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Abstract

Gene set analysis is a mainstay of functional genomics, but it relies on curated databases of gene

functions that are incomplete. Here we evaluate five Large Language Models (LLMs) for their ability to

discover the common biological functions represented by a gene set, substantiated by supporting

rationale, citations and a confidence assessment. Benchmarking against canonical gene sets from the

Gene Ontology, GPT-4 confidently recovered the curated name or a more general concept (73% of

cases), while benchmarking against random gene sets correctly yielded zero confidence. Gemini-Pro and

Mixtral-Instruct showed ability in naming but were falsely confident for random sets, whereas Llama2-70b

had poor performance overall. In gene sets derived from ‘omics data, GPT-4 identified novel functions not

reported by classical functional enrichment (32% of cases), which independent review indicated were

largely verifiable and not hallucinations. The ability to rapidly synthesize common gene functions positions

LLMs as valuable ‘omics assistants.
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Introduction

A fundamental goal of the ‘omics sciences is to identify the groups of genes responsible for all of the

distinct biological functions of life, health and disease. In this vein, numerous mRNA expression

experiments over the past several decades have produced sets of genes that are differentially expressed

across conditions or that cluster by common expression patterns. Similarly, proteomics experiments

produce clusters of proteins that are co-abundant, co-modified, or physically interacting; CRISPR gene

knockout screens produce lists of genes required for fitness or a particular response; and so on. In all of

these cases, the basic premise is that the identified genes work coherently towards the same biological

process or function.

A common approach to interpret the genes identified in ‘omics experiments is through functional

enrichment analysis1–9. This method seeks to identify similarities between a cluster of ‘omics genes and

those from a large pre-defined collection of gene sets organized by shared functions or pathway

categories10–15. This pre-defined collection can come from literature-curated gene function databases,

such as the Gene Ontology16,17, Kyoto Encyclopedia of Genes and Genomes18–20, or Reactome11,21,22.

Alternatively, one can perform enrichment analysis against databases of genes annotated from previous

independent experiments, such as genes previously linked to the same disease in the Genome-Wide

Association Studies Catalog23, genes linked to the same mouse knockout phenotypes in the Mouse

Genome Database24,25, genes regulated by a common transcription factor26,27, or genes that serve as

canonical biomarkers for a given cell type28–30.

Paradoxically, an ‘omics gene cluster that is highly similar to one or more gene sets in a reference

database may be of lesser interest, since the cluster and its function have already been well

characterized. Of greater interest are clusters of genes not previously implicated together, because it is

precisely in these cases that new biological insights emerge. These less-studied cases may either show

no significant enrichment in the reference database, or they may return enrichments that are significant in

terms of p-value, but not substantial in terms of overlap. Here, an immediate next step is to explore the

biological literature, as well as complementary data sets, to learn as much as possible about the genes in
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question. The goal is to mine knowledge pertinent to each gene and then use this knowledge to

synthesize mechanistic hypotheses for a function that might be held in common by all or most genes in

the set. This protracted process of discerning relevant findings from data and literature, then reasoning on

this information to synthesize functional hypotheses, has not yet been widely automated but is one of the

central tasks performed by a genome scientist.

The advent of generative artificial intelligence (AI) models and, specifically, Large Language Models

(LLMs) is highly relevant to these tasks. At its core, generative AI is an approach to machine learning by

which a model is trained to recognize underlying patterns in data in a manner that allows it to generate

new data with similar properties as the training data. The underlying technology behind LLMs is the

transformer architecture31–33, which uses a self-attention mechanism to understand context and handle

long-range dependencies in text, delivering significant advancements in tasks such as text translation,

summarization, and generation. Recent AI research has produced a flurry of general-purpose LLMs, such

as GPT-434 by OpenAI, Llama235 by Meta, Mixtral36 by Mistral AI, and Gemini37 by Google, which

incorporate information from an enormous corpus of sources, including the biomedical literature. Based

on these developments, we hypothesized that LLMs might provide a major opportunity to assist in the

interpretation of gene sets derived from ‘omics experiments.

Here, we evaluate the degree to which LLMs provide insightful functional analyses of gene sets based on

their embedded biological knowledge and text-generation capabilities. First, we develop a gene set

analysis pipeline based on queries to a panel of current LLMs. We then test the ability of each LLM to

propose succinct names describing the functions of gene sets of interest, as well as to support this choice

by referenced text and an overall assessment of confidence. Finally, we discuss our findings and their

implications for the general use of LLMs in functional genomics applications.
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Results

Development of an LLM functional genomics pipeline. We designed a pipeline in which an LLM is

instructed to analyze a gene set and then generate a short biologically descriptive name, a supporting

analysis essay, and a score reflecting the LLM’s “confidence” in these results (Fig. 1a, Methods). A

separate LLM instruction was used to validate statements made in the analysis essay with pertinent

literature citations (Extended Data Fig. 1, Methods). The instruction to an LLM is called a “prompt” and

can include data and examples to guide the response. Best practices for formulating this prompt are the

subject of ongoing experimentation38–41, but here our prompt simply described desired properties of the

results to be generated, including guiding phrases such as “For each important point, describe your

reasoning and supporting information.” The engineered prompt also included a single (one-shot) example

to help the LLM imitate the desired format and thought process (Fig. 1a, Extended Data Fig. 1b,

Extended Data Table 1). Gene set query functionality with all tested LLMs is available for general use via

the Gene Set AI (GSAI) web portal (https://gsai.ideker.ucsd.edu/).

We sought to evaluate this pipeline using reference gene sets derived from two primary sources. The first

source was literature curation, for which we evaluated sets of genes drawn from Gene Ontology (GO)

terms16,17 (Evaluation Task 1; Fig. 1b). The second data source was ‘omics analysis, for which we

evaluated sets of genes identified by various ‘omics platforms, including transcriptomics and proteomics

(Evaluation Task 2, Fig. 1c). The goal of the first task was to benchmark how well LLMs recover gene set

functions previously documented by a human-curated reference database, while the goal of the second

task was to explore the extent to which LLMs provide novel insights beyond what is obtained from such

databases.

