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SUMMARY

We present an accessible, fast, and customizable network propagation system for pathway boosting

and interpretation of genome-wide association studies. This system—NAGA (Network Assisted

Genomic Association)—taps the NDEx biological network resource to gain access to thousands of

protein networks and select those most relevant and performative for a specific association study.

The method works efficiently, completing genome-wide analysis in under 5 minutes on a modern

laptop computer. We show that NAGA recovers many known disease genes from analysis of schizo-

phrenia genetic data, and it substantially boosts associations with previously unappreciated genes

such as amyloid beta precursor. On this and seven other gene-disease association tasks, NAGA out-

performs conventional approaches in recovery of known disease genes and replicability of results.

Protein interactions associatedwith disease are visualized and annotated in Cytoscape, which, in addi-

tion to standard programmatic interfaces, allows for downstream analysis.

INTRODUCTION

While genome-wide association studies (GWAS) have linked many genetic variants to complex diseases,

the variants mapped thus far account for only a small fraction of the total genetic variation affecting any

given disease phenotype (Sullivan et al., 2018). A common challenge with these studies is that they typically

test millions of single nucleotide polymorphisms (SNPs) for disease association, making it difficult to distin-

guish the causal loci from the background statistical noise of other variants. This situation leads to the use

of very stringent significance thresholds to identify associated variants (e.g., p value < 5 3 10�8), with the

consequence that all but the strongest findings may be missed (Lander and Kruglyak, 1995).

One recent approach to address this challenge has been to extend the independent analysis of individual

variants to more complex models (Visscher et al., 2017), such as polygenic risk scores (PRS), which combine

multiple variants in a linear model to predict phenotype (International Schizophrenia Consortium et al.,

2009; Wray et al., 2014). However, even these more expansive views do not account for the many non-linear

interactions among variants, and these approaches do not attempt to explain how the variants that

contribute to the PRS are related to disease mechanisms.

Integration of GWAS studies with protein-protein interactions (PPIs) and other types of molecular networks

has recently gained attention as an approach to help overcome the lack of statistical power in the detection

of gene-disease associations (Jia and Zhao, 2014). In this regard, many previous approaches have been

described for using networks to support GWAS results. An early method was dense-module GWAS (Jia

et al., 2011), which scores each protein in a PPI network according to the significance of SNP associations

near its encoding gene. Densely connected subnetworks are then identified that locally maximize the pro-

portion of significantly associated proteins. Genome-Wide Association Boosting (GWAB) (Greene et al.,

2015; Lee et al., 2011) first construct tissue-specific networks from expression and interaction data, where

interactions are weighted based on a tissue-specific Bayesian method. These weights are then used as fea-

tures of an Support Vector Machine classifier for which the positive class is defined as those genes having

genome-wide significant association to a disease. Network-wide Association Studies (NetWAS) (Shim

et al., 2017) aims to detect disease-associated genes that have less than genome-wide significance scores

according to their proximity to other significant genes in the network using a naive Bayes guilt-by-associ-

ation approach. Conflux (Mezlini and Goldenberg, 2017) integrates network information as part of a prob-

abilistic graphical model, intended to mitigate noise in the network structure, and then uses a Bayesian

framework that allows for setting of disease association probability scores for all genes instead of identi-

fying a fixed set of disease-associated genes. Notably, Conflux uses the variants of individual patients
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directly, rather than the cohort summary statistics (i.e., p values of association) used by most other

approaches.

While these network approaches to GWAS have important differences from an algorithmic standpoint, pre-

vious work has shown that the input gene networks also have an important influence on performance

(Huang et al., 2018). Unfortunately, many of the previous approaches are dependent on a particular

network that is hard-coded, confounding attempts to perform a head-to-head comparison isolating the

network GWAS algorithms. Moreover, as new and better molecular network resources are becoming avail-

able all the time, one key aspect of any future network GWAS pipeline is its generality with respect to the

choice of network. In this respect, the Network Data Exchange (NDEx) database (Pratt et al., 2015) has

recently been established for dissemination and exchange of biological networks on the cloud, creating

a useful repository of networks for GWAS applications.

Given this state of the field, we set out to address two key requirements that we saw as necessary to facilitate

widespread access to networkmethods by theGWAS community. First, there was a need for an unbiased eval-

uation framework to identify the best algorithms for network-based GWAS. This first need is, at least in part,

addressed by a companion article to this one (Fong et al., 2019). Second, we considered that a simple, light-

weight, and performative implementation of network GWAS, compatible with up- and downstream steps in

the canonical GWAS pipeline and with easily swappable network choices, should be made available.

