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The circadian clock generates daily rhythms in mammalian liver
processes, such as glucose and lipid homeostasis, xenobiotic metab-
olism, and regeneration. The mechanisms governing these rhythms
are not well understood, particularly the distinct contributions of
the cell-autonomous clock and central pacemaker to rhythmic liver
physiology. Through microarray expression profiling in Met murine
hepatocytes (MMH)-D3, we identified over 1,000 transcripts that ex-
hibit circadian oscillations, demonstrating that the cell-autonomous
clock can drive many rhythms, and that MMH-D3 is a valid circadian
model system. The genes represented by these circadian transcripts
displayed both cophasic and antiphasic organization within a
protein-protein interaction network, suggesting the existence of
competition for binding sites or partners by genes of disparate tran-
scriptional phases. Multiple pathways displayed enrichment in
MMH-D3 circadian transcripts, including the polyamine synthesis
module of the glutathione metabolic pathway. The polyamine syn-
thesis module, which is highly associated with cell proliferation and
whose products are required for initiation of liver regeneration,
includes enzymes whose transcripts exhibit circadian oscillations,
such as ornithine decarboxylase and spermidine synthase. Metabolic
profiling revealed that the enzymatic product of spermidine syn-
thase, spermidine, cycles as well. Thus, the cell-autonomous hepato-
cyte clock can drive a significant amount of transcriptional rhythms
and orchestrate physiologically relevant modules such as polyamine
synthesis.
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M any aspects of mammalian physiology and behavior display
circadian (~24-h) rhythms, including the sleep/wake cycle,
blood pressure, heart rate, metabolism, and liver regeneration (1,
2). These rhythms are regulated by the circadian clock, which
enables consolidation and coordination of physiological events to
specific phases of the 24-h cycle in anticipation of daily environ-
mental changes. Dysfunction of the clock is associated with serious
human health conditions, including shift work syndrome, sleep
disorders, increased risk of cancer, cardiovascular disease, and
metabolic syndrome (1, 2).

The circadian clock is a self-sustaining, entrainable, cell-au-
tonomous network of three interlocked transcriptional negative
feedback loops (2). The primary loop consists of BMAL1/CLOCK
transcriptional activators, which dimerize and turn on transcrip-
tion of Period (Perl, Per2, and Per3) and Crytochrome (Cryl and
Cry2) genes through E-box elements. PER and CRY proteins di-
merize and feed back to inhibit BMAL1/CLOCK activation. Two
associate loops interlock with the core loop: the ROR/REV-ERB
element (RRE) loop composed of ROR activators (RORa,
RORDb, and RORc) and REV-ERB repressors (REV-ERBa and
REV-ERB@), which compete for RRE transcription factor bind-
ing sites (TFBS), and the D-box loop composed of the activator
DBP and repressor E4BP4, which act through D-box TFBS (2).

In addition to internal regulation of clock genes, the clock also
orchestrates circadian rhythms of output networks, which ulti-
mately govern overt rhythms in physiology and behavior. Nearly all
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mammalian cell types contain a circadian clock, producing at the
organismal level a multioscillator system in which systemic and
local circadian signals may jointly regulate physiology. This system
can be divided into two main classes of clocks: the central pace-
maker and peripheral clocks. The central pacemaker resides in the
suprachiasmatic nucleus (SCN) and receives light input directly
from the retina, entraining it directly to the light/dark cycle (1).
The SCN acts to synchronize peripheral clocks in other tissues
through systemic signals, and orchestrates rhythms in physiology.
In contrast, the role of peripheral clocks remains to be elucidated.
Despite ~10% of the genome displaying circadian rhythms in gene
expression in many tissues, little overlap of rhythmic genes exists
across tissues, suggesting that tissue-specific regulatory networks
generate rhythms in local physiology (3, 4). In mice, disrupting the
local liver clock abolishes circadian rhythms in many liver genes,
even in the presence of a functional central pacemaker, implying a
significant role for the liver clock in hepatic gene expression (5).