Evaluation Task 1: Recovery of Literature-Curated Functions. For the first task, we randomly sampled

a representative corpus of terms from the GO Biological Process branch (GO-BP 2023-11-15 release;

Extended Data Fig. 2, Methods). The gene set annotated to each term was used to prompt five different

LLMs (Fig. 1b), after which the names suggested by the LLMs were compared to the term names

assigned by the GO curators. In each case, performance was measured by the semantic similarity of the
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LLM name to the GO name. Semantic similarity42 is a quantitative score (range [0, 1]) that measures the

closeness in meaning of two words or phrases, regardless of whether those phrases involve different

words or expressions (Methods). For example, the word “socks'' is semantically closer to the word

“shoes'' than it is to “airplane.”

The five LLMs required from 7.9 seconds (Gemini Pro) to 61.8 seconds (Llama2 70b) to process a gene

set and return a proposed concise name, a confidence score and supporting analysis text (Extended

Data Table 2). Semantic similarity scores ranged from values as high as 1.0, in cases where the LLM

name exactly matched the GO name (e.g. Gemini Pro: “Synaptic vesicle exocytosis”, GO:0016079), to

values below 0.1, in cases where the names were not intuitively similar (e.g., GPT-3.5: “Regulation of ion

transport and cellular homeostasis” versus GO: “Negative regulation of CD8-positive, alpha-beta T cell

differentiation”, GO:0043377) (Table 1, Supplementary Table 1). We found that GPT-4, Gemini Pro,

GPT-3.5 and Mixtral Instruct showed roughly equivalent performance in proposing a name that was

similar to the GO name (median similarities in range 0.45 – 0.50), whereas the performance of Llama2

70b was significantly worse (median similarity = 0.40; Fig. 2a).

To interpret these similarity scores, we calibrated them against background semantic similarity

distributions, defined by comparing each LLM-proposed name against the entire set of 11,943 term

names documented in GO-BP (Methods). For example, the GPT-4 name (“DNA Damage Response and

Repair”) had a semantic similarity to the GO name (“Response to X-ray”) of 0.54, a score that was higher

than 99% of semantic similarities between the GPT-4 name and every other term name in GO-BP (Fig.

2b, Supplementary Table 2). Using this scoring approach, we found that 60% of gene set names

proposed by GPT-4 were close matches to the corresponding GO term names, with semantic similarities

ranking above the 95th percentile (Figs. 2c, d). In approximately one-third of remaining cases, the LLM

proposed a name matching a more general ancestor in the GO term hierarchy (Fig. 2d). For example, the

gene set corresponding to the GO term “Negative Regulation of Triglyceride Catabolic Process'' resulted

in the GPT-4 name “Lipid Metabolism and Trafficking" with a semantic similarity of 0.41 ranking in the 89th

percentile. The GPT-4 name matched most closely to the GO term “Lipid Metabolic Process,” a less
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specific category higher in the ontology and annotated by a larger set of genes (Fig. 2e). Qualitatively

similar results were observed when analyzing gene sets from the Cellular Component and Molecular

Function branches (Extended Data Fig. 3, Supplemental Table 2).

Assessment of LLM confidence. We next focused on the self-confidence reported by each LLM

(Extended Data Table 1). As noted above (Fig. 1a), we had asked each LLM to provide a continuous

confidence score43,44 for each gene set analysis, in the range 0 to 1. For gene sets for which the LLM

assigned a confidence of “0”, we requested the LLM to return “System of unrelated proteins” rather than a

proposed name, since it could not confidently propose a collective functional description. To gain insight

into whether these confidence scores were informative and useful, we introduced in our evaluation the

concept of contaminated gene sets. Specifically, each of 100 GO terms used previously was substituted

for a synthetic gene set containing 50% of genes randomly selected from that GO term and 50% of genes

randomly selected from the background pool of all genes with GO annotations (“50/50 mix”, Fig. 3a). We

also examined a fully random variant whereby 100% of genes were randomly selected from background

(“Random”; Fig. 3a).

We observed that all LLM models, save for Llama2, showed a significant reduction in confidence when

asked to generate names for the 50/50 mix and random gene sets (Fig. 3b). GPT-4 was the most likely of

the five LLMs to correctly associate lower confidence with contaminated gene sets, and it gave zero

confidence (refusing to name) the vast majority of gene sets that were fully random (87%). In contrast,

GPT-4 assigned nearly all analyses involving real gene sets to a high or medium confidence (98%, Fig.

3b). We also compared these results to classic functional enrichment analysis run on the same real,

contaminated, and random gene sets (BH-adjusted p ≤ 0.05, Methods). As expected, enrichment

analysis always returned the correct GO term for the real gene set, while for 85% of random gene sets,

none of the enrichment results met the significance cutoff. However, enrichment analysis typically also

returned significant GO terms for 50/50 mix (contaminated) gene sets (Fig. 3b). Thus, one might have

expected the LLM to generate a name for any gene set, indiscriminately, but in this analysis it was more

conservative in providing a name than classical functional enrichment.
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Evaluation Task 2: Exploration of gene sets discovered in ‘omics data. For the second task, we

asked GPT-4 to name gene sets that had been identified experimentally, via clustering of ‘omics data.

These sets included: (1) Genes differentially expressed in transcriptomic profiles collected in response to

a panel of drug treatments (n = 126, LINCS L1000 CMAP Signatures of Differentially Expressed Genes

for Small Molecules) 45, (2) Genes differentially expressed upon infection by a panel of viruses (n = 48,

GEO Signatures of Differentially Expressed Genes for Viral Infections) 46, and (3) Genes encoding

complexes of interacting proteins identified by proteomic methods (n = 126, NeST) 47 (Methods,

Extended Data Fig. 4). When prompted with each of these 300 ‘omics gene sets, we found that GPT-4

confidently annotated a name in 133 cases (44%, confidence ≥ 0.8) and otherwise deferred with zero

confidence (Table 2).

To benchmark these results, we also subjected each gene set to classic functional enrichment analysis

against the GO Biological Process database. Enriched GO terms were defined based on the significance

of enrichment (Methods, BH-adjusted p ≤ 0.05) and the effect size, measured as the fraction of genes

shared between the ‘omics gene set and the GO term (Jaccard Index, JI). Notably, we found that even a

very lenient overlap requirement (JI ≥ 10%) left 260 gene sets lacking annotation by GO terms (87%;

Table 2, Extended Data Fig. 5, Supplementary Table 3). Of these non-enriched gene sets, 97 had been

confidently processed by GPT-4 (37%, Table 2), yielding a novel functional name synthesized from

outside of the GO corpus.