Here, we describe an attempt to meet this second need with a software package called Network Assisted

Genomic Association (NAGA). NAGA is based on the method of network propagation, which has emerged

as a robust and widely used network analysis technique in many bioinformatics applications (Cowen et al.,

2017). Insofar as disease variants converge on common sets of interacting genes in a molecular network

(also known as pathways), application of network propagation to GWAS distributes the effects of variants

at each genomic locus to network neighbors. For variants affecting the same network region, the result is

variant aggregation and amplification of signal.

RESULTS

Overview

The NAGA approach involves a straightforward multistep procedure (Figure 1). Our method starts with

summary p values assigned by PLINK (Chang et al., 2015), SNPTEST (Marchini et al., 2007), or another stan-

dard GWAS analysis approach. The first step is to assign each gene a score corresponding to the p value of

themost significantly associated SNPwithin a genomic window. Second, amolecular network is then down-

loaded from the NDEx database and integrated with these gene scores. Third, the technique of network

propagation is performed to spread the gene scores to network neighbors, resulting in revised scores

that are used to prioritize all genes in a final ranked list. Finally, this ranked gene list may be validated

and explored using a variety of means, including comparison to a gold-standard set of genes to establish

that NAGA has enriched for biological processes of interest. Another endpoint is to create subnetwork(s)

implicated by the prioritized variants, which can then be published to NDEx for sharing and publication.

The full NAGA pipeline is available as a Jupyter notebook and is also available via REST API. Source

code and information on API access can be found at https://github.com/shfong/naga. Details of each

step of the procedure are in Transparent Methods.

Evaluation

We evaluated the performance of NAGA and two other network-based methods, NetWAS (Greene et al.,

2015) and GWAB (Shim et al., 2017), in analysis of a schizophrenia GWAS dataset (Schizophrenia Psychiatric

Genome-Wide Association Study (GWAS) Consortium, 2011) with 9,394 cases and 12,462 controls. This

original study found seven loci that reached global significance. Performance was evaluated using a

hypergeometric test of the top 100 genes returned by each method against a literature meta-analysis schizo-

phrenia gene set, made up of 1,147 genes published before publication of the GWAS (Allen et al., 2008). The

hypergeometric test evaluates whether the overlap between the top 100 returned genes and the literature

gene set is significant. The performance scores and runtimes of NAGA using three different human

genome-scale networks—PCNet, HumanNet v2 (Hwang et al., 2019) (used by the GWAB method), and

GIANT (Shim et al., 2017) (used by the NetWAS method, non-tissue specific)—were compared with GWAB

and NetWAS (Figure 2). NAGA applied to all networks significantly enriched for the schizophrenia gold-stan-

dard set of genes. NAGA using PCNet performed best of all approaches, recovering 33 gold-standard genes
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in its top 100 (hypergeometric p value < 10�27). Expressed as an area under the receiver-operator curve

(AUROC), NAGA achieved an AUROC of 0.72 (Figure 2A). The baseline method, where we simply mapped

p values to genes and ranked genes according to their maximally significant variant, did not find a significant

enrichment over background among its top 100 calls and achieved an AUROCof 0.54. The topGIANT network

and the NetWAS method also significantly enriched for literature-curated genes among their top 100.

To investigate whether the above results were specific to a single schizophrenia GWAS or whether they

were applicable to GWAS in general, we repeated the above workflow with seven additional GWAS

made available by the Wellcome Trust Case Control Consortium (2007) (Figures 2B–2H) for bipolar

Figure 1. NAGA Workflow

Red steps are upstream of the method; blue steps are provided by the NAGA python package.
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disorder, type 1 diabetes, type 2 diabetes, hypertension, coronary artery disease, Crohn disease, and rheu-

matoid arthritis. For the reference gene sets, we used the corresponding gene sets from DisGeneNET

(Piñero et al., 2017), which integrates expert-curated and text-mined disease associations. We found

that in all eight GWAS (including the schizophrenia study above), NAGA yielded the best results out of

the three network approaches by AUROC. In addition, in seven of the eight, the default setup using PCNet

was the best performer, and in the other case (type 2 diabetes) NAGA using the HumanNet won out.