Rhythmic feeding behavior also represents a major entrainment
signal for the hepatic clock. Restricting food access to the middle
of the light period induces phase inversion of the liver clock in
wild-type (WT) mice (6), and rhythmic feeding alone can drive
oscillations in hepatic gene expression (7). When food is plentiful,
feeding behavior is synchronized with the light/dark SCN-driven
activity cycle. However, in conditions of scarcity or restricted ac-
cess to food, feeding rhythms can be driven by the food-entrainable
oscillator (FEO), which is independent of SCN light entrainment
and is believed to involve multiple regions of the central nervous
system (8-10). It remains unclear how hepatocytes balance the
respective roles of systemic circadian regulation applied by the
SCN and FEO vs. cell-autonomous regulation from the hepatic
clock to generate circadian rhythms in liver functions.

To address the role of the cell-autonomous circadian clock,
systemic influences need to be removed while still maintaining the
integrity of the circadian clock and its physiological outputs. We
selected the immortalized mouse cell line Met murine hepatocytes
(MMH)-D3 as a candidate model system. Derived from the 3-d-
old liver of transgenic c-Met mice (11), MMH-D3 is immortalized
but not transformed, and maintains a high level of differentiation
upon induction (11, 12), providing a system that reflects to a sig-
nificant extent an in vivo hepatocyte.

We combined multiple analytic methods for the identification of
circadian rhythms in large datasets. Using this pipeline, we reveal
that MMH-D3 hepatocytes contain a functional cell-autonomous
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clock that can drive rhythms in gene expression of 1,130 tran-
scripts, suggesting a significant role for this peripheral clock in the
production of circadian physiology. We use these transcripts to
demonstrate co- and antiphasic organization of circadian genes
within the mouse protein interaction network, implying a general
strategy of combining both positive and negative signals in the
control of circadian processes. Last, we uncover cell-autonomous
circadian cycles in polyamine biosynthesis, whose products are
integral to initiating liver regeneration, suggesting a role for the
hepatic clock in gating the initiation of liver regeneration (1, 2).

Results

Bioinformatics Pipeline for Identifying Circadian Rhythms. Recent
reports demonstrate that circadian rhythm identification algo-
rithms call different transcripts as cycling, even in the same dataset
(4, 13). Further, existing methods show a dramatic reduction in the
number of identified transcripts as the sampling rate decreases.
Consequently, single methods applied to lower-resolution datasets
produce very sparse lists of circadian calls (4), which may limit the
types of further analyses run on these lists.

To address this issue, we constructed a bioinformatics pipeline
for the identification of circadian rhythms in large datasets by
combining two major analytic methods used in the analysis of
circadian datasets: signal decomposition and model-matching
(Fig. 14) (4, 13, 14). The signal decomposition arm uses two
Fourier analysis algorithms to identify cosine-based rhythms in an
amplitude insensitive manner: Fisher’s G test (4, 15) and Bi-
ological Rhythms Analysis Software System (BRASS) Fast Four-
ier transform nonlinear least squares (FFT NLLS) (16). The
model-matching arm employs one algorithm, HAYSTACK, which
uses user-defined models of a variety of phases and waveforms that
extend beyond simple cosines—including spikes, box waves, rigid
waves, and asymmetric rigid waves (Fig. S1) (14). Transcripts
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Fig. 1. Bioinformatics pipeline combines two analytic methods to increase
circadian transcript yield. (A) Diagram depicting the pipeline component
analytic methods: signal decomposition and model-matching algorithms.
(B) Circadian transcripts identified by each analytic method (model-match-
ing: blue, signal decomposition: red) and by the pipeline (purple) at de-
creasing resolution.
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identified by the model-matching and signal decomposition arms
are combined to form the pipeline output.

To illustrate the effect of our pipeline on circadian transcript
identification, we applied it to Hughes et al.’s (4) in vivo data from
WT mouse liver (the Hughes WT liver dataset), which was col-
lected at 1-h resolution over 48 h, and then to lower-resolution
datasets created by subdividing the original at 2-, 3-, and 4-h
intervals. Our pipeline identifies a greater number of transcripts
than the 3,667 found by Hughes et al. (4) at 1-h resolution or either
component analytic method individually (Fig. 1B and Fig. S24-C).
This increase in called transcripts mitigates the decline of circa-
dian calls at lower sampling resolutions without sacrificing con-
sistency, as evidenced by the >98% of 2-h circadian transcripts
represented in the 1-h results (Fig. S2 D-F).