One example was NeST 2-123, a cluster of 13 biophysically interacting proteins identified through

integrative proteomic mass spectrometry. Classical functional enrichment had returned no compelling hits,

with the best matching GO term having only a single gene in common (JI = 0.06, BH-adjusted p = 0.04).

Analysis of this cluster by GPT-4 generated the name “Endosomal Sorting and Trafficking” (Table 3),

based on its finding that “the majority of the proteins in this set are involved in the processes of

endosomal sorting and trafficking… While not all proteins are directly linked to this process, the

preponderance of sorting nexins and related proteins suggests a strong functional theme. The presence
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of proteins like REN and SNRPA1, which are not directly related to endosomal sorting, slightly lowers the

confidence score. However, the overall function of the system appears to be centered on the

endosomal-lysosomal pathway.”

Assessment and validation of supporting analysis text. Finally, we evaluated the analysis essays

generated by GPT-4 in support of its proposed gene set names. We were specifically interested in the

potential of LLMs to “hallucinate,” i.e., to generate plausible but unverifiable or nonfactual statements34,

and the degree to which such hallucination might influence the gene set analyses here. For this purpose,

four human scientists participated in a structured review process for 403 sentences generated in the

analysis of 20 ‘omics gene sets (Methods). As a conservative criterion, we considered a sentence

“verified” only if the reviewer found evidence in the literature for every stated fact. Of the 403 sentences

evaluated, we found 354 to be fully verifiable (88%, Supplementary Table 4). Examination of the 49

remaining sentences revealed two major types of unverified facts: (1) Miscategorization of gene functions

(n = 15, 4%) and (2) Speculation of gene functions (n = 34, 8%). In one case relevant to type (1), GPT-4

stated that WDTC1 “is involved in the regulation of the cell cycle and apoptosis…” when in fact, it is an E3

ubiquitin ligase and is involved in adipogenesis and obesity48. Relevant to type (2), the GPT-4 statement

REN “may be affected by vesicular trafficking processes” could not be verified (paragraph 3, Table 3).

To facilitate statement verification, we developed a separate GPT-4-based system to add citations to the

analysis essay in support of key statements made (Extended Data Fig. 1, Supplementary Table 4,

Methods). In formulating the engineered prompt for this task, we did not stipulate that the title or abstract

of a publication must be primarily about the statement; it was sufficient that a supporting fact was present.

The 403 previously reviewed sentences returned 489 citations through this automated system. In 383/489

cases, the paper title or abstract provided clear evidence for the cited statement. For example, the

statement that WDFY1 “is implicated in signaling pathways, potentially acting as an adaptor in the

endosomal system” was supported in the titles of Hu et al. (2015)49 and Ning et al. (2019)50, as well as in

the abstract of Yeo et al. (2019)51 (see paragraph 9 and its citations in Table 3). The remaining 106

citations (22%) did not verifiably support their corresponding LLM statements, although we reviewed titles
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and abstracts only without systematic review of the manuscript main text. These results suggest that most

but not all citations found by this procedure are reliable, such that they may be viewed as useful guidance

for further study but not unquestioned facts.

Discussion

The evaluations performed here suggest that LLMs have notable potential as automated assistants for

understanding the collective functions of gene sets. In the analysis of gene sets from the Gene Ontology

(GO), four out of five LLMs performed comparably in proposing names similar to the names assigned by

the GO curators, with GPT-4 producing highly similar names for most gene sets. LLMs showed varying

ability to score confidence in a proposed name, or to refuse to generate a name in cases of lowest

confidence. The accompanying analysis text was found to be largely factual, although GPT-4’s occasional

generation of unverifiable statements shows that even current state-of-the-art LLMs should be coupled to

fact-checking and/or reference validation, whether automated or manual.

When the GPT-4 name for a GO gene set was not similar to the curated name, in roughly a third of those

cases it was conceptually broader (Fig. 2d). For the remaining gene sets with discrepant naming, it is

possible the mismatch is due to a failure of GPT-4 to recover a well-documented common function or that

the GO term no longer reflects the up-to-date literature. Alternatively, it is possible that both GPT-4 and

GO offer valid, but alternate, interpretations. We indeed find anecdotal evidence for this last possibility: for

example, Dendritic Cell Dendrite Assembly (GO:0097026) is annotated with two chemokines, CCL19 and

CCL21, and their receptor CCR7, but these proteins are also critical to the related process of lymphocyte

homing, consistent with the GPT-4 proposed name "Lymphocyte Homing and Immune Response

Regulation.” In other cases, the names are of different types, such as the high-level phenotypic GO term

Reproductive Behavior (GO:0019098), which GPT-4 named Neurotransmission and Neuroendocrine

Signaling, focusing instead on molecular and cellular processes (Supplementary Table 2).

The current state of the art, functional enrichment analysis, is a statistical method to quantify the

agreement of a gene set with sets stored in fixed curated reference databases. In contrast, GPT-4
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synthesizes common functions for genes based on active reasoning over a large corpus of biomedical

knowledge, producing results even in cases where the gene set does not resemble any set previously

recorded and ascribed a function. In particular, when analyzing experimentally derived ‘omics gene sets,

in about a third of cases we saw that GPT-4 was able to propose a name while functional enrichment

found no matching term. An exciting possibility for future research would be to integrate the best of these

two worlds, combining the precision of enrichment analysis with the literature knowledge and reasoning of

LLMs.

Another axis for comparing the two approaches relates to transparency. On one hand, enrichment

analysis could be said to be highly “transparent” because it uses well-defined statistical methods and

documented reference databases of gene sets that researchers can review. In contrast, the knowledge

accessed by the GPT-4 is not directly subject to definition or inspection, as it is embedded in the latent

space of the model, and the mathematical calculation behind a given output is practically opaque. On the

other hand, there is a sense in which an LLM analysis is extremely transparent because it presents a de

novo narrative of facts and reasoning that considers all of the genes of interest, assisted by reference

citation tools such as the one developed in this study. Ultimately, how an analysis was performed may be

less relevant if the output is useful and its statements are supported by reasoned arguments and

verifiable literature citations. Indeed, these are the criteria we apply to analyses produced by human

researchers; we can see their outputs but not the operation of their minds.

