
analysis4, one method for interpretation, can provide insight into the biological pathways and pro-
cesses underlying a phenotype by testing for known pathways that have more in common with the
gene set of interest than would be expected by chance. Gene interaction networks add further context
for interpreting gene sets, with tools such as network propagation enabling the identification of new
disease genes and genetic modules5,6. Notably, networks can boost the signal of underpowered data,
as marginally significant variants converge on localized regions of network space7,8.

So far, network analyses have focused on approaches for studying single gene sets. Here we
describe a protocol to study the extent to which two gene sets are related to each other, even if the
gene sets themselves share few common genes. Previously, we have used this approach to identify a
set of shared pathways underlying autism and congenital heart disease9, an analysis we illustrate and
extend here. Additionally, this approach may be used in the future to connect genes and pathways in
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a cross-species GWAS. More broadly, such an analysis can help unravel the complex relationships
between genotypes and phenotypes by pinpointing convergent pathways.

Applications of the method
This protocol is based on NetColoc9, a tool for evaluating the extent to which two gene sets are
colocalized in a gene interaction network and for identifying the functions that underlie this colo-
calization. NetColoc relies on a dual network propagation approach to identify the region of network
space that is significantly near two distinct input gene sets. This tool can be used to study any pair of
gene sets, such as rare and common variants within the same disease, genes associated with two
comorbid diseases, genetically correlated GWAS phenotypes, GWAS across two different species or
gene expression changes after treatment with two different drugs.

Comparison with other methods
Direct comparisons of gene sets are often used to determine the similarity between phenotypes or
conditions, usually with some statistical test to assign significance. This approach can be problematic
when gene sets are small, as the power to detect a significant overlap is limited. In addition, variants
in different genes within the same pathway may result in similar phenotypes, a finding that would not
be recognized by direct comparison. A related approach might be to first perform functional
enrichment analysis4,10 on the individual gene sets and then to assess the overlap between sig-
nificantly enriched pathways. This approach takes advantage of prior biological knowledge in the
form of manually curated gene pathways. Like direct comparisons though, this method is limited in
the case of small gene sets with few significantly enriched pathways. In contrast, NetColoc works well
with small-to-medium gene sets (i.e., between 5 and 500 genes) as it can readily identify the network
space significantly proximal across sets.

Several previous methods have employed network information to interconnect sets of genes7,11–14.
Many of these methods are designed to analyze single gene sets or specific biological contexts, such as
patient stratification based on cancer mutations or association of causal variants to changes in gene
expression7,11. In contrast, NetColoc provides a general statistical framework for evaluating and
interpreting the relationships in gene network space of any two gene sets. Furthermore, NetColoc
implements a degree-corrected propagation algorithm, as diffusion or propagation methods may be
susceptible to overrepresentation of hub genes15. It also includes a statistical metric to assess the
significance of network colocalization and integrates with clustering tools, pathway analysis and a
mouse variant database. These features enable facile interpretation and validation of network
colocalized genes.

Development of the protocol
The NetColoc methodology was originally implemented in a previous work9, where we analyzed the
network overlap between two comorbid disorders: autism spectrum disorder (ASD) and congenital
heart disease (CHD). We measured the extent to which high-confidence variants from large-scale
exome studies were colocalized in network space, identifying novel disease genes and the underlying
biological systems. Here we describe and further develop the protocol underlying this approach, with
greater detail and updated methods. Specifically, we use an improved community detection
algorithm16 to identify the systems and pathways underlying the network colocalization. We also
updated the ASD gene set to use the most recent list of high-confidence ASD genes so far17 in our
example. Because of these updates, the exact genes and pathways identified here are slightly different
than previously reported9, although the major findings remain consistent. We have also implemented
a distinct validation step by integrating with a mouse variant database18 to enable broad use beyond
ASD and CHD.

Overview of the protocol
This protocol consists of five major stages (Fig. 1) and is accompanied by an open-source codebase
and Jupyter notebook available at https://github.com/ucsd-ccbb/NetColoc detailing each step needed
to reproduce the example below.