Cell-Autonomous MMH-D3 Clock Drives Circadian Gene Expression.
To characterize the role of the cell-autonomous clock in MMH-D3
hepatocytes, we conducted a 2-h resolution microarray time-
course experiment spanning 48 h and applied our pipeline for data
analysis. We identified 1,130 transcripts displaying circadian ex-
pression: 801 transcripts called by model matching and 427 called
by signal decomposition (Fig. 24 and Table S1). Algorithmic calls
were validated using quantitative PCR (qPCR) for five clock
genes, including at least one from each of the three interlocking
feedback loops. The qPCR results corroborated the microarray
traces for each of these genes (Fig. 2 B-F) and the algorithm-
predicted peak times of not only the first peak but also the second
peak in the time course. Moreover, the phase differences between
the clock genes representing each of the three negative feedback
loops is consistent with the phase differences of the same genes in
the Hughes WT liver dataset (Fig. S3.4 and B), and the MMH-D3
circadian transcripts display a bimodal distribution across the 24-h
day, characteristic of circadian expression data (3, 5), confirming
that the cell-autonomous clock is intact and can drive many
rhythms in gene expression.
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Fig. 2. MMH-D3 displays circadian rhythms of transcription. (A) MMH-D3
circadian transcript calls for each arm of pipeline. (B-F) qPCR (blue) and
microarray transcript (red and pink) for indicated clock genes. Error bars on
qPCR traces represent SD of replicates (n = 3).
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These results contrast the findings of Hughes et al. (4), based on
their studies of U2-OS and NIH 3T3 cell lines, that little circadian
regulation is maintained in immortalized cell lines. For comparison
with in vivo liver data, we applied our pipeline to the Hughes WT
liver dataset subsampled at 2-h resolution. Because liver cell lines
can exhibit increased glycolytic vs. oxidative profiles for energy
metabolism (17), and glucose and lipid homeostasis are circadian
regulated in liver (3), we assessed the degree of circadian regulation
of glycolysis and oxidative respiration in MMH-D3 and the Hughes
WT liver datasets using Gene Ontology (GO) annotation enrich-
ment of the circadian transcript lists. Neither the liver nor MMH-
D3 displayed over- or underrepresentation of cycling transcripts
associated with glycolysis. Though the Hughes WT liver data dis-
plays enrichment in transcripts involved in regulation of fatty acid
p-chain oxidation [P = 0.01 (even hours), P = 0.05 (odd hours)]—
a process by which fatty acids are oxidized to enter the TCA cycle—
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MMH-D3 displays fewer transcripts involved in this process and
displays neither over- nor underrepresentation. Despite these
metabolic differences, we found 28% concordance of MMH-D3
circadian calls with those of the liver (Fig. S3 C and D) (4). This
overlap is substantial (P = 2.2 x 107'°, one-tailed Fisher’s exact
test) given that circadian microarray sets can display as little as 11%
overlap between datasets, with an average of 24%, and only 54%
overlap between replicates from the same experiment (18, 19).

Phasic Localization of Circadian Genes in Protein-Protein Interaction
Network. To study the organization of circadian genes within the
broader mouse protein—protein interaction (PPI) network, we
constructed a mouse PPl network using iReflndex, a meta-
database that combines interaction data from 10 primary data-
bases (20). The constructed network of 7,052 genes contained 297
of the genes represented by the 1,130 MMH-D3 transcripts. In this
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Fig. 3. Circadian genes display co- and antiphasic organization within the mouse PPI network. (A) Discreet distributions of shortest path lengths of circadian
and noncircadian nodes. (B) Mean resistance distances for all pairs of circadian genes within the largest connected component of the mouse PPI network,
binned by phase difference. Error bars represent the 95% confidence interval around the estimates of the mean resistance distance for each bin. (C) Modules
identified by the MATISSE algorithm (inside circle), which finds modules enriched for cophasic pairs, generally exhibit a biphasic pattern, as does the general
distribution of phases across all circadian genes in the network (outer star chart). Colors represent the 0-23 (h) circadian phases. Circled annotation groups
reflect enriched DAVID functional annotation clusters identified for the 1,130 MMH-D3 circadian transcripts. A larger version of these modules can be found
in Fig. S5. (D) Specific cophasic module exhibiting the general biphasic pattern. The starred gene (*) Per2 was also found to be cycling in Kornmann et al. (5),

where only systemic circadian signals were present.
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network, circadian gene pairs display reduced shortest-path lengths
between one another compared Wlth noncircadian genes (Fig. 34;
Wilcoxon rank-sum test, P < 107'%). We also examined closeness
centrality—a measure inversely proportional to the mean shortest
path between a given gene and all other genes in the network (21).
On average, closeness was greater for circadian genes than non-
circadian ones (Wilcoxon rank-sum test, P = 0.017; Fig. S44).
These results indicate that circadian genes are closer to one
another and more centrally located in the network than non-
circadian genes.