Gene sets emerging from an experimental study do not always have a coherent function that can be

summarized or serve as the basis of a name. Here we have seen that, via a self-confidence scoring

measure, an LLM can assess the coherence of a gene set, potentially alerting biologists to cases in which

they should be skeptical of a simple “best match” function proposal. For example, we found GPT-4 nearly

always proposes a confident name for gene sets affiliated with terms in GO, while naming only about 13%

of sets drawn from random genes and less confident in names for contaminated sets (Fig. 3b).
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It is important to stress that our evaluation of the GPT-4 model was based on single queries using

prompts developed by informal experimentation. Further research should investigate more sophisticated

prompting strategies and methods that apply external tools and orchestrate multiple LLM interactions52–58,

such as integrating literature searches or gene set enrichment into the LLM analysis rather than as a

post-hoc verification method. While incorporating techniques such as in-context learning, fine-tuning, and

retrieval augmentation hold promise for enhancing the accuracy and interpretability of LLMs, these

methods are not the focus of our current evaluation. Our explorations do, however, represent a future

direction for research in genomic analysis and the development of AI models. Our study has also not

attempted to augment LLM prompts with descriptions of the biological and experimental context in which

a gene set was discovered, information that might improve the specificity, depth, and quality of the

analysis. Future work could explore the inclusion of disease and experimental conditions in the prompt to

enable the proposal of context-specific gene functions. Such prior context has been difficult to capture

using gene set functional enrichment tools, since their pre-existing mapping of gene sets to functional

terms is static and does not attempt to encode the practically infinite space of biological conditions.

In summary, one might have suspected that using LLMs to study gene function would produce

statements, hypotheses, and references that hallucinate so uncontrollably as to be unusable. In fact, the

more advanced models such as GPT-4 typically did not, showing reasonable and often exemplary

performance over a series of complementary benchmarks. We thus conclude that, given appropriate

framing, LLMs provide researchers with a new and powerful tool for gene set interpretation.
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Methods

Large language model installation. Five large language models were selected for the evaluation,

including GPT-3.5 and GPT-4 from OpenAI, Gemini Pro from Google, Mixtral Instruct from MistralAI, and

Llama2 70B from Meta. We used the ‘gpt-4-1106-preview’ and ‘gpt-3.5-turbo-1106’ versions of the

OpenAI GPT-4 and GPT-3.5 large language models and the ‘gemini-pro’ version of the Google Gemini

model using their well-defined APIs. Mixtral Instruct and Llama2 were downloaded from Ollama

(ollama.com) and queried through the API endpoint of Ollama.

Controlling the variability of LLM responses. Each LLM enables queries to set a “temperature”

parameter that controls the variability of the generated response, with lower temperatures producing more

reproducible and reliable responses59,60. Exploring the effect of temperature on LLM analyses is outside

the scope of this study, and therefore our queries used the lowest, most conservative/reproducible

temperature value = 0.0. In a manual inspection of repeated queries at temperature 0.0, we found that

LLM names and analyses were conceptually equivalent but that the specific text could vary, from near

identity to considerable differences in phrasing. The ‘seed’ parameter was set to 42 for all models and all

runs. Additionally, we made our manual review process manageable by forcing the responses to be

concise. For this purpose, we set the maximum number of tokens (roughly corresponding to words) in

each response to be 1,000.

Prompt engineering. The LLM prompt was organized in seven sections (Fig. 1a, see full prompt in

Extended Data Table 1). System content section: System content tells the role of the LLM when to

process the prompt. Here our analysis was associated with molecular biology, thus we set the role to be

‘assistant of a molecular biologist’. Task instruction section: The instructions were engineered to meet

multiple criteria. Notably, the LLMs were guided to first perform the analysis before proposing a process

name, encouraging a structured “Chain-of-Thought.” Confidence score assignment section: This prompt

section instructed the LLM to generate a “confidence score” expressing its confidence in its choice of

name, taking into account the fraction of genes that participate in the corresponding biological

process(es). The coherence score was specified to be between 0.00 and 1.00. The prompt was also
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engineered to handle situations where the genes in a set are not sufficiently related to warrant a name. In

particular, the prompt instructed the LLM to output a zero confidence score and the name “System of

unrelated proteins” in these cases. Format instruction section: We asked the LLM to place the name as a

title in the final analysis for easy extraction. Analytical approach section: The instructions in this section

guided the LLM to be succinct, factual, and focused on finding commonalities and relationships. One-shot

example section: This section contained an example of a gene set and the corresponding name,

confidence score, and analysis text. This format follows the “in-context learning” approach, in which

examples provide a template to help the LLM generate outputs consistent with the desired behavior and

format. After substantial manual testing, we determined that the quality of the output was no different

when using one example versus several examples; thus we chose to use a “one-shot” single example

strategy, minimizing both prompt size and associated costs.

Download and parse the Gene Ontology. The Gene Ontology (2023-11-15 version) was obtained from

the geneontology.org website in the Open Biomedical Ontologies (OBO)61,62 format. The ontology file was

subsequently divided into its three constituent branches: Biological Processes (BP), Cellular Component

(CC), and Molecular Function (MF). The gene set corresponding to each GO term was determined by

aggregating the genes with which it was directly annotated with those of all its ontological descendants.

Calculation of semantic similarity. Semantic similarity between names was determined using the

SapBERT model63. SapBERT produces embeddings of each name and then computes the cosine

similarity between the embeddings, yielding a similarity score ranging from 0 (no similarity) to 1 (identical).