Obtain input gene sets and gene network (Steps 1–3)
NetColoc uses two sets of genes associated with phenotypes of interest and a gene interaction network
as inputs. It is most useful when analyzing gene sets obtained from systematic genome-wide
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experiments, such as those mapped from GWAS loci, damaging variants from exome sequencing
studies or genes differentially expressed between experimental conditions. These genome-wide results
are in contrast to manually curated, low-throughput gene sets, which are subject to bias by focusing
on well-known genes. By using unbiased gene lists as inputs, poorly studied but physiologically
important disease genes can be revealed on the basis of their proximity to well-known disease genes,
thereby facilitating the discovery of novel disease-related pathways.

In practice, we find that small to medium gene sets (between 5 and 500 genes) work best as inputs
to NetColoc. If the input gene sets are very small, they may not characterize the phenotypes generally
enough to yield meaningful results, i.e., characterizing the network proximal region to a single
gene does not necessarily provide insight to the underlying phenotype. Alternatively, very large input
gene sets result in the majority of the network being identified after network propagation, resulting in
a lack of specificity. The sampling underlying the statistical framework also becomes an issue, due to
the finite network (Supplementary Methods and Supplementary Fig. 1).

There exist a large number of gene interaction networks, some of which integrate numerous data
types and databases19–23. Recent work has demonstrated that larger, more inclusive networks out-
perform smaller networks in disease gene discovery24. As such, we recommend using a large and
inclusive network for NetColoc analysis such as STRING19 or PCNet24.

Identification of a subnetwork of colocalized genes (Steps 4–8)
NetColoc creates a network of colocalized genes, which includes some genes from both input sets
alongside other genes identified by dual network propagation. Input genes identified in the coloca-
lization network are generally genes that have strong evidence for association to at least one phe-
notype of interest but may be novel to the other. Genes found in both input gene sets are very likely to
be included in the colocalization network. Notably, the colocalization network also includes genes
that are identified by joint network proximity to the input gene sets but which are not themselves
input genes. These genes represent candidate risk genes novel to both phenotypes.

Compute network colocalized systems map (Steps 9–14)
The colocalization network generated by the previous step may be large, in which case it may be
useful to separate this network into distinct communities using multiscale community detection.
Multiscale community detection identifies highly interconnected (modular) systems of genes, which
can represent distinct protein complexes or biological pathways16,25. Identification of communities at
multiple scales yields a hierarchical structure of discrete systems, with smaller, more specific systems
contained within larger, more general ones26. The resulting NetColoc systems map provides a high-
level view of the shared biological processes between phenotypes. Here each system is essentially a
hypothesis that those genes and interactions within it describe a pathway, process or complex that
underlies the shared biology of both phenotypes. As the resulting systems derive from the structure of
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Fig. 1 |Workflow of the protocol. Two disease-associated gene sets (d1 and d2), along with a selected molecular interaction network, are the inputs to
the workflow. Network propagation is conducted from each gene set individually on the selected interaction network. The resulting propagation scores
are combined to create the d1–d2 colocalized gene network. Application of a hierarchical cluster algorithm results in the d1–d2 systems map. The
genes and systems in the d1–d2 systems map are then interrogated with the Mouse Genome Informatics (MGI) database, for enrichment of relevant
phenotypes.
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the interaction network, they may be novel and context specific as they do not rely on a manual
classification process.

Validate identified genes and systems (Steps 15–24)
While the NetColoc systems map may recapitulate known biology—systems with known associations
to both phenotypes—it may also present novel systems and system-phenotype associations. To
prioritize such hypotheses, a key step is to integrate the systems map with independent datasets. For
studies in mammals, one powerful independent resource is the Mouse Genome Informatics (MGI)
database18, a large catalog of genes that, when disrupted, cause specific phenotypes in mice. Such
analysis serves to pinpoint conserved systems enriched for mouse phenotypes and to further
nominate novel disease gene candidates within these systems for follow-up experiments. One
limitation of such an approach is that not all systems are conserved across species. In such cases, a
novel system would not be validated by integration with the MGI, and further investigation would be
needed to verify the system was not a false positive.