To determine if similarly phased genes were closer than those of
disparate phase, we analyzed the resistance distance between pairs
of circadian genes based on their difference in phase. Also referred
to as commute time, the resistance distance is proportional to the
average number of steps required for a random walk to run from
one node to the other and back, and represents the strength of the
overall connectivity between two nodes in a graph (22). We define
the phase difference as the number of hours spanned by the
smaller distance between the two phases on a 24-h clock, thus
ranging from 0 to 12 h. Our analysis revealed that co- and anti-
phasic gene pairs have significantly smaller mean resistance be-
tween them than those of intermediate phase differences (Fig. 3B).
In addition, all phase differences showed significantly smaller
mean resistance compared with permuted data (maximum P <
0.05 across the six bins), but to a greater extent for differences of 0—
1hand9-12h (P < 0.01 over 1,000 permutations; Methods). These
results suggest a global organization of circadian genes by co- and
antiphasic relationships. The same property at the local level—
analyzed using the distribution of phase differences among all first
neighbors of each gene in the network—revealed a similar en-
richment for co- and antiphasic gene pairs (Fig. S4B).

To further examine the local circadian features of the network,
we applied the MATISSE algorithm (23) to identify clusters of
cophasic genes within the PPI network. The highest-scoring
modules tended to be biphasic, consistent with the described
proximity for co- and antiphasic genes in the network, making
large, separable clusters uncommon (Fig. 3 C and D and Fig. S5).
These modules reflect annotation clusters enriched in the MMH-
D3 circadian transcript list identified by DAVID functional an-
notation clustering with GO and SwissProt keywords (Table S2),
such as transcrlptlonal regulators (transcriptional regulation: P =
891 x 10~ ) chromatin-associated proteins (chromatin: P =
2.08 x 107), and regulators of phosphorylation (regulation of
phosphorylation: P = 6.72 x 10~*; Fig. 3C) (24). These annotation
clusters not only illustrate the breadth of the MMH-D3 circadian
transcript list, but are consistent with our understanding of circa-
dian regulation, because transcription, phosphorylation, and
chromatin modification play key roles in regulating clock genes
and clock function (2).

One module contained all of the clock genes in the core loop,
and was dominated by transcriptional regulation (Fig. 3D) and
illustrates the relationship of co- and antiphasic genes in the net-
work. This module suggests specific interactions for future circa-
dian studies. Not only are components of transcription factor
NF-«B (NF-kB1, NF-kB2) represented, but also the regulator of
its activating kinase (IKBKG) is also connected to clock genes
through neighboring nodes. NF-kB has been tenuously associated
with the clock, but its regulatory interactions with the circadian
system remain unclear (25, 26).

We compared our results for autonomous cycling calls in the
MMH-D3 cell line with the 29 genes that Kornmann et al. (5)
identified as having rhythms driven by systemic circadian regula-
tion alone. The two lists displayed a moderately significant overlap
of five genes (Per2, Fus, Hspalb, Hspa8, and Heca; P = 0.036,
Fisher’s exact test), whereas the overlap of these 29 genes with the

%hes WT liver data were a more significant 21 genes (P = 3.5 X
07°). These results support the conclusion that the Kornmann
et al. (5) genes represent a largely distinct subset of the wild-type
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circadian system (the systemic component) from those represented
by the MMH-D3 cells (the cell-autonomous component). The five
genes that do overlap—of which all but Heca appear in the PPI
network and the MATISSE modules (Fig. 3D and Fig. S5)—dis-
play rhythms in both systemic and cell-autonomous conditions, and
thus may represent interfaces between the two branches of circa-
dian regulation.

