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Abstract 

Synthetic genetic arrays (SGA) have been very effective at measuring genetic interactions 

in yeast in a high throughput manner and recently have been expanded to measure 

quantitative changes in interaction, termed 'differential interactions', across multiple 

conditions. Here, we present a strategy that leverages statistical information from the 

experimental design to produce a novel, quantitative differential interaction score, which 

performs favorably compared to previous differential scores. We also discuss the added 

utility of differential genetic-similarity in differential network analysis. Our approach is 

preferred for differential network analysis, and our implementation, written in MATLAB, 

can be found at http://chianti.ucsd.edu/~gbean/compute_differential_scores.m. 
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Background 

Genetic interactions are functional dependencies between genes, which become apparent 

when the phenotypic effect of one mutation is altered by the presence of a second. In model 

organisms such as yeast, genetic interactions can be rapidly assessed through the 

systematic construction of double mutants and measurement of quantitative phenotypes 

such as growth rate. Quantitative interactions may be positive or negative, indicating less 

or more severe double mutant phenotypes than expected from the single mutant 

phenotypes. Many large genetic network maps have been constructed from high-

throughput genetic interaction screens in yeast, providing insight into the global landscape 

of interactions within the cell as well as the functional relationships between specific 

components of biological processes and pathways [1–5].  

Recently, we used genetic interaction mapping in a “differential mode” to compare the 

changes in genetic networks across experimental conditions [6–8]. To demonstrate this 

approach, called differential epistasis mapping, we compared the difference between 

quantitative genetic interaction scores derived from yeast grown on standard versus DNA-

damaging media [6]. We found substantial changes in interaction patterns and 

demonstrated that the difference in scores was more effective than the scores in either 

static condition for highlighting interactions relevant to the pathway under study (DNA 

damage response). Other biological networks, such as protein-protein interaction (PPI) or 

protein-DNA interaction networks, have also progressed from observing single 

experimental conditions to comparing the changes in interactions across multiple 

experimental conditions or genetic backgrounds. For example, Wrana and colleagues 
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developed the LUMIER (luminescence-based mammalian interactome mapping) strategy to 

identify pairwise PPIs among a set of human factors with and without stimulation by 

transforming growth factor β [9]. Similarly, Workman et al. used genome-wide chromatin 

immunoprecipitation to focus on changes in transcription factor binding after exposure to 

the DNA damaging agent methyl methanesulfonate (MMS) [10]. More recently, a 

quantitative approach has been presented by Bisson et al. for measuring differential 

interactions in PPI networks [11]. This approach, which the authors call affinity 

purification-selected reaction monitoring (AP-SRM), was used to map quantitative changes 

in interaction with the protein Grb2, which changes showed that the composition of Grb2 

complexes was remarkably dependent on the stimulation. By focusing on additional hub 

proteins beyond Grb2, this method is likely to be useful for obtaining a global overview of 

protein network remodeling in response to a stimulus. 

The progression from static to differential network biology in many fields increases the 

need for specialized statistical strategies for scoring differential networks. One approach to 

improving differential signal is to use paired experimental designs that reduce the noise 

between treated and untreated measurements. For example, experimental designs such as 

the two-color microarray were originally developed to reduce the noise resulting from 

technical variability, and various statistical methods have been developed to leverage the 

paired structure of these experiments (reviewed in [12–15]). Similar to two-color 

microarrays, differential network measurements can pair treated and untreated 

measurements. While some of the differential interaction studies [6,7] have employed such 

an experimental design, they did not utilize this information in their analysis, treating each 

measurement as independent.  
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Here, we investigate the statistical structure of two large-scale differential genetic 

interaction experiments [6,7] and present a generalized strategy for scoring differential 

genetic interaction data. Our strategy produces differential genetic interaction networks 

that are more reproducible and more enriched for biologically relevant interactions than 

previous approaches based on network subtraction. A MATLAB implementation of our 

strategy is provided as Additional file 1with the online version of this article.  