Further exploration of select systems (Steps 25–30)
Systems of interest and the genes and interactions contained therein can be further investigated by
importing the NetColoc systems map into Cytoscape27. These investigations may proceed in a
number of directions. For example, systems without annotations may represent novel pathways,
processes or complexes. Genes within systems of interest that are also associated with a particular
phenotype in mice may be good candidates for further studies. Further, the interactions between
novel disease gene candidates and known disease genes may be examined for further insights into
functions related to the disease.

Limitations
Limitations of NetColoc include the requirement that the input gene sets be of moderate size (~5–500
genes, see above). Additionally, it can be computationally challenging and even practically prohibitive
to perform network propagation on very dense gene interaction networks (>3 million edges). Cur-
rently, NetColoc is designed to operate on a single pair of gene sets, representing a pair of phenotypes.
In future work, we may allow for three or more input gene sets.

Materials

Hardware
● A computer or server with 32 GB random-access memory (RAM), running Python 3 (may run with
less memory, depending on the size of the network); the workflow has been tested on MacOS 10

Software
● Python packages: click, matplotlib, ndex2, network, numpy, seaborn, tqdm, mygene, scipy,
statsmodels, gprofiler-official, ipywidgets, ipycytoscape, ddot and cdapsutil

● Cytoscape, version 3.9 or later (https://cytoscape.org/)

Example data
● Text files containing input gene lists: CHD_HC.tsv and Satterstrom--Top-102-ASD-genes--
May2019.csv. Included in the NetColoc GitHub repository

● Text file containing input gene list for scored gene list example: E-MTAB-6863-query-results.tsv.
Included in the NetColoc GitHub repository c CRITICAL Input data should be text files, with one
column containing the names of the input genes (there may be other columns that are not used). Input
gene lists should be between 5 and 500 genes. There may optionally be a column for a per-gene score
(a P value or log-fold change, for example), used in some optional parts of the workflow.

Software setup
● Python 3 installation (https://www.python.org/)
● Jupyter notebook installation (https://jupyter.org/install)
● Cytoscape installation (https://cytoscape.org/)
● NetColoc installation and dependencies (click, matplotlib, ndex2, network, numpy, seaborn, tqdm,
mygene, scipy, statsmodels, gprofiler-official, ipywidgets, ipycytoscape, DDOT and cdapsutil).
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NetColoc and all dependencies except DDOT and cdapsutil will be automatically installed with pip
install netcoloc. Cdapsutil can be installed with pip install cdapsutil. DDOT can be
installed by cloning the repository, using the following commands

git clone --branch python3 https://github.com/idekerlab/ddot.git
cd ddot
python setup.py bdist_wheel
pip install dist/ddot*py3*whl

Procedure

c CRITICAL The Python code required for Steps 1–24 is included in the Supplementary Procedure to
improve readability. The remaining Steps 25–30 should be carried out in NDEx and Cytoscape.
Additionally, Steps 1–24 are demonstrated in an example notebook: https://github.com/ucsd-ccbb/
NetColoc/blob/main/example_notebooks/ASD_CHD_NetColoc_analysis.ipynb.

Obtain input gene sets and gene network ● Timing <5 min
1 Load required packages into Python.

? TROUBLESHOOTING
2 Select two gene sets of interest. Load gene sets from text files into Python. These gene sets should

contain between 5 and 500 genes and come from experimental data, rather than manual curation,
to avoid bias.

In some use cases, the gene sets of interest may accompany a score (such as P value or log-fold
change, in an RNA-Seq differential expression experiment). For these use cases, we provide an
optional step to aid the researcher in finding an optimal choice of threshold by sweeping over a
range of filtering criteria to maximize the observed divided by expected network intersection size.
The genes that meet these criteria should be retained for use in the following steps. This process is
illustrated in an example notebook: https://github.com/ucsd-ccbb/NetColoc/blob/main/example_
notebooks/Evalute_scored_input_gene_lists.ipynb.

