
tion than inmammalian genomes (17). In contrast,
those that survive beyond 0.02 dS units are rel-
ativelymore likely to be retained (Fig. 3A, figs. S32
to S34, and table S23) (3). To understand how
older developmental gene duplicates are used, we
focused on homeobox genes. Notably, we detected
broad expression signals in the larval trunk epithe-
lium for genes ofmost amplified groups (16 in 20),
but rarely for other groups (1 in 19) (Fig. 3B, fig.
S35, and table S24), likely reflecting roles in
patterning of the house-building epithelium (18), a
crucial novelty of larvaceans. A preferential reten-
tion of duplicates for developmental genes has
occurred in vertebrates after whole-genome du-
plications. Their massive retention in Oikopleura
is exceptional among invertebrates. In addition to
neofunctionalization for complex innovations like
house production, another explanation may take
into consideration the general reduction of gene
size in Oikopleura. This may enhance the like-
lihood for developmental genes to escape trunca-
tion after the local rearrangements that cause
duplications (19). Other mechanisms may facili-
tate duplications or preserve developmental gene
duplicates in Oikopleura.

Finally, we compared synteny relationships in
Oikopleura and several invertebrates to ancestral
chordate linkage groups (3, 20). Amphioxus,Ciona,
Caenorhabditis, and sea anemone showed many
cases of conserved chromosomal synteny (Fig. 3C,
figs. S36 and S37, and table S25), but Oikopleura
orthologs showed no such conservation. We also
measured local synteny conservation between the
same species and human (3). Amphioxus, Ciona,
Caenorhabditis, and sea anemone (to a much lower
degree) displayed significantly higher conservation
of neighborhood than expected by chance. Oiko-

pleura showed a local gene order that is in-
distinguishable from random for distances smaller
than 30 genes and a modest level of conserved
synteny at larger distances (fig. S38).

We show that multiple genome-organization
features, conserved across metazoans including
other tunicates and nonbilaterians, have dramatically
changed in the Oikopleura lineage. Despite an un-
precedented genome revolution, the Oikopleura
lineage preserved essential morphological features,
evenmaintaining the chordate body plan to the adult
stage, unlike other tunicates. Evolution in this lineage
was rapid and probably took place in a context favor-
ing purifying selection against mildly deleterious
features. Our results strengthen the view that global
similarities of genome architecture from sponges to
humans (20–23) are not essential for the preserva-
tion of ancestral morphologies, as is widely believed
(24–26).
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Rewiring of Genetic Networks in
Response to DNA Damage
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Although cellular behaviors are dynamic, the networks that govern these behaviors have been
mapped primarily as static snapshots. Using an approach called differential epistasis mapping,
we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases,
and transcription factors as the cell responds to DNA damage. Differential interactions uncover
many gene functions that go undetected in static conditions. They are very effective at identifying
DNA repair pathways, highlighting new damage-dependent roles for the Slt2 kinase, Pph3
phosphatase, and histone variant Htz1. The data also reveal that protein complexes are generally
stable in response to perturbation, but the functional relations between these complexes are
substantially reorganized. Differential networks chart a new type of genetic landscape that is
invaluable for mapping cellular responses to stimuli.

Oneof themost basic approaches to under-
standing gene function relies on the iden-
tification of genetic interactions, which

occur when the phenotypic effects of one gene
depend on the presence of a second. Recently, a
number of technologies have been developed to

systematically map genetic interaction networks
over large sets of genes in budding yeast (1–3)
and other model organisms (4, 5). Thus far, these
networks have been constructed only under nor-
mal laboratory conditions. However, cells are con-
stantly bombarded by signals and stresses, such
as ligands, drugs, hormones, toxins, or other
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environmental conditions. Although it is clear
that some genetic interactions are condition-
dependent (6, 7), to what extent environmental
stresses can affect genetic interaction networks,
and the pathways they represent, is still unknown.

To gain insight into how genetic networks
are altered by stress, we assembled a large ge-
netic interactome with and without perturbation
by the DNA-damaging agent methyl methane-
sulfonate (MMS). Using the technique of ep-
istatic miniarray profiles (E-MAP) (8), genetic
interactions were interrogated among a set of 418
yeast genes selected to provide broad coverage
of the cellular signaling and transcriptional ma-
chinery, including nearly all yeast kinases, phos-
phatases, and transcription factors, as well as
known DNA repair factors (fig. S1 and table S1).
About 80,000 double-mutant strains were gen-
erated from all pairwise mutant combinations
of the 418 genes, in which mutations were com-
plete gene deletions (nonessential genes) or hy-
pomorphic alleles (essential genes) as appropriate.
Double-mutant combinations were grown with
or without 0.02% MMS, and their colony sizes
were analyzed statistically to compute a genetic
interaction score (S score) in each condition (9),
which indicates whether the strain was healthier
or sicker than expected (positive or negative S,
respectively) (10).