Results and discussion 

The differential interaction model 

The format of a differential genetic interaction experiment takes growth-rate 

measurements for each double mutant across two or more conditions. A single mutant 

yeast strain, called the query, is mated with an entire set of other single mutants (e.g. 

deletions of all non-essential yeast genes), referred to as array strains. The resulting 

diploids are sporulated and then undergo multiple selection steps to produce colonies of 

haploid double deletion mutants. In the last step of the pipeline, the same yeast colonies are 

replicated onto different media exhibiting the chosen growth conditions (Figure 1a; see 

[3,6,16] for high-throughput genetic interaction screening protocols).  

Because one run of this experimental pipeline produces double mutant colonies that are 

grown in separate conditions but share the same initial steps, we had reason to believe that 

the double mutant growth-rate measurements are not independent. Using data from 

Bandyopadhyay et al. [6], we tested this hypothesis by comparing the correlation of 
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experimental replicates (i.e. colonies generated in separate pipelines but grown in the 

same condition) with the correlation of colonies generated in the same pipeline but grown 

in different final conditions. Strikingly, we found that the correlation of colonies grown in 

different conditions was much greater than the correlation of experimental replicates 

(Figure 1b), even though the experimental replicates were grown under identical growth 

conditions and the conditional replicates were not.  This observation suggested some 

degree of statistical dependence between the conditional replicate measurements.  

We further assessed the dependence across the conditional measurements with an analysis 

of the variance of replicate measurements. Assuming independence, the difference between 

two normally distributed random variables is distributed normally, with a variance equal 

to the sum of the variances of the original distributions (Equation 1).  

 
(1) 

Therefore, for each double mutant, the variance of the differences between the static 

measurements should be equal to the sum of the variances of the static measurements.  

Using the data from two differential interaction mapping experiments comparing MMS and 

standard growth conditions [6,7], we found that the variance of the difference for each 

double mutant was less than half of the expected differential variance, and even less than 

the variance of static (non-differential) measurements (Figure 2). These results confirm 

that the across-condition measurements are not independent and raise the possibility that 

significant error reduction may be achieved by the differential mode of analysis.  
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The dS Score: A quantitative measure of differential interaction 

Accordingly, we developed a strategy for scoring differential genetic interactions, which 

accounts for the dependency structure of the data. Assuming a growth constant p for each 

plate, which captures plate-to-plate differences in growth rate, the observed double mutant 

colony size zqai can be factored as follows: 

 (2) 

Where q and a represent the query and array strains, i represents the experimental 

replicate, c represents the condition, f indicates the single mutant fitnesses, and  

represents the residual. Collins et al. [17] developed a strategy that uses colony size 

population trends to estimate p, fq, and fa and obtain a measurement of the residual, which 

serves to quantify the degree of genetic interaction between the query and array mutants.   

For differential interactions, the null or “non-interaction” model is that the mean of the 

differences between paired residuals is equal to zero: 

 
(3) 

where c indicates the treatment and c0 indicates the untreated, or reference, condition, and 

δ represents the difference in colony size residuals. Assuming the  are normally 

distributed, the degree to which this mean differs from zero given the variance of the 

replicates can be modeled using the paired t-statistic. We call our statistic the dS score, “d” 

for “differential” and “S score” after the name of the statistic used by Collins et al. [17]. 
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(4) 

where δqac is the mean of the differences of the residuals (Equation 3) and sqac is the sample 

standard deviation of the differences of the residuals. Unlike the S-score [17], we found that 

the sample variance was the best approximation of the variance (based on the quality 

control metrics described below) and did not employ a minimum bound or any modifiers 

or priors (such as in the case of SAM, Cyber-T, or LIMMA in microarray analysis [18,19,15], 

see also [20]). 

Similarity of differential interaction profiles provides distinct functional information 

Previously, it has been shown that the correlation of static interaction profiles identifies 

many gene functional relationships not identified by direct genetic interactions (a genetic 

interaction profile is the set of all interactions with a given gene) [1,17]. Given our new 

quantitative score for differential interactions, we therefore investigated whether 

differential interaction profiles could also be used to provide distinct functional 

information. Indeed, we found that the correlation of differential interaction profiles was 

able to identify relationships relevant to the treatment response and, furthermore, that 

these links were not identified either by direct interactions (static or differential) or by 

correlation of static profiles. 