3 Select a gene interaction network to use for the analysis. Identify the network universally unique
identifier (UUID) on NDEx28 and use this to import to a Jupyter notebook. We recommend using
PCNet24 as a starting point, but a user may want to switch to ‘STRING high confidence’ if using a
machine with low memory (<8 GB RAM).

c CRITICAL STEP Verify that nomenclature for the input genes matches the nomenclature for the
interaction network (e.g., both are from the same species, and both use Entrez ID or HGNC
symbol).

? TROUBLESHOOTING

Identify subnetworks of colocalized genes ● Timing 20 min
4 Precalculate matrices needed for network propagation, using the functions netprop.get_

normalized_adjacency_matrix and netprop.get_individual_heats_matrix,
referred to as w′ and w″ in the following. This step will take a few minutes (more for denser
networks). A benchmarking analysis demonstrates that the runtime required scales with the
number of edges (w′) and the number of nodes (w″) (Supplementary Fig. 2a,b). If the researcher
plans on running multiple analyses they may find it useful to save these matrices as numpy binary
files. We include instructions for saving and reloading. We caution that, because these matrices are
not sparse, saving and reloading can take a few minutes, and the saved file can be a few GB, so for
many networks it may be faster to recompute the matrices each time. The diffusion parameter,
which controls the rate of propagation through the network, may be set in this step. In practice, we
have found that results are not dependent on the choice of this parameter (Supplementary Fig. 3),
and recommend using the default value of 0.5.
? TROUBLESHOOTING

5 Subset input genes sets to genes found in the selected network. Only genes contained in the
interaction network will be retained as ‘seed’ genes for downstream analysis.
? TROUBLESHOOTING
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6 Compute network proximity scores from both seed gene sets, z1 and z2, independently, using the
function netprop_zscore.calculate_heat_zscores. The network proximity scores
include a correction for the degree distribution of the input gene sets (Supplementary Fig. 4). The
runtime required for computing the network proximity scores increases linearly with the number of
nodes in the underlying interaction network and with the size of the input gene list (Supplementary
Fig. 2c).

7 Build the NetColoc subnetwork and evaluate it for significant network colocalization. To build the
NetColoc subnetwork, we take the product of the two proximity vectors as follows:

zcoloc ¼ z1 � z2

We then select genes with zcoloc greater than a threshold (zcoloc > 3 default, but can be set by the
user), and network proximity scores individually larger than a nominal threshold (z1 > 1.5 and z2 >
1.5 default, but can be set by the user). The genes meeting these criteria and associated interactions
make up the network colocalization subnetwork. We have found that the default threshold values
work well in practice to find the set of genes that is proximal to both seed gene sets. Tuning the
thresholds higher will lead to fewer false positives but more false negatives. Similarly, tuning them
lower will lead to more false positives but fewer false negatives. Either may be warranted given the
specifics of an experiment. The researcher may conduct a sensitivity analysis of these thresholds to
find a balance between a higher NetColoc enrichment score, but smaller network, and a lower
NetColoc enrichment score, but larger network (Supplementary Fig. 5). The function
network_colocalization.calculate_network_enrichment is provided to enable
such a sensitivity analysis. In this function, the network colocalization score is computed for the
gene set pair, on the basis of the observed network overlap and expected network overlap from a
null distribution, over a range of z-score thresholds. We recommend using the default thresholds
unless the use case calls for higher or lower stringency. Choosing the thresholds which optimize the
network colocalization score risks leaving out important phenotype-related genes. If gene sets are
significantly colocalized, proceed with the analysis. Gene sets that are not significantly colocalized
in the network have no evidence for shared underlying pathways, and thus proceeding with an
analysis of the network intersection in this case is not likely to return meaningful results.

8 (Optional) Transform NetColoc subnetwork edges to cosine similarities with the function
network_colocalization.transform_edges. The cosine similarity score between two
genes represents the extent to which those genes have similar interactors. In practice, the cosine
similarity transformed score helps to visually reveal the underlying clustering structure present in a
network.

Compute network colocalized systems map ● Timing 5 min
9 Convert network colocalization subnetwork from network graph format to NDEx graph format, for

compatibility with community detection module.
10 Run community detection on the NetColoc subnetwork to identify highly interacting subsystems.