From established score thresholds for positive
and negative interactions (S ≥ +2.0, S ≤ −2.5) (9)
we identified two genetic networks: a set of 1905
interactions for the untreated condition, and a set
of 2297 interactions under MMS. Analysis of
these “static” genetic maps showed strong asso-

ciationswith physical interactionnetworks of various
kinds. For example, gene pairs with either positive
or negative genetic interactions were highly en-
riched for proteins known to physically interact.
In addition, both maps were enriched for known

kinase- and phosphatase-substrate pairs, as well
as transcription factor-target pairs (fig. S2). The
correspondence to physical and functional asso-
ciations reflects the predictive power of this ge-
netic interaction data set.

Fig. 1. An epistasismap
forDNAdamage signaling.
(A) Comparison of genetic
interactions (positive, S ≥
+2; negative, S ≤ −2.5)
uncovered in untreated
or DNA damage treated
(+MMS) conditions. Con-
trol represents interactions
from two independent ex-
periments in untreated
conditions. (B) Percentage
of interactions (positive or
negative) identified in
each condition that are
specific to that condition.
(C) Differences between
the untreated and treated
maps identify differential
interactions. (D) Scatter of
Sscoresbetweenuntreated
andtreatedmapsandiden-
tification of positive differ-
ential (green, P ≤ 0.001)
andnegativedifferential in-
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teractions (red, P≤ 0.001). (E) Enrichment of interactions involving known DNA
repair genes, shown for static and differential networks and including both
positive and negative interactions. For the right-most bar, all differential
interactions also identified in the static network are removed. (F) Enrichment of interactions involving genes with various functions (10).

FUS3

BCK1

SLT2

Known DNA Repair
Other MMS Sensitive

Fig. 2. Identification of differential genetic interaction hubs. The scatterplot shows the number of positive
and negative differential interactions associated with each gene in this study. The 30 genes whose
deletions are the most sensitive to MMS are indicated (blue) (24), excluding those already known to
function in DNA repair (red) (table S1).
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Comparison of the genetic networks across
conditions revealed large differences, with more
interactions unique to each map than in common
(Fig. 1A). For example, more than 70% of pos-
itive interactions identified under MMS were not
identified in the untreated sample, which reflects
widespread DNA damage–induced epistasis (Fig.
1B). To assess these changes in interaction, each
gene pair was associated with its difference in S
score across conditions (Fig. 1C). AP value for this
difference was calculated using the null distribution
of score differences observed when comparing
replicate interactionmeasurements from the same

condition (fig. S3) (10). This method identified
873 differential genetic interactions at P ≤ 0.001,
with a corresponding false-discovery rate of ~9%
(fig. S4 and table S2). We term this approach
differential epistasis mapping (dE-MAP), as it
is based on the difference of two static networks
generated using the E-MAP methodology. A
total of 379 interactions were “negative differ-
ential,”which indicated DNA damage–induced
lethality or sickness, whereas 494 were “posi-
tive differential,” which indicated inducible epis-
tasis or suppression (Fig. 1D). Themajority (62%)
of differential interactions were not detectable in

either static condition, most likely because they
are too weak to detect in any single condition yet
display a substantial change in interaction be-
tween conditions.

To determine whether static untreated, static
treated, or differential genetic networks best un-
cover DNA damage-response pathways, we ex-
amined a reference set of 31 known DNA repair
genes (table S1). We noted that static networks
were no more likely than random to include
interactions with genes in this reference set (Fig.
1E). This lack of enrichment was observed in
the untreated genetic network, as well as, sur-