SapBERT is a domain-specific language representation model pre-trained on large-scale biomedical data,

including Unified Medical Language System (UMLS), a massive collection of biomedical ontologies with

4M+ concepts. Since models like BERT are trained on vast amounts of textual data, they can learn

general patterns and relationships and capture context by considering surrounding words, providing a

measure of similarity based on semantics rather than lexical matching. Although both SapBERT and

GPT-4 are LLMs, they are separate models with different purposes, model architecture, training

objectives, and data. SapBERT therefore provides an independent evaluation of similarity.
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Calibrating the similarity between GPT-4 names and GO names. To evaluate the performance of the

GPT-4 model in recapitulating GO names, we computed the semantic similarity between the GPT-4 name

and the assigned name of the GO term query, using SapBERT as described above. We then performed

this semantic similarity calculation for the same GPT-4 name against every other GO term name in the

Biological Process branch (GO-BP), yielding a background distribution of semantic similarity scores for

each GO term query. The actual and background similarities were then concatenated into a single list,

sorted in descending order (largest to smallest), and the rank of the actual similarity was recorded and

expressed as a percentile. This percentile score is thus the percentage of GO-BP term names that are

less similar to the GPT-4 name than to the assigned name of the GO term query.

‘Omics data processing. For each ‘omics source we selected gene sets with a size between 3 and 100

genes. Furthermore, in the L1000 dataset, we selected the context with the greatest number of

observations {Cell line: "MCF7", duration: 6.0h, dosage: 10.0µm}. For the Viral disease perturbations

dataset, we used a z-score cutoff of 2.

Evaluation of GO enrichment. We used the Enrichr web service to perform gene set enrichment in both

Task 1 and Task 2. GO-BP terms for the queried gene set were obtained using the “gp.enrichr” function

from GSEAPY package64. Task 1 utilized a custom input, the GO-BP (2023-11-15 version and Task 2

applied predefined parameters {gene_sets = 'GO_Biological_Process_2023', organism='human'}. In Task

2, we computed the Jaccard Index overlap between the gene set of interest and the GO term. For cases

with multiple significant GO terms (adjusted p-value ≤ 0.05) we selected the term with the largest JI. A

gene set was considered annotated by enrichment analysis if the adjusted p-value was ≤ 0.05 and the

largest JI was ≥ 0.1.

Evaluation of GPT-4 for ‘omics gene sets. For each ‘omics gene set, we queried the GPT-4 pipeline

(described above) for a name, analysis text, and confidence score. A gene set was considered annotated

by GPT-4 if the confidence score was ≥ 0.8.
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Identification and validation of relevant references (citation module). We followed a 5-step process

to identify and evaluate references for statements made in the LLM-generated analysis text. For each

paragraph in the analysis text, we performed the following (Extended Data Fig. 1):

1. Prompt the LLM to extract two types of keywords from the analysis paragraph: (1) gene symbols

explicitly mentioned in the paragraph and (2) up to three keywords associated with gene functions

or biological processes, ordered by their importance. Paragraphs that do not yield at least one

gene symbol and one functional keyword are skipped, returning ‘unknown.’ The prompt

incorporates a one-shot example of a paragraph and corresponding keywords.

2. Assemble a PubMed query expression to find scientific publications in which either the title or

abstract contains one or more of the gene symbols and one or more of the function keywords.

3. Query PubMed via its web API, sorting the returned publication list by relevance.

4. Further prioritize the publications based on the number of matching genes in the abstract. We

prefer publications that provide information on the most genes.

5. For each of the top three publications, prompt the LLM to assess whether the title and abstract

provide evidence for one or more statements of fact in the analysis paragraph. Return the

publication as a reference if the LLM considers that it satisfies that requirement.

Reviewer fact-checking of GPT-4 analysis text. We performed a structured review of 403 sentences

from the analysis text generated by GPT-4 based on 20 selected ‘omics gene sets (Supplementary

Table 3). In this review, each of the four reviewers recorded the number of unverified statements of fact

for each analysis in the corresponding column. A statement was considered “unverified” if no supporting

evidence was found within roughly ten minutes, using the following method:

● Check simple per-gene statements against information from NCBI Gene content maintained by

the National Library of Medicine, http://www.ncbi.nlm.nih.gov.

a. For example, “Oxytocin (OXT) is a neuropeptide hormone that binds to its receptor,

oxytocin receptor (OXTR).” can be quickly verified by the NCBI Gene entries for the two

genes.
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b. If the NCBI entry verifies one or more statements, add the URL for the entry to the

Evidence column, e.g., “NLM: OXT http://www.ncbi.nlm.nih.gov/gene/5020”

● For statements not verified by NCBI Gene, search PubMed for publications to provide evidence

for the statement. Search strategies include:

a. Search using gene-keyword pairs, such as “TP53 cell cycle”.

b. For paragraphs that discuss multiple genes, search for review articles with phrases such

as “acute phase response proteins.”

c. Search for family member proteins together, such as “TAS2Rs bitter taste”.

Reviewer evaluation of references. The reviewers evaluated references based on the same criteria with

which the LLM was prompted in step 5 of the reference-finding process (above). Reviewers separately

recorded whether the title or the abstract successfully provided evidence for a statement of fact, along

with the number of irrelevant references for a paragraph.
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Figures and Tables

Fig. 1: Use and evaluation of LLMs for functional analysis of gene sets. a, The LLM prompt (left
boxes) includes system content, detailed chain of thought instructions, and an example gene set query
with desired response (full prompt given in Extended Data Table 1). The specific list of genes is inserted
into the “User input of genes/proteins” field at the end of the prompt template, resulting in generation of a
proposed name, a supporting analysis essay and a confidence score (right flowchart). b, Benchmarking
LLM names against names assigned by GO (Evaluation Task 1). The proposed name from each of five
LLMs (left robot icons) is compared to the name assigned by the GO curators (handshake icon). GPT-4
(crowned) was the winning model for this task. c, Exploration of gene sets discovered in ‘omics data
(Evaluation Task 2). The GPT-4 name and analysis are scored for novelty and accuracy (right green
check marks). Gene sets derived from three different data types (left database icons).
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Fig. 2: Evaluation of LLMs in recovering GO gene set names. a, Performance of each LLM (colors) is
scored by the semantic similarity between its proposed name for a gene set and the name assigned by
the GO curators. Results for 100 GO terms are shown (dots; black horizontal lines show median semantic
similarities). Significant difference in distributions is denoted by asterisks (*p<0.05; **p<0.01; ***p<0.001)
using Mann–Whitney U test. b, Percentile calibration of semantic similarity between the GO and GPT-4
names for a gene set, shown for the GO term “Response to X-ray” and the corresponding GPT-4 name
“DNA Damage Response and Repair”. The plot shows the semantic similarity between these two names
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(vertical dark green line, 0.54) versus the complete distribution of semantic similarity scores between the
GPT-4 name and each name in the GO Biological Process database (GO-BP, gray). The score of the
GPT-4 name is converted to a percentile, i.e. the percentage of all names in GO with lower similarity
(here, 99%). Red dashed line denotes the 95th percentile threshold. c, Cumulative number of GO term
names recovered by GPT-4 (y-axis) at a given similarity percentile (x-axis). 0 = least similar, 100 = most
similar. Dark green curve: semantic similarities between GPT-4 names and assigned GO term names.
Grey dashed curve: semantic similarities between GPT-4 names and random GO term names. The red
dotted line marks that 603 of 1000 sampled GO names are recovered by GPT-4 at the 95th similarity
percentile. d, Pie chart summarizing the results of the GPT-4 name / GO name similarity comparison. e,
Hierarchical view of the GO term “Negative Regulation of Triglyceride Catabolic Process” and its
ancestors. Blue box: gene set query, yellow box: gene set of best match GO name (most similar GO
name to GPT-4 name), dashed lines with arrows: semantic similarities between names, red text: GPT-4
proposed name.