For example, using the dS score, we observed a very high differential similarity score 

between SWI4 and the subunits of the HIR complex (Figure 3). In contrast, when 

computing genetic profile similarity between SWI4 and HIR in either static condition 
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(standard or MMS-treated), similarity scores were strikingly low. SWI4 is the DNA-binding 

member of the SBF complex, a key regulator of genes involved in DNA synthesis and repair 

in G1 to S phase [21,22]. HIR1, HIR2, and HIR3 are subunits of the HIR complex which 

negatively regulate histone protein transcription [23] under control of the DNA-damage 

checkpoint kinase DUN1 [24]. Although SWI4 and HIR have not been previously implicated 

in a genetic relationship, SWI4 has been shown to regulate histone gene expression [25,26] 

suggesting that an interaction between SWI4 and HIR is feasible, especially in context of the 

DDR. Thus, differential similarity can identify functional relationships between genes that 

are not apparent from profile similarity analysis in static conditions.  

We identified a total of 99 functional associations like SWI4 and HIR, i.e. gene pairs with 

low static similarity and high differential similarity (see Additional file 2 for a complete list 

of gene pairs and their interaction and similarity scores). These gene pairs indicate DDR-

relevant interactions that would not be identified through previously available methods. 

One of the key limitations of static profile similarity is that the static profile is populated by 

interactions pertaining to both the treatment as well as general cell growth. These non-

relevant interactions diminish the similarity between genes that otherwise function very 

similarly in the treatment response. Additionally, the larger variance inherent in the static 

measurements contributes to noisier interaction profiles which decreases the similarity of 

otherwise related profiles. Differential interactions are effective at identifying treatment-

relevant relationships because they cut down the noise and eliminate non-related 

interactions.  
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Performance of the dS score and differential profile similarity 

We investigated the quality of the dS score by examining its false discovery rate, 

reproducibility and biological enrichment. As a baseline for comparison, where applicable 

dS scores were compared to the differential p-values described by Bandyopadhyay et al. 

[6], which indicate an empirically-determined significance for the difference in S scores 

between two conditions. We designate the –log p-values from Bandyopadhyay et al. [6] as 

the “B score”. To estimate the false discovery rate of different dS score thresholds, we first 

generated a dS null distribution using the data from Bandyopadhyay et al. [6], in which the 

final step involved pinning each double mutant twice in the same condition.  These two 

colonies were paired and scored as if they were colonies grown in separate conditions 

(corresponding to zqaic and zqaic0 in eqn. (2) above). We observed that the dS score has 

approximately symmetric false discovery rates for positive and negative scores (Figure 4a).  

Next, we assessed reproducibility of the dS score by comparing B and dS scores generated 

using replicates 1-3 and, separately, 4-6 from Guénolé et al. [7]. Using only gene pairs that 

were scored in both analyses, we found that the dS score yields a much tighter 

reproducibility across replicates than the B score (Figure 4b-c; Additional file 3, Figure S1). 

In particular, the Pearson correlation across replicates was remarkably higher for the dS 

score than the B score (Figure 4d; the values on the far right correspond to data shown in 

Figure 4b-c). We found it of particular interest that for the most significant interactions, the 

dS score tends to greater and greater reproducibility, while the reproducibility of the B 

score drops to zero, indicating that for larger and larger values, the B score picks up on less 

and less signal. 
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To measure the biological enrichment of the dS score, we generated a bronze-standard set 

of interactions similar to that used by Bandyopadhyay et al. [6]. We included in our 

standard set any gene pair in which both genes were annotated as “DNA-damage response” 

(DDR) in the Gene Ontology [27] (corresponding to 903 or 2,575 gene pairs in the 

Bandyopadhyay et al. [6] or Guénolé et al. [7] data sets, respectively), as well as any gene 

pair defined by the YeastNet 2.0 benchmark set [28] containing at least one DDR gene (390 

or 772 gene pairs, respectively). As a second standard, we used the set of co-complex 

interactions compiled by Baryshnikova et al. [29], which is based on the set of 

macromolecular complexes recorded in the Saccharomyces Genome Database 

(www.yeastgenome.org) or in the CYC2008 protein complex catalogue [30]. Using these 

two standards, we generated precision-recall plots for two previously-published 

differential interaction networks (Bandyopadhyay et al. [6] and Guénolé et al. [7]).  This 

analysis indicated that the dS score has essentially the same precision for recovering the 

DDR and the co-complex standards as the original p-values published by Bandyopadhyay et 

al. [6](Figure 5; see also Additional file 3, Figures S2-4). However, we observed a notable 

improvement in enrichment for DDR interactions when using profile similarity of dS scores 

as compared to profile similarity of B scores (Figure 5a,b).  