We recommend using the HiDef clustering algorithm16, which is included in the NetColoc
dependency cdapsutil that performs community detection, along with other commonly used
clustering algorithms.

11 Convert the NetColoc hierarchy to networkx format, and write out features of the hierarchy to a
pandas dataframe, for easier manipulation in Python.

12 (Optional) Systems that do not contain any seed genes may be removed to focus on systems in
which perturbations are known to have an effect.
? TROUBLESHOOTING

13 (Optional) Examine the structure of the NetColoc hierarchy with an interactive sneak peak within
the Jupyter notebook. Full annotation and visualization are conducted later in the analysis pipeline,
but the researcher may find it helpful to get a sense of the size and structure of the NetColoc
hierarchy.
? TROUBLESHOOTING

14 Annotate systems with gprofiler10, a functional enrichment tool. Annotate moderately sized systems
(between 50 and 1,000 genes per system) if the systems are significantly enriched for a Gene
Ontology (GO) biological process. To increase the stringency of the annotation, require that the GO
term is enriched with P < 1 × 10−5 and shares at least three genes with the system. Label the system
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using the GO term that meets these criteria and has the highest sum of precision and recall. Systems
without a GO term meeting these criteria are labeled with their unique system ID.

Validate identified genes and systems ● Timing 15 min
15 Load and parse mouse variant database, using functionality in the validation module included with

NetColoc.
16 Identify phenotype(s) of interest. We recommend including a negative control, a phenotype that is

not expected to overlap with the two phenotypes of interest.
17 Compute the enrichment of selected phenotype(s) in the NetColoc subnetwork as a whole to

identify the phenotypes with the strongest association with the full NetColoc subnetwork. By
computing the enrichment in the entire NetColoc subnetwork, we identify the phenotypes with the
strongest association with the entire set of genes identified to be related to both input sets.

18 Compute the enrichment of phenotype(s) in NetColoc subsystems. Some phenotypes may have
stronger associations with NetColoc subsystems than with the full subnetwork. In this step, we
calculate the enrichment of selected phenotypes in each NetColoc subsystem.

19 Annotate the NetColoc systems map with mouse variant data, input genes and enriched GO terms.
20 Export the NetColoc systems map to NDEx with the default style. Default style maps the fraction of

seed genes from input set 1 (red) and input set 2 (blue) to node pie charts in NDEx. The remaining
white fraction indicates the fraction of genes in each system that are not in either input set but that
are implicated by network propagation (Fig. 2a,b).

21 Apply another template style to the NetColoc Systems Map for mouse variant view and export to
NDEx. Select the property to be mapped to system node colors (should be one of the mouse variant
phenotypes previously identified). In this style, the log odds ratio is mapped to the system node
color. Systems that are not significantly enriched for the phenotype are white (P < 0.05; Fig. 2a,c).
? TROUBLESHOOTING

22 Add genes associated with mouse variant phenotypes to the NetColoc subnetwork and export
to NDEx.
? TROUBLESHOOTING

23 Upload the cosine-similarity transformed NetColoc subnetwork to NDEx.
24 Add the four networks from above to a network set on NDEx, using ‘add_networks_to_networkset’

function from the NetColoc dependency ndex2, with the UUIDs defined for each individual network.

Further exploration of select systems ● Timing 10 min for automated steps, but manual
investigation piece is more time consuming—a researcher may spend days fine-tuning
visualization and researching genes and systems in the networks
25 Import the four networks from the network set on NDEx (Step 24) to Cytoscape. Navigate to the

network set on the NDEx account page (Fig. 2a). Open each network in a new tab and click ‘open in
Cytoscape’ (Fig. 2b–d).