20



Fig. 3: Evaluation of LLM self-confidence. a, Investigation of model-assigned confidence scores (chat
bubbles) for the ability to distinguish actual GO terms from 50/50 mix and random gene sets (light DNA
strands from the same GO term, dark DNA strands randomly selected from outside the GO term). b, Bar
graphs showing the confidence rating assigned by each model for real, contaminated, or random gene
sets. IncreasingV shades of purple indicate low to high score bins. “High confidence” (dark purple):
0.87–1.00; “Medium confidence” (medium purple): 0.80–0.86; “Low confidence” (light purple): 0.01–0.79;
and “Name not assigned” (gray): 0. For comparison to functional enrichment (rightmost group of bars),
“High confidence” for a gene set is defined as p ≤ 0.05 (dark purple, Benjamini-Hochberg correction),
otherwise “Name not assigned” (gray) is used. Significant difference in confidence distributions between
real, 50/50 mix and random is denoted by asterisks (*p<0.05; **p<0.01; ***p<0.001, ****p<0.0001) using
chi-squared test.
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Table 1: Best and worst LLM names for GO terms by semantic similarity.

GO Name
(GO term ID) LLM Name Semantic

Similarity LLM

LLM Names with Highest Similarity to GO Names

Synaptic vesicle exocytosis
(GO:0016079) Synaptic vesicle exocytosis 1.00 Gemini Pro

Synaptic vesicle exocytosis
(GO:0016079)

Synaptic vesicle exocytosis and
neurotransmitter release 0.94 GPT-3.5

Pentose-phosphate shunt
(GO:0006098) Pentose phosphate pathway 0.89 GPT-3.5

Glucose-6-phosphate transport
(GO:0015760)

Glucose-6-phosphate metabolism
and transport 0.89 Mixtral Instruct

Protein quality control for misfolded or
incompletely synthesized proteins

(GO:0006515)

Protein quality control and
degradation 0.88 GPT-4

LLM Names with Lowest Similarity to GO Names

negative regulation of fat cell differentiation
(GO:0045599)

Regulation of Wnt signaling and
cellular stress response 0.13 GPT-4

Negative regulation of CD8-positive,
alpha-beta T cell differentiation

(GO:0043377)
Regulation of iron homeostasis 0.11 Llama2 70b

Negative regulation of peptide secretion
(GO:0002792)

Glucose homeostasis and energy
metabolism 0.09 GPT-3.5

Negative regulation of peptide secretion
(GO:0002792)

Glucose homeostasis and energy
metabolism 0.09 Mixtral Instruct

Negative regulation of CD8-positive,
alpha-beta T cell differentiation

(GO:0043377)

Regulation of ion transport and
cellular homeostasis 0.09 GPT-3.5
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Table 2: Numbers of ‘omics gene sets annotated by GPT-4 versus functional enrichment.

† A gene set is annotated via GPT-4 if the confidence score ≥ 0.80
‡ A gene set is annotated via enrichment analysis if BH-adjusted p ≤ 0.05 and Jaccard Index ≥ 0.10.
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GPT-4

Annotated † Not Annotated Total

Functional
Enrichment

Annotated ‡ 36 4 40

Not Annotated 97 163 260

Total 133 167 300



Table 3: Representative analysis for protein interaction clusters (NeST: “Cluster2-123”).

Genes
(n = 13)

LYST NRDE2 REN SNRPA1 SNX6 SNX7 SNX12 SORT1 TMEM9 TMEM123 TMEM189
WASHC3 WDFY1

Analysis
Method Assigned Name Confidence /

Enrichment FDR (JI)

GPT-4 Endosomal Sorting and Trafficking 0.85 (Medium)

Gene set
enrichment

Negative Regulation of Lipoprotein Lipase Activity
(GO:0051005) 0.036 (0.059)

GPT-4 Analysis Paragraph

1. LYST, or lysosomal trafficking regulator, is involved in the regulation of lysosomal size and morphology. It plays
a role in the sorting and trafficking of endosomal cargo destined for lysosomes, which is crucial for maintaining
cellular homeostasis and proper organelle function.

Westphal et al. "Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like
receptor-mediated inflammatory responses." The Journal of experimental medicine, 2017, pp. 227-244.

Setaluri. "Sorting and targeting of melanosomal membrane proteins: signals, pathways, and
mechanisms." Pigment cell research, 2000, pp. 128-34.

Steffens et al. "Physical, Functional and Genetic Interactions between the BEACH Domain Protein
SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis."
Frontiers in plant science, 2017, pp. 1969.

2. NRDE2 is less characterized but is thought to be involved in nuclear RNAi and may play a role in the regulation
of gene expression at the post-transcriptional level, potentially influencing the stability or localization of specific
mRNA transcripts.

Wang et al. "NRDE2 negatively regulates exosome functions by inhibiting MTR4 recruitment and
exosome interaction." Genes & development, 2019, pp. 536-549.