We found that the NAGA method runs relatively quickly, likely related to its algorithmic simplicity. Config-

ured with PCNet and used to analyze the schizophrenia cohort, NAGA completed in less than 5 minutes on

a mid-2015 Macbook Pro with 16-GB RAM (Figure 2I). This performance was very favorable when compared

with those of NetWAS and GWAB, which required 1 and 2.4 h, respectively (Figure 2I). As one caveat of this

analysis, code was not publicly available for the other tools, thus their runtimes were based on web-acces-

sible versions. For this reason, runtime estimates may contain significant computational overhead such as

waiting in queues and data transfer to and from the servers. In addition, these methods build a model that

must be evaluated for each gene separately, whereas the NAGA calculation can be performed for all genes

simultaneously. Thus NAGA can complete a network GWAS analysis in a few minutes on a modern laptop.

To closely examine an example gene association boosted substantially by network analysis, we delved

deeper into the schizophrenia result, looking at the top 100 genes returned by the pipeline (Figure 3A).

We visualized the APP gene locus, which was the second-ranked gene in our analysis, using Integrated

Genomics Viewer (Robinson et al., 2011) (Figure 3B). Although SNPs at the APP locus were nominally

significant (min p value within 10 kb = 9.56310�6), none made the genome-wide significance cutoff. We

examined regions of PCNet impacted by the top 100 results using the ModuLand network clustering

App in Cytoscape (Szalay-Beko et al., 2012) (Figure 3C). One of the network clusters contained APP along

with several previously implicated schizophrenia genes. Owing to the nominal association of several APP

network neighbors (MAPK1, ARRB1, YWHAE, HSP90AB1), APP itself was implicated despite not reaching

Figure 2. AUROC Results against Gold-Standard Disease Genes

Area under the receiver-operator curve (AUROC) for three different network GWAS methods, using the gene network shown in parentheses for (A)

Schizophrenia, (B) Bipolar Disorder, (C) Type 1 Diabetes, (D) Type 2 Diabetes, (E) Hypertension, (F) Coronary Artery Disease, (G) Crohn’s Disease, and (H)

Rheumatoid Arthritis.

(I) Runtime for the methods.

158 iScience 16, 155–161, June 28, 2019



genome-wide statistical association originally. Notably, APP has been implicated in a number of neural dis-

orders, including Alzheimer disease and intellectual disability (Myrum et al., 2017).

DISCUSSION

We have demonstrated a fast and flexible solution for network-based GWAS. The direct connection with the

NDEx and Cytoscape platforms allows new molecular networks to be used in the pipeline as soon as they are

published to the resource, lowering the barrier to translating new network results into genome interpretation.

Although other network query services such as GeneMANIA (Mostafavi et al., 2008) and STRING (Szklarczyk

et al., 2016) have existed for some time, our system is especially suited for GWAS analysis. Specifically, we

address the question of SNP-to-gene mapping and scoring in addition to network propagation and allow

for different genomes and networks. Although GeneMANIA also provides for custom network uploads, it

neither provides for continuous value query scores such as the log-10 transform we use in this work nor

returns continuous output values for the whole genome allowing for the area under the curve calculation

that was used for evaluation here. In our companion article (Fong et al., 2019), we show that the use of

continuous scores is advantageous in the schizophrenia example. Also in the companion article, we

evaluated several different approaches to network-boosted GWAS, including different scoring schemes,

propagation algorithms (including heat diffusion), and network settings.

Figure 3. Application of NAGA to Schizophrenia

(A) Top 100 prioritized genes after network propagation of a schizophrenia GWAS dataset. Genes in the gold standard are represented by turquoise bars,

whereas newly implicated genes are represented by red bars.

(B) Subnetwork associated with hottest network propagation scores. Subnetwork is visualized with the initial association scores mapped to node colors, with

darker red corresponding to stronger association. Previously implicated schizophrenia genes appear as squares, and newly implicated genes appear as circles.

(C) Integrated Genomics Viewer (IGV) screenshot showing the genomic locus of APP, the second highest scoring gene from (A). IGV displays the log 10 p-

value of association. APP contains SNPs that, before network propagation, achieve nominal but not global statistical significance of association.
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Limitations of Study

Given its conceptual and mathematical simplicity, the success of network propagation in the setting of

network GWAS is striking and provides a point of departure for further bioinformatics methods develop-

ment in this area. Conflux, which uses a more complex Bayesian graphical model, shows positive results

when compared with network propagation on simulated networks, and on small real networks with simu-

lated data (Mezlini and Goldenberg, 2017). However, in addition to hard-coding a preferred network,

Conflux currently only operates on small networks because of the computational overhead of the Bayesian

model. Conflux has another feature that both adds power, on the one hand, and limits its broad application

on the other; it uses patient-level variant data rather than summary statistics for its calculations (such as the

log p value used here, or the effect size of chi-square tests of association). This feature is clearly advanta-

geous, as it allows statistical interactions to contribute to the association of sets of genes to a phenotype;

more efficient methods along these lines will be welcome in future studies.