Additionally, it is well known that gene pairs with high profile similarity are often members 

of the same physical complexes [31,32], so we investigated whether the same is true for 

differential-profile similarity. We found that the genes with similar dS score profiles are 

strikingly more enriched for co-complex pairs (Figure 5c,d), and specifically for protein 

complexes involved in the DDR (Additional file 3, Figure S2). For example, differential 

profile similarity was able to achieve a precision of 60-100% for recovering either DDR 

http://www.yeastgenome.org/
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pathway interactions or protein complexes, using data from either of two studies. This 

performance was in contrast to that of individual differential interactions, which had a 

precision of 1-20% using these same standards and data.  

It is interesting that B score profile similarity is under-enriched for meaningful 

relationships. Part of this behavior may be explained by our observation that extreme B 

score values tend to capture noise and are not reproducible (Figure 4b-d). Because profile 

similarity is heavily influenced by larger values, B score profile similarity is overly sensitive 

to noise. Thus, relatively few spurious interactions can have an extensive influence on 

profile similarity.  

We finally compared dS scores and dS profile similarity scores to the static S scores and 

profile similarity scores from the same data. We found that differential similarity scores are 

more enriched for DDR interactions than static similarity scores, even though static scores 

are more enriched for non-DDR specific interactions (Additional file 3, Figure S3).  

The reasons for the improved performance in identifying relevant genetic relationships of 

the dS score over the B score and the static scores deserve some attention. Genetic 

interaction mapping experiments are subject to many systematic sources of noise. For 

example, the ratio of double mutant cells to single mutant cells in the colonies growing on 

the single-mutant selection plate (see Figure 1 for an outline of the experimental workflow) 

affects the observed double mutant fitness in the following step. Other sources of 

systematic noise include uneven agar surfaces, which affect the quantity of material that is 

picked up and deposited during plate pinning, and variations in incubation time, humidity, 

etc. (Table 1). Despite sophisticated data processing methods, traces of these systematic 
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artifacts may be preserved, and this noise can influence the estimation of interaction 

effects. The current experimental design for static interaction mapping experiments does 

not control for these artifacts, and the previous method for scoring differential interactions 

did not take advantage of built-in controls. However, our approach uses the paired 

relationships between plates to eliminate many sources of systematic noise, increasing our 

ability to identify reproducible and relevant differential interactions (Figures 1, 2, 4). This 

result is of broad interest because finding the appropriate control plays an important part 

in differential experimental design in many fields.  

Interpretation of the dS score 

The previous approach to scoring differential interactions derived a score from the 

difference between static interaction scores in each condition. This explicit comparison of 

scores led to a natural discussion about the interpretation the differential score based on 

the sign and magnitudes of the static scores [6]. However, because the dS score is not based 

on the difference between static scores, we suggest the dS score be interpreted following 

the same logic as static interaction scores. In the static case, positive interactions generally 

denote gene relationships within the same pathway or complex, while negative 

interactions generally indicate gene relationships that span parallel or redundant pathways 

[33]. The difference between differential and static interpretation is that static scores 

indicate interactions that affect general cell growth, whereas differential scores indicate 

interactions that affect the treatment response.  
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While the theoretical interpretation of the dS score is straightforward, the practical 

interpretation is more complex because the static interaction scores provide a context for 

the interpretation of the dS score. For example, a gene pair exhibiting a positive interaction 

in untreated conditions that is more positive in MMS (yielding a positive dS score) should 

be interpreted differently than an interaction that is negative in untreated conditions that 

becomes positive in MMS (also yielding a positive dS score). According to the standard 

interaction model, the latter example is supposedly going from a between-pathway 

relationship in untreated conditions to a within-pathway relationship in the treatment, 

which quality the former example does not have, even though both examples exhibit a co-

pathway relationship in the DDR response. These various classes of differential 

interactions exhibit different enrichment rates for our DDR standard (Additional file 3, 

Figure S4), suggesting that there may be unique qualities to each class, but a more detailed 

investigation of differential interaction interpretation is left for future work.  