Fig. 3. Differential genet-
ic interactions identifynovel
DNA damage–dependent
pathways. (A) Full profile
of CBF1 genetic interac-
tions with the strongest
positive genetic interac-
tions inMMS highlighted.
(B) Fluorescence-activated
cell sorting (FACS) analysis
of cell cycle progression
in alpha-factor–arrested
wild-type and cbf1D cells
released into media with
or without MMS. In MMS,
cbf1D cellsbypass cell cycle
checkpoints and eventual-
ly accumulate in S phase
(between1Nand2NDNA
content). (C) gH2AX levels
for wild-type and CBF1
overexpression at times
indicated after exposure
toMMS. Pgk1 is used as a
loading control. (D) Effect
of CBF1 overexpression
on cell cycle progression
using FACS. (E) Correla-
tion coefficients between
the CBF1 genetic interac-
tion profile and that of
each gene in the epistasis
map, in MMS versus un-
treated conditions. (F) Top
changes in abundance of
phosphorylated peptides
in pph3∆ versus wild-type
cellsbyphospho-proteomic
profiling. (G) Histogram
of autocorrelation coeffi-
cients. For each gene, the
genetic interactionprofiles
before and after MMS ex-
posure are compared by
Pearson correlation. (H)
Correlation plot as in (E)
for HTZ1. (I) Represen-
tative genetic interactions
ofHTZ1,MEC1, andSWR-C
members.Clusteringbased
on similarity of profiles is shown. (J) The acetylation of multiple Htz1 N-terminal
lysine residues (K8, K10, or K14) measured in an Htz1-3HA strain after MMS
exposure in wild-type (WT) and hda1∆ backgrounds. HA represents total

amount of Htz1. Rpn8 is a loading control. (K) Acetylation status of Htz1-K14 in
response to MMS in WT and mec1∆ backgrounds. gH2AX is a downstream
marker of DNA-damage signaling by Mec1.
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prisingly, the static network obtained underMMS.
In contrast, the differential network—obtained
through the quantitative difference in interaction
across conditions—was highly enriched for inter-
actions involving DNA damage-response genes
such as RAD52, TEL1, and DUN1 (Fig. 1E) (10).

We noted that both the static treated and un-
treated networks were dominated by interactions
involving genes that function in chromatin orga-
nization (Fig. 1F). This strong chromatin signal
has been previously reported in budding and fis-
sion yeasts and C. elegans (2, 4, 5, 11). Through

network subtraction, however, the “housekeeping
interactions” due to chromatin are removed, which
allows sensitive detection of differentially repre-
sented pathways. Thus, network comparison re-
veals a landscape of genetic interactions particularly
tailored to the cellular response of interest.

Fig. 4. Module-based interpretation
of differential genetic interactions. (A)
MMS induces a set of positive inter-
actions between DNA damage pathways
(top right) that are not evident in un-
treated conditions (bottom left). (B)Module
map of protein complexes and pathways
connected by differential genetic interac-
tion bundles. Node color represents the
most severe single-deletion phenotype
among members of a module (table S1).
(C) Detailed view of differential genetic in-
teractions between protein complexes
corresponding to selected modules in (B)
(dotted node borders). For clarity, only
physical interactions and differential genet-
ic interactions with P < 0.01 are shown.
Thickness is scaled with increasing signifi-
cance of the P value (10).
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Analysis of static networks has found that net-
work “hubs”, i.e., genes with many interactions,
modulate a variety of cellular functions and are
more likely to be essential for viability (12). For
the differential network, we found that the number
of interactions per gene was correlated with the
sensitivity to MMS of the corresponding gene
deletion strain (r = 0.35, P < 10−5) (fig. S5, A and
B). Differential interaction hubs were also more
likely to be essential for growth under a variety of
drug treatments and stresses (fig. S5, C and D),
consistent with previous observations for static
hubs (13).

Further investigation showed that many dif-
ferential interaction hubswere alreadywell known
to function as key components of DNA repair
pathways (Fig. 2), which led us to predict that the
remaining hubs might encode this role. Two such
differential interaction hubs encode Slt2 and
Bck1, mitogen-activated protein kinases (MAPKs)
that have been implicated in the maintenance
of cell wall integrity but not yet linked to DNA
repair (Fig. 2). We found that Slt2 is both up-
regulated and translocated to the nucleus upon
MMS treatment, and it is required for appropri-
ate regulation of ribonucleotide reductase genes
in response to DNA damage (fig. S6, A to D)
(14). Furthermore, both MAPKs show strong ge-
netic interactions with DNA damage check-
point genes (fig. S6, E and F), which suggests
that they may function in a parallel signaling
pathway.