Polyamine Synthesis Cycles in MMH-D3. DAVID pathway analysis
(24) applied to the MMH-D3 circadian transcript list revealed
enrichment in multiple pathways, including mammahan target of
rapamycin (mTOR) signaling (P = 3.2 x 107*), MAPK 51gnallng
(P = 5.6 x 107%), and glutathione metabolism (P = 5.6 x 10™*)—
specifically including the polyamine synthesis module (Fig. 44,
Table S3, and Fig. S6). The polyamines putrescine, spermidine,
and spermine are small, aliphatic cations under physiological
conditions that play key roles in cell proliferation and are essential
for initiation of liver regeneration (27, 28). Our MMH-D3 hepa-
tocyte time-course results displayed cell-autonomous circadian
oscillations in the transcription of both the rate-limiting enzyme
ornithine decarboxylase (Odcl) and the subsequent enzyme in the
pathway, spermidine synthase (Srm; Fig. 4 B and C) (27-29). Odcl
and Srm are also rhythmically expressed in the Hughes WT liver
dataset (Fig. S7 A and B) (4), but are not rhythmic in the livers of
Vollmers et al’s (7) Cryl/Cry2 knockout or Miller et al’s (30)
Clock mutant mouse data (Fig. S7 C-F), indicating that these
rhythms are controlled by the circadian clock. Using mass spec-
trometry, we found that spermidine (the enzymatic product of
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Fig. 4. Circadian rhythms of polyamine synthesis in both transcription and
enzymatic activity. (A) Polyamine biosynthesis pathway. Ornithine is con-
verted to putrescine (the first polyamine) by ornithine decarboxylase
(ODC1). Putrescine is then converted to spermidine with the addition of
decarboxylated S-adenosyl methionine (dcAdoMet) by spermidine synthase
(SRM). Spermidine is then converted to spermine by spermine synthase
(SMS). (B and C) Odc1 and Srm display circadian rhythms in MMH-D3 hep-
atocytes. (D) Spermidine displays circadian rhythmicity in MMH-D3 hep-
atocytes. Data points represent mean values for biological replicates (n = 3,
except at hour 46, where n = 2) and error bars their SD.
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SRM) exhibits circadian oscillations in MMH-D3 hepatocytes
(Fig. 4D). Because the phases of Odcl and Srm transcriptional
rhythms are coordinated, and ODCI is the rate-limiting enzyme,
oscillations in spermidine reflect not only the activity of SRM but
ODC1 as well.

Discussion

In this study, using a bioinformatics pipeline that combines mul-
tiple analytic methods, we identified 1,130 circadian transcripts in
MMH-D3 hepatocytes, indicating that the cell-autonomous he-
patic clock can drive a significant proportion of circadian rhythms,
and validating MMH-D3 as a model system for circadian biology.

The distribution of these genes within a mouse PPI network was
both more central and concentrated than expected at random, and
further organized to bring together co- and antiphasic genes. The
proximity of antiphasic genes resembles relationships we observe
within the circadian clock. Positive and negative components of
individual clock loops are expressed at disparate phases and
compete for the same binding sites, such as ROR activators and
REV-ERB repressors competing for RRE binding sites (2). The
phasic organization may reflect a general strategy of coupling
positive and negative signals in the control and maintenance of
specific circadian processes.

Last, we revealed robust cell-autonomous cycles in the poly-
amine synthesis module at both the transcriptional level and in
enzymatic activity in MMH-D3 hepatocytes. Polyamines are strongly
associated with cell proliferation, up-regulated in many cancers,
and essential for liver regeneration, so circadian regulation of this
pathway may gate the hepatocyte’s permissibility to initiate liver
regeneration (27-29).

Liver regeneration is known to be under circadian regulation,
such that disruption of the clock retards liver regeneration and
desynchronizes cell proliferation (31). Cell proliferation in
regenerating hepatocytes is circadian and is gated by the kinase
Weel (31). Because polyamines are required for the initiation of
liver regeneration, they may provide an upstream or additional
mechanism for circadian regulation of the induction of the re-
generation program. The mechanism by which polyamines initiate
liver regeneration remains unclear, but they are essential to pro-
tein and DNA synthesis (32), and may play direct roles in stabi-
lizing and transporting ribosomal RNA (32) as well as modulating
protein—protein and protein—-DNA interactions involved in transcrip-
tion (28). Polyamines can also induce changes in DNA curvature
to a more accessible conformation associated with transcription
start sites (28). Thus, polyamines may act in the regulation of
transcription in circadian output, including the induction of cell
proliferation programs.