Conclusions 

Here, we have put forth a quantitative differential interaction score, the dS score, based on 

important statistical information inherent in the experimental design. This score not only 

provides more information about each interaction than previous approaches, but also 

shows improved reproducibility and comparable biological enrichment. Additionally, 

quantitative differential interactions give rise to differential interaction profiles, which we 

demonstrate to be biologically relevant and uniquely insightful. Furthermore, we provide a 

new interpretation for differential interactions based on the accepted interpretation of 
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static genetic interactions. We conclude that our differential interaction score is preferred 

to the previous approach for differential genetic interaction mapping analysis.  

Methods 

Correlation of query replicates 

We used normalized colony size residuals to calculate the correlation of query replicates 

(Figure 1b). Our approach to computing these residuals is based on the approach published 

by Collins et al. [17]. In brief, the raw colony sizes are pre-processed to filter bad colonies 

and correct spatial artifacts. Each plate (i.e. the set of all colony sizes from the same plate) 

is normalized by the plate mode, calculated using a kernel density estimation method [34]. 

Next, array single mutant fitnesses are estimated using the median normalized colony size 

for a given array position across all plates, which are then subtracted from the respective 

double mutant colony sizes to yield normalized colony size residuals. These residuals are, 

in turn, used to calculate several quantities: (1) the pair-wise correlation for each pair of 

conditional plate replicates, i.e. double mutant selection plates derived from the same 

single mutant selection plate differing only in the growth condition; (2) pairwise 

correlation of untreated experimental replicates; and (3) pairwise correlation of randomly 

selected queries.  



 16

The dS score 

Normalized differentials are obtained by subtracting untreated normalized colony sizes 

from the corresponding treated normalized colony sizes. The dS score is then computed as 

the pooled t-statistic of the six replicates for a given double mutant versus all double 

mutant measurements containing the respective array gene deletion. Note that the S score, 

for scoring static interactions, employs a minimum bound on the variance of the six double 

mutant replicates [17], while the dS score does not bound the variance. 

Scoring null differential interactions 

The null distribution of dS scores was generated by using replicate pairs of measurements 

grown on the same plate (and therefore same condition) and following the same scoring 

procedure already described. The differentials for the three replicates in each condition 

were pooled to produce six total replicates for each gene pair. We computed false discovery 

rates for each dS score cutoff as the ratio of the proportion of null scores beyond the cutoff 

to the proportion of observed dS scores beyond the cutoff.   

Biological enrichment  

The “bronze” standard for differential genetic interactions in response to DNA damage was 

compiled as (1) the set of all gene pairs in which both genes are annotated as “DNA damage 

response” (DDR) in the Gene Ontology [27] (term ID GO:0006974, direct association; 

accessed December 2011), and (2) the set of all gene pairs indicated by the YeastNet 2.0 
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benchmark set [28] in which at least one gene is annotated as DDR. The lists of DDR genes 

and bronze-standard DDR gene pairs are provided as Additional file 4. 

The gold standard used for co-complex membership is defined by Baryshnikova et al. [29]. 

Precision-recall plots were computed using the absolute value of the dS scores (treating 

positive and negative interactions equally).  

Significance of Pearson correlation 

To assess the significance of the difference between the correlation coefficients of the 

scores in Figure 3, we calculated the correlation of bootstrapped data for 10,000 iterations 

in a paired fashion and counted the number of cases in which the correlation of B scores 

was greater than the correlation of the dS scores.  

Determining associations similar to SWI4-HIR 

To identify gene associations similar to SWI4 and HIR, where the differential similarity is 

high and the static similarity is low, we used the cutoffs of >0.35 and <0.15 for differential 

and static similarity scores, respectively.  