Wan et al. "A Conserved NRDE-2/MTR-4 Complex Mediates Nuclear RNAi in Caenorhabditis elegans."
Genetics, 2020, pp. 1071-1085.

Flemr et al. "Mouse nuclear RNAi-defective 2 promotes splicing of weak 5' splice sites." RNA (New York,
N.Y.), 2023, pp. 1140-1165.

3. REN, also known as renin, is primarily involved in blood pressure control and electrolyte balance. It catalyzes
the conversion of angiotensinogen to angiotensin I and is a key component of the renin-angiotensin system
(RAS), which is not directly related to endosomal sorting but may be affected by vesicular trafficking processes.

Gubler et al. "Renin-angiotensin system in kidney development: renal tubular dysgenesis." Kidney
international, 2010, pp. 400-6.

Rossi et al. "Interactions between endothelin-1 and the renin-angiotensin-aldosterone system."
Cardiovascular research, 1999, pp. 300-7.

Liu et al. "AMPK: a balancer of the renin-angiotensin system." Bioscience reports, 2019.

4. SNRPA1 is a small nuclear ribonucleoprotein that is part of the spliceosome complex. It is involved in
pre-mRNA splicing, a process that occurs in the nucleus and is not directly related to endosomal sorting.
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Wu et al. "Major spliceosome defects cause male infertility and are associated with nonobstructive
azoospermia in humans." Proceedings of the National Academy of Sciences of the United States of
America, 2016, pp. 4134-9.

Tanikawa et al. "The spliceosome U2 snRNP factors promote genome stability through distinct
mechanisms; transcription of repair factors and R-loop processing." Oncogenesis, 2016, pp. e280.

Kim et al. "The unique spliceosome signature of human pluripotent stem cells is mediated by SNRPA1,
SNRPD1, and PNN." Stem cell research, 2017, pp. 43-53.

5. SNX6, SNX7, and SNX12 are members of the sorting nexin family. These proteins are involved in endosomal
sorting and trafficking, playing roles in the retromer complex, which is responsible for the retrograde transport of
cargo from endosomes to the trans-Golgi network.

Bonifacino and Hurley. "Retromer." Current opinion in cell biology, 2008, pp. 427-36.

Harterink et al. "A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting
receptor Wntless and is required for Wnt secretion." Nature cell biology, 2011, pp. 914-923.

Wassmer et al. "The retromer coat complex coordinates endosomal sorting and dynein-mediated
transport, with carrier recognition by the trans-Golgi network." Developmental cell, 2009, pp. 110-22.

6. SORT1, or sortilin, functions in the sorting of proteins to the lysosomes. It is involved in the transport of
lysosomal enzymes and may also play a role in neurotrophic signaling and apoptosis.

Jansen et al. "Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain
injury." Nature neuroscience, 2007, pp. 1449-57.

Strong et al. "Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism." The Journal
of clinical investigation, 2012, pp. 2807-16.

Sánchez et al. "SORT1 Mutation Resulting in Sortilin Deficiency and p75(NTR) Upregulation in a Family
With Essential Tremor." ASN neuro, 2015.

7. TMEM9, TMEM123, and TMEM189 are transmembrane proteins with less well-characterized functions.
However, transmembrane proteins often play roles in cellular transport and signaling, potentially contributing to
the trafficking system.

Jung et al. "TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/β-catenin
signalling." Nature cell biology, 2018, pp. 1421-1433.

Dodeller et al. "The lysosomal transmembrane protein 9B regulates the activity of inflammatory signaling
pathways." The Journal of biological chemistry, 2008, pp. 21487-94.

Jung et al. "TMEM9-v-ATPase Activates Wnt/β-Catenin Signaling Via APC Lysosomal Degradation for
Liver Regeneration and Tumorigenesis." Hepatology (Baltimore, Md.), 2021, pp. 776-794.

8. WASHC3 is part of the WASH complex, which is involved in endosomal sorting and the regulation of actin
polymerization. It plays a role in the fission of transport intermediates from the endosomes.

9. WDFY1 is a WD repeat and FYVE domain-containing protein that is implicated in endosomal sorting and
signaling pathways, potentially acting as an adaptor in the endosomal system.

Hu et al. "WDFY1 mediates TLR3/4 signaling by recruiting TRIF." EMBO reports, 2015, pp. 447-55.

Yeo et al. "PRDX6 Inhibits Neurogenesis through Downregulation of WDFY1-Mediated TLR4 Signal."
Molecular neurobiology, 2019, pp. 3132-3144.

Ning et al. "Hes1 attenuates type I IFN responses via VEGF-C and WDFY1." The Journal of
experimental medicine, 2019, pp. 1396-1410.
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To summarize, the majority of the proteins in this set are involved in the processes of endosomal sorting and
trafficking, which are essential for the proper distribution and degradation of cellular components. While not all
proteins are directly linked to this process, the preponderance of sorting nexins and related proteins suggests a
strong functional theme. The presence of proteins like REN and SNRPA1, which are not directly related to
endosomal sorting, slightly lowers the confidence score. However, the overall function of the system appears to
be centered on the endosomal-lysosomal pathway and the regulation of cargo sorting and trafficking within the
cell.

Xu et al. "Lysosomal physiology." Annual review of physiology, 2015, pp. 57-80.

† Orange text: unverified statement with unassertive tone
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Extended Data Figures and Tables

Extended Data Fig. 1: Schematic of the citation module. a, GPT-4 is asked to provide gene symbol
keywords and functional keywords separately. Multiple gene keywords and functions are combined and
used to search PubMed for relevant paper titles and abstracts in the scientific literature. GPT-4 is queried
to evaluate each abstract, saving supporting references. b, Prompts used to query the GPT-4 model.
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Extended Data Fig. 2: Distribution of GO term gene sizes. a, Distribution of term size (number of
genes) for terms in the Biological Process branch (GO-BP). Terms with 3-100 genes shown (n = 8,910).
b, Distribution of term size for the 1000 GO terms used in Task 1.