Along these lines, we see room for many creative approaches in network analysis of variants at the patient

level. For instance, one might first apply network propagation on the whole gene network to implicate

smaller subnetworks and then use a patient-level method like Conflux to train the final model on that

smaller subnetwork. This approach would rely on flexibility in the choice of networks, because each new

cohort would generate a new implicated subnetwork.

It shouldbe noted that theprocedure formapping association scores to genes is an important factor in network

GWAS techniques that we have not extensively explored here. For instance, PEGASUS finds an analytical

model for the expected chi-square statistics because of correlation from linkage disequilibrium, which worked

well with the network propagation algorithm HotNet2 (Leiserson et al., 2015; Nakka et al., 2016). Transcrip-

tome-wide association studies (Gusev et al., 2016) explicitly model expression quantitative trait loci and derives

an association score between the gene’s inferred expression and the phenotype. The results of these other

mapping methods can also be used instead of the simple method based on gene distance explored here.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND SOFTWARE AVAILABILITY

Source code and information on API access can be found at https://github.com/shfong/naga.

NAGA can be run from a web service, found at http://nbgwas.ucsd.edu/.

The networks used in this paper can be found on the NDEx database:

PCnet: http://www.ndexbio.org/#/network/f93f402c-86d4-11e7-a10d-0ac135e8bacf.

GIANT: http://www.ndexbio.org/#/network/08ba2a31-86da-11e7-a10d-0ac135e8bacf.

HmanNet: http://www.ndexbio.org/#/network/18dc9109-86da-11e7-a10d-0ac135e8bacf.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.05.025.
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Guttman, M., Lander, E.S., Getz, G., and Mesirov,
J.P. (2011). Integrative genomics viewer. Nat.
Biotechnol. 29, 24–26.

Schizophrenia Psychiatric Genome-Wide
Association Study (GWAS) Consortium (2011).
Genome-wide association study identifies five
new schizophrenia loci. Nat. Genet. 43, 969–976.

Shim, J.E., Bang, C., Yang, S., Lee, T., Hwang, S.,
Kim, C.Y., Singh-Blom, U.M., Marcotte, E.M., and
Lee, I. (2017). GWAB: a web server for the
network-based boosting of human genome-wide
association data. Nucleic Acids Res. 45, W154–
W161.

Sullivan, P.F., Agrawal, A., Bulik, C.M.,
Andreassen, O.A., Børglum, A.D., Breen, G.,
Cichon, S., Edenberg, H.J., Faraone, S.V.,
Gelernter, J., et al. (2018). Psychiatric genomics:
an update and an Agenda. Am. J. Psychiatry 175,
15–27.

Szalay-Beko, M., Palotai, R., Szappanos, B.,
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Transparent Methods 
 
Key Resources Table 
 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data   

Psychiatric Genomics 
Consortium (PGC) 

Schizophrenia Psychiatric 
Genome-Wide Association 
Study (GWAS) Consortium 
(2011) 

https://www.med.unc.edu/pg
c/results-and-downloads 

WTCC1 Wellcome Trust Case 
Control Consortium (2007) 

https://www.wtccc.org.uk/ 

Software and Algorithms   

NAGA This paper https://github.com/shfong/na
ga 

Cytoscape Shannon et al. 2003 https://cytoscape.org/ 

IGV Robinson et al. 2011 http://software.broadinstitute
.org/software/igv/ 

 
 
Method Details 
 
Assigning gene association scores. The approach begins with GWAS summary statistics 
(e.g. chi-squared p-values of association with the phenotype) on SNPs or other types of variants 
in the genome. We then define regions of SNPs for assignment of p-values to coding genes. 
Specifically, for each gene we define a region including the gene body and a specified number 
of kilobases up- and downstream of the gene and assign the smallest p-value in that region. 
Herein we use a window of ±10 kb, although the window size is customizable. We then take the 
largest −log(p-value) assigned to the gene as the gene score. Choosing the minimum p-value 
within a 10 kb window is the same mapping strategy employed by GWAB (Lee et al., 2011). 
 