List of abbreviations 

DDR – DNA-damage response  

SGA – Synthetic Genetic Array 



 18

Competing interests 

The authors declare that they have no competing interests. 

Authors’ contributions 

GB developed the statistical model and performed the validation and discovery. Both 

authors read and approved the final manuscript. 

Acknowledgements 

The authors thank Rohith Srivas, Koyel Mitra, and Philip Jaeger for providing insight and 

advice. This work was supported by National Institutes of Health grants ES014811 and 

GM084279 to TI and 5T32GM008666-13 to Bruce Hamilton. 

References 

1. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, 

Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, 

Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z-Y, Liang W, Marback 

M, Paw J, San Luis B-J, Shuteriqi E, Tong AHY, van Dyk N, et al.: The genetic landscape of a 

cell. Science (New York, N.Y.) 2010, 327:425–3110.1126/science.1180823. 

2. Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, 

Collins SR, van Wageningen S, Kemmeren P, Holstege FCP, Weissman JS, Keogh M-C, Koller 

D, Shokat KM, Krogan NJ: Functional organization of the S. cerevisiae phosphorylation 

network. Cell 2009, 136:952–6310.1016/j.cell.2008.12.039. 

3. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, 

Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ: Exploration of the function 

and organization of the yeast early secretory pathway through an epistatic miniarray 

profile. Cell 2005, 123:507–1910.1016/j.cell.2005.08.031. 



 19

4. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, 

Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger 

SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, 

Greenblatt JF, Krogan NJ: Functional dissection of protein complexes involved in yeast 

chromosome biology using a genetic interaction map. Nature 2007, 446:806–

1010.1038/nature05649. 

5. Zheng J, Benschop JJ, Shales M, Kemmeren P, Greenblatt J, Cagney G, Holstege F, Li H, 

Krogan NJ: Epistatic relationships reveal the functional organization of yeast 

transcription factors. Molecular systems biology 2010, 6:42010.1038/msb.2010.77. 

6. Bandyopadhyay S, Mehta M, Kuo D, Sung M-K, Chuang R, Jaehnig EJ, Bodenmiller B, Licon 

K, Copeland W, Shales M, Fiedler D, Dutkowski J, Guénolé A, van Attikum H, Shokat KM, 

Kolodner RD, Huh W-K, Aebersold R, Keogh M-C, Krogan NJ, Ideker T: Rewiring of genetic 

networks in response to DNA damage. Science (New York, N.Y.) 2010, 330:1385–

910.1126/science.1195618. 

7. Guénolé A, Srivas R, Vreeken K, Wang S, Krogan NJ, Ideker T, van Attikum H: Dissection 

of DNA Damage Response Pathways using a Multi-Conditional Genetic Interaction 

Map. Molecular Cell 2012. Published online December 27, 2012.. 

8. Ideker T, Krogan NJ: Differential network biology. Molecular Systems Biology 2012, 

8:1–910.1038/msb.2011.99. 

9. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, 

Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, 

Wrana JL: High-throughput mapping of a dynamic signaling network in mammalian 

cells. Science (New York, N.Y.) 2005, 307:1621–510.1126/science.1105776. 

10. Workman CT, Mak HC, McCuine S, Tagne J-B, Agarwal M, Ozier O, Begley TJ, Samson LD, 

Ideker T: A systems approach to mapping DNA damage response pathways. Science 

(New York, N.Y.) 2006, 312:1054–910.1126/science.1122088. 

11. Bisson N, James DA, Ivosev G, Tate S a, Bonner R, Taylor L, Pawson T: Selected reaction 

monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 

adaptor. Nature biotechnology 2011, 29:653–810.1038/nbt.1905. 

12. Patterson T a, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu T-M, Bao W, Fang H, 

Kawasaki ES, Hager J, Tikhonova IR, Walker SJ, Zhang L, Hurban P, de Longueville F, Fuscoe 

JC, Tong W, Shi L, Wolfinger RD: Performance comparison of one-color and two-color 

platforms within the MicroArray Quality Control (MAQC) project. Nature biotechnology 

2006, 24:1140–5010.1038/nbt1242. 

13. Cui X, Churchill G a: Statistical tests for differential expression in cDNA microarray 

experiments. Genome biology 2003, 4:210. 