26 Apply ‘yfiles organic’ layout to NetColoc subnetwork with network edges, and NetColoc
subnetwork with cosine similarity edges.
? TROUBLESHOOTING

27 Apply ‘yfiles tree’ layout to the NetColoc systems map. Apply copycat layout to NetColoc systems
with the mouse variant view from Step 21, to ensure both systems maps have identical layouts.
? TROUBLESHOOTING

28 (Optional) Fine tune the layout and visualization. Some options include: (a) manually adjusting
positions of genes/systems so labels are legible, (b) modifying color schemes and (c) setting non-
seed gene label transparency to 0 for large networks to improve legibility.
? TROUBLESHOOTING

29 If not installed already, install the ‘Community Detection’ app on the Cytoscape app store. Analyze
systems of interest. Right click on a system of interest from the NetColoc systems map. Scroll to
‘Apps’, then ‘Community Detection’, then click ‘View interactions for selected node’. This will bring
up a prompt to select a network for which to view the interactions between genes in the selected
system. Select either the NetColoc subnetwork with network edges or the NetColoc subnetwork
with cosine similarity edges. A new network will be created consisting of the genes and interactions
in the selected system.

30 Further analyze a system of interest by selecting genes causing a phenotype of interest when
knocked out in mice. These genes are available in the node table view.
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Timing

A typical run through the NetColoc workflow (Steps 1–24) takes 10–60 min, to run on a 32 GB RAM
machine with an i7 processor, depending on the number of nodes and edges of the selected network, and
depending on size of input gene sets. The workflow has been tested on networks of up to ~40 million
edges. Runtime for larger or denser networks may be prohibitive. Timing for exploration and inter-
pretation of results (Steps 25–30) depends on the researcher and the nature of the scientific questions

a

b

d

b

c

c

Fig. 2 | Exploration of NetColoc systems map. a, Network set view of four output networks from Steps 1–25. b, NDEx view of the NetColoc systems
map with default view. Arrow indicates a button to open in Cytoscape. c, NDEx view of the NetColoc systems map with node colors and sizes mapped
according to the mouse variant view, where natural log of the odds ratio is indicated by node fill color and systems not significantly enriched (P > 0.05)
are indicated with white nodes. Arrow indicates a button to open in Cytoscape. d, Cytoscape view of four output networks (left), and the NetColoc
systems map, after applying the y-files tree layout algorithm.
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Troubleshooting

Troubleshooting advice can be found in Table 1.

Anticipated results

Use case: network colocalization of two comorbid disorders
An apt demonstration of the operation and utility of the NetColoc workflow is its recent use in a
published analysis of gene sets associated with two comorbid diseases, ASD and CHD9. NetColoc
shows that these two disorders have a significant shared component, defined as the size of the
observed colocalization subnetwork divided by the expected size of such a subnetwork given ran-
domly selected genes. Such a shared component demonstrates that the two diseases impact common
pathways, despite having largely distinct gene sets.

Here we recapitulate and expand the main results from the published paper, using the most recent
list of high-confidence ASD genes17 and an updated workflow. In particular, we performed a revised
NetColoc analysis using 102 genes associated with ASD variants17, 66 genes associated with CHD
variants29 and the PCNet human gene interaction network24. We identified 773 genes in the common
subnetwork, compared with 257 expected from the null model (P < 1 × 10–100 by permutation test;
Fig. 3a,b). A sensitivity analysis of a range of z-score thresholds revealed that more stringent z-score
thresholds resulted in a higher NetColoc enrichment score, but a lower number of genes identified
(Supplementary Fig. 5). Here we accepted a slightly lower NetColoc enrichment score in favor of a
larger pool of possible new disease genes.

Application of the HiDef multiscale community detection algorithm16,25 revealed 81 highly
interconnected gene systems, with 42 containing one or more seed genes associated with ASD or
CHD (Fig. 3c). These systems were then functionally annotated with known biological pathways and
processes. Prominent annotations included pathways related to ion channels, chromatin modification
and histone modification. These pathways have known relevance to both ASD and CHD30–33.

In the above procedure, we have demonstrated how to investigate the genes and interactions in a
subsystem of interest (Steps 29 and 31, Fig. 4). The researcher can examine how the input genes are
connected to other input genes and to other network-implicated genes in the subsystem. In the case of
ASD and CHD, such network-implicated genes may represent new disease risk genes.