Cycling of Odcl and Srm transcripts may result from direct
transcriptional regulation by the core clock loop, composed of
BMALI1/CLOCK activators and PER/CRY repressors. Both Odcl
and Srm are activated by c-Myc/MAX complexes binding to E-
boxes in their regulatory regions (33, 34)—the same binding-site
sequence used by BMAL1/CLOCK. It is known that BMAL1/
CLOCK and c-Myc can regulate the same genes (35). Also, in
MMH-D3 hepatocytes, Odcl and Srm transcripts peak at a similar
time to the known BMAL1/CLOCK targets: Dbp, Per2, and Rorc.
Furthermore, E-box regulation is enriched in circadian liver
transcripts, but only when the local liver clock is intact, suggesting
that much E-box-mediated transcriptional regulation requires a
cell-autonomous liver clock (36). Further investigation should test
the regulatory relationship between the core clock loop and
polyamine synthesis.

Though polyamine synthesis can be induced in the in vivo liver
by some systemic signals, including glucocorticoids, insulin, growth
hormone, and food intake, previous studies did not address the
intrinsic regulatory relationships within hepatocytes over circadian
time (32). We present evidence of circadian regulation of poly-
amine synthesis in MMH-D3 hepatocytes by the cell-autonomous

18564 | www.pnas.org/cgi/doi/10.1073/pnas.1115753108

clock, and, by extension, that the cell-autonomous clock may play a
role in liver regeneration. In vivo, this cell-autonomous role likely
integrates with systemic circadian regulatory signals to control
polyamine synthesis and liver regeneration. Cell-autonomous cir-
cadian regulation may reflect the permissibility of hepatocytes
to respond to systemic signals and liver injury at different times of
the day, whereas systemic signals drive responses to changing ex-
ternal conditions.

Methods

MMH-D3 Culture. Cultures were maintained and differentiated before
experiments in accordance with conditions in Amicone et al. (11). Cultures
were synchronized via serum shock (37) and changed to serum-free medium
for time-course collection. Cultures were incubated at 37 °C with 5% CO, for
12 h (microarrays) and 14 h (spermidine measurement) before the start of
time-course collection.

MMH-D3 RNA and Microarray Preparation. Time-course collection began 12 h
after synchronization of cultures. Every 2 h for 48-h duration, samples were
collected in triplicate. Cell lysates were homogenized using Qiagen QIAsh-
redder columns, and RNA was extracted using Qiagen RNeasy Miniprep Kit.
Samples were normalized based on total RNA concentration, amplified, and
applied to Affymetrix GeneChip Mouse 430 2.0 arrays per manufacturer
specifications. This dataset is available at the Gene Expression Omnibus (GEO)
database, www.ncbi.nIm.nih.gov/geo (accession no. GSE31049).

Microarray Analysis. The Hughes WT liver arrays were obtained from GEO
accession no. GSE11923 (4) in vivo mouse liver dataset and processed using the
methods described below. Cry1, Cry2~~ mouse liver with ad libitum feeding
dataset from Vollmers et al. (7) was obtained from GEO accession no.
GSE13093 as a GCRMA-normalized expression matrix. Clock mutant liver
dataset from Miller et al. (30) was obtained from GEO accession no. GSE3748 as
a GCRMA-normalized expression matrix; plotted values represent the mean of
two replicate arrays at each time point. All arrays were normalized using
GCRMA and present/absent calls made by MAS5 performed in R/BioConductor.
For further processing, only those transcripts that surpass the present thresh-
old for datasets being analyzed were used.

Pipeline Analysis. Present, normalized transcripts for each dataset were applied
to the statistical analysis pipeline depicted in Fig. 1A. For signal decomposition
analysis, present, normalized datasets were subjected to Fisher's G test
implemented in the GeneCycle package and a post hoc g-value estimate per-
formed in GeneTS according to the methods of Hughes et al. (4) to call
rhythmic transcripts at distinct Fourier frequencies corresponding to periods of
48, 24,16, 12,8, 6, 4.6, and 4 h. BRASS FFT NLLS was applied to transcripts with
aFisher’s G test, q < 0.05, to define period and phase with a confidence interval
of 0.95 (16). Circadian transcripts were those with a period of 20-30 h.