Another differential interaction hub not pre-
viously linked to DNA repair was centromere
binding factor 1 (CBF1) (Fig. 2), a sequence-
specific transcription factor and component of
the inner kinetochore (15).CBF1 gained strong
genetic interactions upon MMS treatment (Fig.
3A), which suggested an additional role in DNA
repair. We found that Cbf1 is required for appro-
priate activation of cell cycle checkpoints (Fig.
3B) and that CBF1 overexpression interferes
with induction of the damage-dependent histone
modification gH2AX (Fig. 3C) and leads to cell
cycle arrest in G1 (Fig. 3D). Furthermore, MMS
treatment causes the CBF1 profile of genetic
interaction scores (across all genes on the E-MAP)
to become correlated with the profiles of TEL1
kinase and PPH3 phosphatase, which encode
key proteins regulating the DNA damage check-
point (Fig. 3E) (16). Mass spectrometry–based
phosphoproteomics showed that Cbf1 is hyper-
phosphorylated at a conserved serine-glutamine
motif (SQ145-146) in pph3∆ cells (Fig. 3F and
table S3). As the checkpoint kinases Mec1 and
Tel1 have been shown to target Cbf1 at the same
SQ site (17), it is likely that Pph3 is the protein
phosphatase that counteracts the effect of this
phosphorylation.

As another means of mapping DNA repair
pathways, we identified genes with genetic inter-
action profiles that were conditionally disrupted
byMMS, suggesting a shift in gene function. We
observed that most genes had high correlation
between their genetic interaction profiles mea-

sured in the presence or absence of MMS (high
“genetic autocorrelation”) (Fig. 3G). However,
several genetic interaction profiles were markedly
disrupted in MMS (low autocorrelation), includ-
ing those of RAD52, a critical factor in homol-
ogous recombination–mediated DNA repair (18),
and HTZ1, encoding the histone variant H2A.Z,
whose role in DNA repair is less well understood
(19, 20). In untreated conditions, the HTZ1 pro-
file correlated with members of the SWR com-
plex (SWR1, SWC5, VPS71, and VPS72) (11),
responsible for incorporating Htz1 into chroma-
tin (21). This correlation was lost in MMS (Fig.
3H), which suggested a functional disassociation
between Htz1 and the SWR-C. Conversely,
HTZ1 became correlated with the DNA-damage
checkpoint kinase MEC1 upon MMS treatment
(Fig. 3, H and I), and amec1∆htz1∆ strain showed
synthetic sensitivity to MMS (fig. S7), suggest-
ing a damage-dependent functional link between
the two proteins. Htz1 is acetylated on its amino
terminus by histone acetyltransferase NuA4 (22)
and deacetylated by histone deacetylase Hda1
(19). We found that the degree of Htz1 acetyla-
tion at multiple lysine residues was strongly re-
duced in response to MMS (Fig. 3J). This effect
was dependent on both Hda1 (Fig. 3J) and Mec1
(Fig. 3K), which suggested that the regulation of
Htz1 acetylation contributes to the DNA damage
response.

We next investigated the association between
differential genetic interactions and known yeast
pathways and protein complexes (i.e., modules)
(table S1). In contrast to static genetic inter-
actions, which are enriched within modules, we
found that differential genetic interactions are not
(fig. S8A). Rather, differential genetic interac-
tions are much more likely to occur among pairs
of genes connecting two different modules than
among pairs of genes within the same module
(fig. S8B). These findings were corroborated by
an alternative analysis in which modules were de-
fined through hierarchical clustering of the treated
and untreated genetic interaction data. Genes that
clustered into the same module in both conditions
were much more likely to physically interact than
genes that coclustered in one condition only (fig.
S8C). These results suggest that known protein
complexes tend to be stable across conditions—it
is the genetic interactions between these modules
that are reprogrammed in response to perturba-
tion (Fig. 4A).

On the basis of these findings, we constructed
a global map of gene modules and their dynam-
ic genetic interactions in response to DNA dam-
age. Using an established method (23), we
defined modules as dense clusters of physical
and static genetic interactions. Module-module
interactions were characterized by heavy enrich-
ment for many differential genetic interactions
across the two modules (table S4) (10). The
resulting map of 56 multigene modules and 66
module-module interactions (Fig. 4, B and C)
provides a global resource of pathways and com-
plexes that are reconfigured in response to DNA

damage–induced stress, many of which have not
been previously linked to DNA repair.

Large-scale genetic interaction networks have
proved extremely powerful for mapping the path-
ways that regulate essential cell functions. In this
study, we have shown that differential genetic
networks are comparable in size to static networks,
yet access a very different set of interactions gov-
erning a dynamic cellular response. Given that
most gene functions arise in response to changing
conditions, the differential network revealed here
offers a glimpse into a much larger universe of
genetic interactions that are condition-, cell type–,
or tissue-specific.
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