We found that overall performance of NAGA was robust to window size (Supplementary 
Figure S1); this conclusion was based on experiments conducted using the Wellcome Trust 
GWAS data (Wellcome Trust Case Control Consortium, 2007) to recover gold standard gene 
sets cataloged by the DisGeNET project (Piñero et al., 2017). In these experiments, we looked 
for enrichment of disease-associated genes from DisGeNET among the genes with significant p 
<10#$. On the Wellcome Alzheimer's data, we also compared genes ranked by network GWAS 
to a differentially expressed gene set for the same disease (Castillo et al., 2017). While different 
datasets yielded different best window sizes, we found that 10 kb was a reasonable default 
choice resulting in near-optimal precision and recall for the majority of diseases.  
 
Network Selection. For the default network, we chose PCNet since this network has been 
shown to perform well at diverse network propagation tasks (Huang et al., 2018). PCNet 



contains 19,781 genes connected by approximately 2.7 million edges. However, any network 
available in the NDEx database is easily accessible by specifying the UUID of the network on 
the public server (http://www.ndexbio.org). These UUIDs are available by going to the NDEx 
public server and searching for the desired network. Alternatively, users can upload their own 
networks to NDEX, in which case the UUID is assigned on upload. Nearly all public networks, 
including STRING (Szklarczyk et al., 2016) and GIANT (Greene et al., 2015), are available in 
NDEx. Instead of pinning the analysis to a single network, or a series of networks formed by the 
same method, users have easy access to thousands of diverse networks for analysis.  Similarly, 
the users have the option to upload results as annotated networks to NDEx and share the 
results with collaborators.  
 
Network Propagation. Gene scores were propagated across a molecular network to diffuse the 
effect of these mutations to the surrounding network neighborhood. Genes that are near query 
nodes are implicated by association. For a review of the many flavors and applications of 
network propagation, see (Cowen et al. 2017). Of the several variations, here we use the 
random walk with restart model (Vanunu et al. 2010). This variant has been shown to work well 
in analyzing GWAS and cancer variants in the past (Hofree et al., 2013; Huang et al., 2018). Its 
central equation is: 
 

𝐹(𝑡 + 1) = (1 − 𝛼) ∗ 𝐹(𝑡)𝐴 + 𝛼 ∗ 𝐹(0) 
 
This model accepts a propagation constant (α), the gene mutation profiles for a phenotype 
(F(0)), and a degree-normalized adjacency matrix representing the network (A). Thus at every 
time step, there is some (equal) probability of walking to the network neighbors, and also some 
probability (given by α) of resetting to the original gene score profile described above. When 
propagated to convergence as t→∞, this model yields a propagated profile of genes (F) 
summarizing the overall effect of gene mutations across the network. α is set by  a linear model 
determined by network density (Huang et al., 2018). By reranking genes according to this final 
heat, we obtain a new reprioritized list of genes based on significant associations present in the 
network neighborhoods. 
   
Visualization and further analysis of subnetwork results. One of the goals of NAGA is to 
present a general and flexible pipeline, so that users can leverage existing network resources 
and utilities. In addition to sourcing networks from NDEx (Pratt et al. 2015) as described above, 
NAGA leverages Cytoscape (Shannon et al. 2003) for exploring network results (Figure 1). We 
have hooked the NAGA pipeline into Cytoscape using CyRest (Ono et al. 2015), allowing users 
to interact with the molecular subnetworks that underpin the results. In addition to the 
interactivity of Cytoscape, users can also invoke hundreds of popular apps in Cytoscape to 
annotate, visualize, cluster and interpret the network. 
 
Variations. We have found a second gene score transform that also performs  well in different 
contexts; this second approach simply binarizes the significant gene hits according to an 
adjustable cutoff. For this setting we use a default setting of 5×10-6. Genes that are more 
significant than this cutoff are “query genes” assigned an initial value, which defaults to 1, while 
all other genes in the genome are assigned a 0. We have also implemented heat diffusion as a 
second algorithmic option. Heat diffusion is similar to random walk, but instead of having a 
probability of reseting and running to steady state, as is the case in random walk with restart, 
heat diffusion performs the random walk for a certain amount of time without restart. The user 
can define the time interval, which defaults to 0.1 based on previous work, to diffuse query 
genes (Carlin et al. 2017). 
 



 
 

 
Supplemental Figure 1, Related to Figure 2. Enrichment for DisGenNET gene sets in 
Wellcome GWAS associations for different choices of genomic window size around 
genes. 
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