Table 1 | Troubleshooting table

Step Problem Possible reason Solution

1 ImportError ddot package DDOT not installed Install DDOT package. See https://github.com/ucsd-
ccbb/NetColoc#dependencies for instructions

3, 21,
22

Operation hangs or there is
an error

Slow or no internet connection, NDEx
server down

Verify internet connection, retry, report issue with NDEx
https://www.ndexbio.org

4 Memory error calculating
w_double_prime

Hardware is underpowered Try loading a smaller network in Step 3 (recommend
STRING high confidence: UUID: 275bd84e-3d18-11e8-
a935-0ac135e8bacf)

5 No input genes overlap with
network

Gene nomenclature may be incompatible Verify that input genes and network nomenclature are
the same (e.g., both are mouse or both are Entrez ID)

12 Operation hangs or there is
an error

Slow or no internet, community detection
service (CDAPS) down, such that the
community detection algorithm is unable to
generate a result. CDAPS is accessed from
NetColoc dependency cdapsutil

Verify internet connection and retry. If still failing try
running locally via Docker: https://cdapsutil.rea
dthedocs.io/en/latest/quicktutorial.html#step-2-
choose-where-to-run. If all else fails, report issue at:
https://cdapsutil.readthedocs.io/en/latest/
contributing.html#report-bugs

13 Blank cell instead of network
visualization

Running in Jupyter Labs instead of Jupyter
Notebooks

Alternate installation instructions required for use of
ipycytoscape in Jupyter Labs https://github.com/
cytoscape/ipycytoscape

26 Open in Cytoscape button
grayed out

Cytoscape not open, or version out of date Open Cytoscape, or update Cytoscape version

27, 28 yFiles layouts are not available yFiles Layout Algorithms not installed in
Cytoscape

Install yFiles Layout Algorithms through Cytoscape app
manager
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Gene systems validated in mouse variant models
Mapping additional data onto the NetColoc systems map can provide useful evidence to support (or
counter) hypotheses from particular gene systems. The premise of this analysis is that the genes in the
same network neighborhood are more likely to have roles in the same phenotype of interest, and that
other data types may provide complementary evidence for those roles.

Accordingly, we integrated the ASD–CHD NetColoc systems map with a database of mouse gene
disruptions linked to resulting specific phenotypes18. This analysis indicated that the genes in the
ASD–CHD NetColoc subnetwork were significantly enriched for genes that, when disrupted in mice,
lead to both abnormal brain and heart phenotypes (Fig. 4a). A negative control phenotype—
abnormal innate immunity—was not similarly enriched. The enrichment was even more pronounced
within individual gene systems, with some systems having 12-fold enrichment of abnormal neuron
morphology genes (Fig. 4b). Furthermore, many genes that were identified by network proximity (i.e.,
not in the input sets) were important for normal neuronal morphology in mice. For example, in a
system annotated for L1CAM interactions, ankyrin and sodium channel genes ANK2, SCN1A and
SCN2A were ASD seed genes, and ANK3 was a CHD seed gene. Of these, individual disruptions of
ANK2, SCN1A and ANK3 resulted in abnormal neuron morphology in mice. Notably, of the other
network-implicated genes in this L1CAM interactions system, seven genes—SCN1B, SPTBN2,
NFASC, SPTBN4, NRCAM, CLCN2 and CHRNB1—also demonstrated abnormal neuronal mor-
phology when disrupted in mice, suggesting that the pathway as a whole plays an important role in
the nervous system (Fig. 4c,d).

Benchmarking on GO
We benchmarked NetColoc on two branches of GO34, to establish a baseline for network colocali-
zation scores in a controlled setting. Here we expect gene set pairs to be closely related if they are
nearby in the ontology and less related if they are distant in the ontology. Specifically, we examined
the lipid metabolic process branch (GO:0006629), containing 1,413 genes and 950 terms, and the cell
development branch (GO:0048468), containing 2,085 genes and 867 terms. We selected pairs of gene
sets expected to be highly related but distinct (i.e., nonoverlapping gene sets within the same term),
pairs of gene sets expected to be somewhat related (i.e., genes selected from different terms in the
same branch) and pairs of gene sets expected to be unrelated (i.e., genes selected from different terms
from different branches). We subjected each of these gene set pairs to our network colocalization
procedure using the PCNet network24 and measured the network colocalization scores (Fig. 5a). As
expected, the within-term gene sets had the highest network colocalization, and the between-term
gene sets from the same branch had intermediate network colocalization values. Gene sets chosen
from different branches had network colocalization values indistinguishable from the baseline.