For model-matching analysis, HAYSTACK (http://haystack.cgrb.oregonstate.
edu/) was applied with user-defined models (Fig. S1), as described in Michael
et al. (14). These models define cosine waveforms at 1-h increments from 20 to
28 h and alternate waveforms with 24-h periods (Fig. S1). Correlation cutoffs
corresponding to a pseudo-FDR <0.05 were determined for the MMH-D3
dataset and the Hughes WT liver dataset using 500 and 1,000 permutations,
respectively, for each resolution analyzed. The correlation cutoffs were: MMH-
D3 0.6067, Hughes WT liver 1-h resolution 0.4549, Hughes WT liver 2-h reso-
lution 0.6314, Hughes WT liver 3-h resolution 0.7639, and Hughes WT liver 4-h
resolution 0.8520. When a transcript was called by both analytical arms of the
pipeline, the signal decomposition phase value was used.

Functional Annotation. DAVID functional annotation clustering was per-
formed using GO and SwissProt keywords with medium clustering stringency.
Clusters with enrichment scores >1.3 (corresponding to mean P < 0.05) were
significant (24). DAVID pathway analysis was performed using KEGG
PATHWAY. Overrepresented pathways displayed a P < 0.05 and fold en-
richment >1.5 (24). GO annotation for assessment of glycolysis and oxidative
respiration performed in R/Biocoductor using the GOstats package (38).

gPCR. Quantitative real-time PCR was performed on the same RNA samples as
used for MMH-D3 microarrays according to the methods of Liu et al. (37)
using TagMan assays and normalized based on GAPDH levels. Three repli-
cates of each gPCR reaction were performed. Relative expression values are
reported in percentage of maximum mean normalized values. Data points
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reflect the percent expression mean of replicates (n = 3), and error bars
represent SD of replicates.

Spermidine Measurement. Samples were collected starting 14 h after syn-
chronization of differentiated MMH-D3 cultures. At 2-h intervals for a duration
of 48 h, three live-cell pellets, each representing 106 cells, were collected, except
for time point 23 (hour 46) in which two live-cell pellets were collected. To
collect cell pellets, cultures were washed three times with cold (4 °C) PBS,
trypsinized using 0.25% trypsin with EDTA, washed with PBS, flash-frozen in
liquid nitrogen, and stored at —80 °C. Biochemical extraction, mass spec-
trometry, and metabolite quantification were performed by Metabolon
(Metabolon, Inc.) as described previously (39, 40). Sample measurements were
normalized by DNA concentration from each cell pellet sample. Spermidine
levels represent the mean of DNA-normalized samples at each time point, and
error bars are their SD.

Protein-Protein Interaction Network Construction and Analysis. Network vi-
sualization of protein—protein interactions and MMH-D3 circadian phases was
performed using Cytoscape 2.8.1 (http://www.cytoscape.org/) (41). To con-
struct the mouse PPI network, we pulled all mouse-specific interactions from
iRefIndex (version 8.0), a metadatabase that combines interaction data from
10 primary databases (20) (S/ Methods). To generate consistent network sta-
tistics regarding direct PPIs, redundant edges were collapsed into a single
(undirected) edge, excluding edges representing “colocalization,” and we
replaced nodes for protein complexes with all pairwise edges, resulting in an
undirected network of 7,052 genes and 91,457 edges. Of the 930 MMH-D3
circadian genes (1,130 transcripts), 297 mapped to nodes in the network by
Entrez Gene IDs. This larger network was used for the enrichment analysis of
first neighbors, which does not require a single connected component. The
shortest path, closeness centrality, resistance distance, and MATISSE analyses
were applied to the largest connected component—meaning all pairs of genes
in the subnetwork were connected by at least one path—of this network,
consisting of 5,302 genes, 230 of which were circadian.

1. Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: Circadian timing in
brain and periphery, in health and disease. Nat Rev Neurosci 4:649-661.