Extended Data Fig. 3: Evaluation of GPT-4 in recovery of GO-CC and GO-MF names. a, Cumulative
number of GO-CC term names recovered by GPT-4 (y-axis) at a given similarity percentile (x-axis). 0 =
least similar, 100 = most similar. Blue curve: semantic similarities between GPT-4 names and assigned
GO-CC term names. Grey dashed curve: semantic similarities between GPT-4 names and random
GO-CC term names. The red dotted line marks that 642 of the 1000 sampled GO-CC names are
recovered by GPT-4 at a similarity percentile of 95%. b, As for panel a, but for GO-MF terms rather than
GO-CC. The red dotted line marks that 757 of the 1000 sampled GO-MF names are recovered by GPT-4
at a similarity percentile of 95%.
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Extended Data Fig. 4: Distribution of ‘omics gene set sizes. Distribution shown for all ‘omics gene
sets considered in this study (n = 300).

Extended Data Fig. 5: Evaluation of required overlap. The percentage of omics gene sets
(y-axis) matched to GO terms with the required overlap (Jaccard Index, x-axis). The vertical red
dashed line marks a threshold Jaccard Index = 0.1.
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Extended Data Table 1: Engineered prompt for gene set analysis.

You are an efficient and insightful assistant to a molecular biologist

Write a critical analysis of the biological processes performed by this system of interacting proteins.
Base your analysis on prior knowledge available in your training data.
After completing your analysis, propose a brief and detailed name for the most prominent biological process
performed by the system.

After completing your analysis, please also assign a confidence score to the process name you selected.
This score should follow the name in parentheses and range from 0.00 to 1.00. A score of 0.00 indicates the
lowest confidence, while 1.00 reflects the highest confidence. This score helps gauge how accurately the chosen
name represents the functions and activities within the system of interacting proteins. When determining your
score, consider the proportion of genes in the protein system that participate in the identified biological process.
For instance, if you select "Ribosome biogenesis" as the process name but only a few genes in the system
contribute to this process, the score should be lower compared to a scenario where a majority of the genes are
involved in "Ribosome biogenesis".

Put your chosen name at the top of the analysis as 'Process: <name>’.

Be concise, do not use unnecessary words.
Be factual, do not editorialize.
Be specific, avoid overly general statements such as 'the proteins are involved in various cellular processes'.
Avoid listing facts about individual proteins. Instead, try to group proteins with similar functions and discuss their
interplay, synergistic or antagonistic effects and functional integration within the system.
Also avoid choosing generic process names such as 'Cellular Signaling and Regulation'.
If you cannot identify a prominent biological process for the proteins in the system, I want you to communicate this
in you analysis and name the process: “System of unrelated proteins”. Provide a score of 0.00 for a "System of
unrelated proteins".

To help you in your work, I am providing an example system of interacting proteins and the corresponding example
analysis output.

The example system of interacting proteins is:
PDX1, SLC2A2, NKX6-1, GLP1, GCG.

The example analysis output is:

Process: Pancreatic development and glucose homeostasis (0.96)

1. PDX1 is a homeodomain transcription factor involved in the specification of the early pancreatic epithelium and
its subsequent differentiation.
It activates the transcription of several genes including insulin, somatostatin, glucokinase and glucose transporter
type 2.
It is essential for maintenance of the normal hormone-producing phenotype in the pancreatic beta-cell.
In pancreatic acinar cells, it forms a complex with PBX1b and MEIS2b and mediates the activation of the ELA1
enhancer.

2. NKX6-1 is also a transcription factor involved in the development of pancreatic beta-cells during the secondary
transition.
Together with NKX2-2 and IRX3, controls the generation of motor neurons in the neural tube and belongs to the
neural progenitor
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factors induced by Sonic Hedgehog (SHH) signals.

3.GCG and GLP1, respectively glucagon and glucagon-like peptide 1, are involved in glucose metabolism and
homeostasis.
GCG raises blood glucose levels by promoting gluconeogenesis and is the counter regulatory hormone of Insulin.
GLP1 is a potent stimulator of Glucose-Induced Insulin Secretion (GSIS). Plays roles in gastric motility and
suppresses blood glucagon levels.
Promotes growth of the intestinal epithelium and pancreatic islet mass both by islet neogenesis and islet cell
proliferation.

4. SLC2A2, also known as GLUT2, is a facilitative hexose transporter. In hepatocytes, it mediates bi-directional
transport of glucose across the plasma membranes,
while in the pancreatic beta-cell, it is the main transporter responsible for glucose uptake and part of the cell's
glucose-sensing mechanism.
It is involved in glucose transport in the small intestine and kidney too.

To summarize, the genes in this set are involved in the specification, differentiation, growth and functionality of the
pancreas, with a particular emphasis on the pancreatic beta-cell. Particularly, the architecture of the pancreatic
islet ensures proper glucose sensing and homeostasis via a number of different hormones and receptors that can
elicit both synergistic and antagonistic effects in the pancreas itself and other peripheral tissues.

Here are the interacting proteins:

Proteins: {protein list}

† text color matches with Fig. 1a prompt color
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Extended Data Table 2: Overview of five language models.

Models Version
release Params

Context
length
(tokens)

Company
Estimated time

usage
(second/gene

set)

Estimated cost
($/gene set)

GPT-4 Turbo Nov 2023 ~1.7T 128k OpenAI 36.5 ‡ 4.8 10-2×

Gemini Pro Dec 2023 Unspecified 32k Google 7.9 0.0

GPT-3.5
Turbo Nov 2023 ~175B 16k OpenAI 9.6 2.8 10-3×

Mixtral
Instruct Dec 2023 13B (active),

47B (total) 32k MistralAI 46.4 0.0 †

Llama2 July 2023 70B 4k Meta 61.8 0.0 †

† Does not consider the cost to host an open-source model.
‡ GPT-4 compute time was significantly shorter (1.1s) when asking for a gene set name but not further analysis.
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Supplementary Information

Supplementary Table 1

Complete analysis of GO terms, 50/50 mix and random for all models (related to Task1: Fig. 2 and 3)

Supplementary Table 2

Complete GPT-4 analysis of GO terms (related to Task 1: Fig. 3 and Table1).

Supplementary Table 3

Complete GPT-4 analysis of omics gene sets (related to Task 2: Table 2).

Supplementary Table 4

Reviewer fact-checking of GPT-4 analysis text and citation relevance (related to Taske 2: Table 3).
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