We also examined how the network colocalization degrades with increasingly noisy input data. We
selected disjoint gene set pairs from within the same term and measured the network colocalization as
a selected fraction of the genes in each set were replaced with randomly selected genes. As expected,
the network colocalization decreased with increasing noise (Fig. 5b), eventually reaching a baseline
value when all genes from the input sets had been replaced with randomly selected genes. Notably,
although the network colocalization decreased, the procedure could still detect a significant network
colocalization even with 80% random genes, illustrating the resilience of NetColoc to noisy input
gene sets.

Conclusion

The network colocalization protocol presented here provides a quantifiable and reproducible work-
flow for probing the extent to which two gene sets impact similar biological processes and pathways.
It presents a roadmap for prioritizing genes and pathways at the intersection of two diseases or
phenotypes, and for the discovery of disease genes that may be missed by sequencing studies. As an

Fig. 4 | Validation of ASD–CHD systems map. a, Scatterplot showing odds ratio (OR) of enrichment of genes from the ASD–CHD NetColoc
subnetwork that cause brain-related phenotypes (blue), heart-related phenotypes (red) or a negative control phenotype (gray) when mutated in mice.
Error bars show a 95% confidence interval (CI) around the log OR. Circle size indicates the number of genes in the selected phenotype. b, Enrichment
of genes causing abnormal neuron morphology in the ASD–CHD systems map, with natural log of the odds ratio indicated by node fill color. Systems
not significantly enriched (P > 0.05) are indicated with white nodes. c, Genes and interactions contained within the L1CAM interactions system
indicated in a. d, Genes and interactions within the L1CAM interactions system, which result in abnormal neuron morphology when knocked out in
mice. Edge colors in c and d represent cosine similarity.
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example, consider GWAS, which detects common variants of low-effect size, and exome sequencing
studies, which detect rare variants with high-effect sizes. Moderately rare variants with moderate-
effect sizes may then be missed by both of these efforts but could be identified by NetColoc. Fur-
thermore, cohorts relying on the detection of de novo variants—variants present in a child but not in
either parent—would miss alleles with recessive patterns of inheritance. These recessive variants may
be identified with NetColoc, as the approach imposes no restrictions on variant type.

A natural extension will be to generalize the workflow to more than two input gene sets. For
example, many neurological disorders have comorbidities, where a patient with one disorder is more
likely to develop another35,36. By systematic application of a generalized network colocalization
workflow, we may be able to stratify the features shared among many comorbid disorders, as well as
those that are specific to one disorder. Such a generalization could be used to disentangle the complex
relationships between genotypes and phenotypes more broadly.

Data availability
The input gene lists used for illustration of the protocol may be found in the supplementary materials
of two papers. The ASD input gene lists were acquired from Satterstrom et al.17. The CHD input gene
lists were acquired from Jin et al.29. The differential expression data used for illustration of the scored
input gene list alternate step were acquired from the European Bioinformatics Institute expression
atlas (https://www.ebi.ac.uk/gxa/home), from Ramnath et al.37. The molecular interaction networks
used in this workflow were acquired from the network data exchange (ndexbio.org); PCNet24 UUID
4de852d9-9908-11e9-bcaf-0ac135e8bacf, STRING19 UUID 275bd84e-3d18-11e8-a935-0ac135e8bacf.

Code availability
The NetColoc software is freely available in public repositories, under the Massachusetts Institute of
Technology license (https://doi.org/10.5281/zenodo.6654561). NetColoc code and example notebooks
are available on a GitHub repository https://github.com/ucsd-ccbb/NetColoc. The NetColoc code is
also available on PyPi https://pypi.org/project/netcoloc/.
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