2. Zhang EE, Kay SA (2010) Clocks not winding down: Unravelling circadian networks.
Nat Rev Mol Cell Biol 11:764-776.

3. Panda S, et al. (2002) Coordinated transcription of key pathways in the mouse by the
circadian clock. Cell 109:307-320.

4. Hughes ME, et al. (2009) Harmonics of circadian gene transcription in mammals. PLoS
Genet 5:e1000442.

5. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and
oscillator-dependent circadian transcription in mice with a conditionally active liver
clock. PLoS Biol 5:e34.

6. Damiola F, et al. (2000) Restricted feeding uncouples circadian oscillators in peripheral tis-
sues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950-2961.

7. Vollmers C, et al. (2009) Time of feeding and the intrinsic circadian clock drive rhythms
in hepatic gene expression. Proc Natl Acad Sci USA 106:21453-21458.

8. Fuller PM, Lu J, Saper CB (2008) Differential rescue of light- and food-entrainable
circadian rhythms. Science 320:1074-1077.

9. Storch KF, Weitz CJ (2009) Daily rhythms of food-anticipatory behavioral activity do
not require the known circadian clock. Proc Natl/ Acad Sci USA 106:6808-6813.

10. Carneiro BT, Araujo JF (2009) The food-entrainable oscillator: A network of inter-
connected brain structures entrained by humoral signals? Chronobiol Int 26:1273-1289.

11. Amicone L, et al. (1997) Transgenic expression in the liver of truncated Met blocks
apoptosis and permits immortalization of hepatocytes. EMBO J 16:495-503.

12. Mancone C, et al. (2010) Proteomic analysis reveals a major role for contact inhibition
in the terminal differentiation of hepatocytes. J Hepatol 52:234-243.

13. Khan S, Rowe SC, Harmon FG (2010) Coordination of the maize transcriptome by
a conserved circadian clock. BMC Plant Biol 10:126.

14. Michael TP, et al. (2008) Network discovery pipeline elucidates conserved time-of-day-
specific cis-regulatory modules. PLoS Genet 4:e14.

15. Wichert S, Fokianos K, Strimmer K (2004) Identifying periodically expressed transcripts
in microarray time series data. Bioinformatics 20:5-20.

16. Brown PE (2004) Biological Rhythms Analysis Software System. Available at: http:/
millar.bio.ed.ac.uk/Downloads.html.

17. Bissell DM, Levine GA, Bissell MJ (1978) Glucose metabolism by adult hepatocytes in
primary culture and by cell lines from rat liver. Am J Physiol 234:C122-C130.

18. Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome
analysis reveals circadian regulation of key pathways in plant growth and de-
velopment. Genome Biol 9:R130.

19. Keegan KP, Pradhan S, Wang JP, Allada R (2007) Meta-analysis of Drosophila circadian
microarray studies identifies a novel set of rhythmically expressed genes. PLOS
Comput Biol 3:208.

20. Razick S, Magklaras G, Donaldson IM (2008) iReflndex: A consolidated protein in-
teraction database with provenance. BMC Bioinformatics 9:405.

21. Newman MEJ (2005) A measure of betweenness centrality based on random walks.
Soc Networks 27:39-54.
Atwood et al.

Resistance distance was calculated using the Moore-Penrose inverse of the
normalized Laplacian matrix of the largest connected component of the PPI
network. The normalized Laplacian of a graph is defined as L = I-D~'A, where /
is the identity matrix, D is the degree matrix of the graph (a diagonal matrix
where dj; is the degree of node i), and A is the graph adjacency matrix. Mean
values were calculated for all pairs of genes within each phase-difference bin,
and permutation analysis was done using 1,000 permutations of the phase
values across the network. P values for each bin were calculated as the pro-
portion of the permuted bin means exceeding the mean value for that bin
from the nonrandomized results.

For the analysis of first neighbors (Fig. S4B), the sets of first neighbors of
every gene in the network were found, and the phase differences between all
pairs of circadian genes within each neighborhood set were counted and
summed across all neighborhoods. These sums were then normalized by the
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The MATISSE algorithm (http://acgt.cs.tau.ac.il/matisse/) (23) was applied to
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program, which allowed us to specify a similarity matrix for the circadian nodes
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the maximum seed size (five nodes), the seed strategy (all neighbors), the
minimum module size (five nodes), and the maximum module size (30 nodes).
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