14. Cui X, Hwang JTG, Qiu J, Blades NJ, Churchill G a: Improved statistical tests for 

differential gene expression by shrinking variance components estimates. 

Biostatistics (Oxford, England) 2005, 6:59–7510.1093/biostatistics/kxh018. 



 20

15. Smyth GK: Linear models and empirical bayes methods for assessing differential 

expression in microarray experiments. Statistical applications in genetics and molecular 

biology 2004, 3:Article310.2202/1544-6115.1027. 

16. Tong a H, Evangelista M, Parsons a B, Xu H, Bader GD, Pagé N, Robinson M, 

Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C: Systematic genetic 

analysis with ordered arrays of yeast deletion mutants. Science (New York, N.Y.) 2001, 

294:2364–810.1126/science.1065810. 

17. Collins SR, Schuldiner M, Krogan NJ, Weissman JS: A strategy for extracting and 

analyzing large-scale quantitative epistatic interaction data. Genome biology 2006, 

7:R6310.1186/gb-2006-7-7-r63. 

18. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the 

ionizing radiation response. Proceedings of the National Academy of Sciences of the United 

States of America 2001, 98:5116–2110.1073/pnas.091062498. 

19. Baldi P, Long AD: A Bayesian framework for the analysis of microarray expression 

data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001, 

17:509–519. 

20. Murie C, Woody O, Lee AY, Nadon R: Comparison of small n statistical tests of 

differential expression applied to microarrays. BMC bioinformatics 2009, 

10:4510.1186/1471-2105-10-45. 

21. Sidorova J, Breeden L: Analysis of the SWI4 / SWI6 Protein Complex , Which Directs 

G1 / S-Specific Transcription in Saccharomyces cerevisiae. 1993, 

1310.1128/MCB.13.2.1069.Updated. 

22. Ho Y, Mason S, Kobayashi R, Hoekstra M, Andrews B: Role of the casein kinase I 

isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the 

transcriptional response to DNA damage in Saccharomyces cerevisiae. Proceedings of 

the National Academy of Sciences of the United States of America 1997, 94:581–6. 

23. Spector M, Raff A, DeSilva H: Hir1p and Hir2p function as transcriptional 

corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae 

cell cycle. Molecular and cellular 1997, . 

24. Sharp J a, Rizki G, Kaufman PD: Regulation of histone deposition proteins Asf1/Hir1 

by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. Genetics 

2005, 171:885–9910.1534/genetics.105.044719. 

25. Kato M, Hata N, Banerjee N, Futcher B, Zhang MQ: Identifying combinatorial 

regulation of transcription factors and binding motifs. Genome biology 2004, 

5:R5610.1186/gb-2004-5-8-r56. 

26. Eriksson PR, Ganguli D, Clark DJ: Spt10 and Swi4 control the timing of histone 

H2A/H2B gene activation in budding yeast. Molecular and cellular biology 2011, 

31:557–7210.1128/MCB.00909-10. 

27. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, 

Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, 



 21

Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification 

of biology. The Gene Ontology Consortium. Nature genetics 2000, 25:25–

910.1038/75556. 

28. Lee I, Li Z, Marcotte EM: An improved, bias-reduced probabilistic functional gene 

network of baker’s yeast, Saccharomyces cerevisiae. PloS one 2007, 

2:e98810.1371/journal.pone.0000988. 

29. Baryshnikova A, Costanzo M, Kim Y, Ding H, Koh J, Toufighi K, Youn J-Y, Ou J, San Luis B-

J, Bandyopadhyay S, Hibbs M, Hess D, Gingras A-C, Bader GD, Troyanskaya OG, Brown GW, 

Andrews B, Boone C, Myers CL: Quantitative analysis of fitness and genetic interactions 

in yeast on a genome scale. Nature methods 2010, 7:1017–2410.1038/nmeth.1534. 

30. Pu S, Wong J, Turner B, Cho E, Wodak SJ: Up-to-date catalogues of yeast protein 

complexes. Nucleic acids research 2009, 37:825–3110.1093/nar/gkn1005. 

31. Srivas R, Hannum G, Ruscheinski J, Ono K, Wang P-L, Smoot M, Ideker T: Assembling 

global maps of cellular function through integrative analysis of physical and genetic 

networks. Nature protocols 2011, 6:1308–2310.1038/nprot.2011.368. 

32. Bandyopadhyay S, Kelley R, Krogan NJ, Ideker T: Functional maps of protein 

complexes from quantitative genetic interaction data. PLoS computational biology 

2008, 4:e100006510.1371/journal.pcbi.1000065. 

33. Boone C, Bussey H, Andrews BJ: Exploring genetic interactions and networks with 

yeast. Nature reviews. Genetics 2007, 8:437–4910.1038/nrg2085. 

34. Parzen E: On estimation of a probability density function and mode. The annals of 

mathematical statistics 1962.  

 



 22

Additional files 

The following additional data are available with the online version of this paper. Additional 

file 1 is the MATLAB implementation of our method. Additional file 2 is a table of the dS, S, 

and profile similarity scores for the data from Bandyopadhyay et al. [6]. Additional file 3 is 

a PDF containing our additional notes and figures. Additional file 4 is a table indicating the 

gene pairs used as the DNA damage response bronze standard in our study.  

Figure legends 

Figure 1 – The paired experimental pipeline. (a) The pipeline for generating differential 

genetic interactions is the same as for static genetic interactions except for a split onto 

treated and untreated plates in the last step. (b) Normalized colony size profiles for the 

same experimental replicate across the two conditions (blue) have the greatest Pearson 

correlation, as compared to the profiles of two experimental replicates of the same 

condition (green) or the profiles of different queries (red). 

 

Figure 2 – Theoretical and observed differential variances. Bar plot of the observed 

static, expected differential (assuming independence), and observed differential variances 

of normalized colony size residuals. The median values across all double mutants are 

shown. 
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Figure 3 – Differential profile similarity between SWI4 and HIR. (a) Bar plot showing 

the Pearson correlation of HIR1/2/3 profiles with SWI4 for untreated, MMS, and 

differential (dS) scores. (b) Heatmaps of the untreated, MMS, and differential interaction 

profiles of SWI4 and HIR1; the bottom panel illustrates the interactions with greatest 

similarity between SWI4 and HIR1. 

 

Figure 4 – False discovery rate and reproducibility the dS score. (a) Plot of the false 

discovery rate of the dS score as a function of score magnitude. (b-c) Scatter of differential 

scores calculated on independent replicate subsets using (b) the B scores and (c) the dS 

score; the points shown in either panel are only those scored by both analyses. (d) Plot 

comparing the Pearson correlation of significant interactions for the B and dS scores (blue 

and green, respectively) over a full range of significance thresholds – i.e. the correlation of 

the top n percent of the interactions for n = 0.1% (left side) to n = 100% (right side); error 

bars indicate the 95% confidence intervals of the correlation coefficient.  

 

Figure 5 – Performance of dS score and differential profile similarity. (a-d) Precision-

recall plots comparing the biological enrichment of B and dS scores and their 

corresponding profile similarity scores for DDR interactions (a,c) and co-complex 

interactions (b,d) using the data from Bandyopadhyay et al. (a,b) and Guénolé et al. (c,d). 

Table 1 – Sources of noise and their effect on interaction scores. 

Source of noise 
Noise affects score? 

Static score dS score 



 24

Double/single mutant ratio, pre-DM selection �  

Double/single mutant ratio, DM selection � � 

Uneven agar surface, pre-DM selection �  

Uneven agar surface, DM selection � � 

Variation in environment, pre-DM selection �  

Variation in environment, DM selection � � 
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Additional files provided with this submission:

Additional file 1: compute_differential_scores.m, 6K
http://genomebiology.com/imedia/1041515811879424/supp1.m
Additional file 2: supplemental_table_all_scores.txt, 7230K
http://genomebiology.com/imedia/2631863758794247/supp2.txt
Additional file 3: Additional File 3.pdf, 2575K
http://genomebiology.com/imedia/1544935531879425/supp3.pdf
Additional file 4: supplemental_table_DDR_bronze_standard.txt, 31K
http://genomebiology.com/imedia/1318016018879426/supp4.txt
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