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ABSTRACT  Recent studies have characterized the extensive somatic alterations that arise dur-

ing cancer. However, the somatic evolution of a tumor may be signifi cantly affected 

by inherited polymorphisms carried in the germline. Here, we analyze genomic data for 5,954 tumors to 

reveal and systematically validate 412 genetic interactions between germline polymorphisms and major 

somatic events, including tumor formation in specifi c tissues and alteration of specifi c cancer genes. 

Among germline–somatic interactions, we found germline variants in  RBFOX1  that increased incidence of 

 SF3B1  somatic mutation by 8-fold via functional alterations in RNA splicing. Similarly, 19p13.3 variants 

were associated with a 4-fold increased likelihood of somatic mutations in  PTEN.  In support of this associ-

ation, we found that  PTEN  knockdown sensitizes the  MTOR  pathway to high expression of the 19p13.3 

gene  GNA11 . Finally, we observed that stratifying patients by germline polymorphisms exposed distinct 

somatic mutation landscapes, implicating new cancer genes. This study creates a validated resource of 

inherited variants that govern where and how cancer develops, opening avenues for prevention research. 

  SIGNIFICANCE:  This study systematically identifi es germline variants that directly affect tumor evo-

lution, either by dramatically increasing alteration frequency of specifi c cancer genes or by infl uencing 

the site where a tumor develops.  Cancer Discovery; 7(4); 410–23. ©2017 AACR.   

    See related commentary by Geeleher and Huang, p. 354. 
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  INTRODUCTION 
 Cancer is a complex genetic disease infl uenced by both inher-

ited variants in germline DNA and somatic alterations acquired 

during formation of the tumor ( 1, 2 ). Recently, large multicenter 

efforts such as The Cancer Genome Atlas (TCGA; ref.  3 ) and 

the International Cancer Genome Consortium (ICGC; ref.  4 ) 

have performed a series of detailed analyses of the somatic alter-

ations affecting tumor genomes. These studies have focused pri-

marily on identifying recurrent somatic alterations, uncovering 

immense heterogeneity within and between tumors ( 2 ). 

 Prior to tumor genome sequencing, many genes that play a 

role in cancer were discovered through studies of the germline 

( 5 ). Linkage studies in families with inherited, typically child-

hood, cancers identifi ed rare germline mutations in genes 

related to DNA damage repair, RAS signaling, or PIK3 sig-

naling ( 2, 6 ). In contrast to childhood cancers, adult tumors 

have largely been considered “sporadic”; however, mount-

ing evidence points to a potentially substantial infl uence 

from the germline ( 7 ). Studies of homogenous populations 

in Scandinavia identifi ed a genetic component underlying 

common adulthood cancers ( 8, 9 ); more recently, many loci 

have been implicated through genome-wide association stud-

ies (GWAS) of various types of cancer ( 10–13 ). Large-scale 

systematic sequencing of over 4,000 tumors (12 cancer types) 

from TCGA found rare germline truncations in 114 cancer 

susceptibility–associated genes, ranging in frequency from 4% 

(acute myeloid leukemia ) to 19% (ovarian cancer), including 

 BRCA1, BRCA2, FANCM , and  MSH6 , which are associated with 

increased somatic mutation frequencies ( 14 ). 

 Other evidence has emerged that germline variants and 

somatic events can be intricately linked. For example, a recent 

analysis of rare germline variants and somatic mutations in 

ovarian cancer highlighted novel ovarian cancer genes and path-

ways ( 15 ). Recent reports have also associated specifi c haplotypes 

with  JAK2  V617F  mutations in myoproliferative neoplasms ( 16 ) 

and with  EGFR  exon 19 microdeletions in non–small cell lung 

cancer ( 17 ). Germline variation was also found to infl uence gene 

expression in tumors ( 18, 19 ). Together, the variants identifi ed 

thus far are estimated to explain at most 20% of the likely ger-

mline contribution to cancer ( 11 ), suggesting the existence of 

many as-yet-uncharacterized genetic determinants. 

 Here, we integrate germline genotypes with somatic changes 

from TCGA to obtain a pan-cancer view of how common inher-

ited variation can prime the later progression of tumors. We seek 

to identify genetic associations that explain two major classes 

of somatic events: (i) the tissue site where the tumor develops, 

and (ii) which specifi c cancer genes are mutated. This analysis 

identifi es an array of germline polymorphisms that increase or 

decrease the risk for these somatic events, some of which were 

previously known, but most of which are new discoveries.  

  RESULTS 
  Structure of Germline Variation in TCGA 

 We obtained common germline variants and somatic 

tumor mutations for 6,908 patients from the TCGA Research 
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Network ( 20 ). We restricted our analysis to germline variants 

present at minor allele frequencies (MAF) of 1% or higher in 

this patient group, resulting in 706,538 autosomal single-

nucleotide polymorphisms (SNP) organized into ∼1.6 million 

haplotypes ( Fig. 1A ). Both SNPs and haplotypes were stud-

ied, as the two marker types have complementary power to 

detect common and rare disease-associated variants, respec-

tively ( 21–23 ). Examination of patient SNP profi les showed 

evidence of population substructure ( 24 ), even among the 

majority of patients who self-identifi ed as European ances-

try (Supplementary Fig. S1A). Of these patients, we retained 

4,165 who also clustered tightly with Europeans from the 

HapMap III reference population (ref.  25 ; discovery cohort, 

 Fig. 1B ). For later replication of our fi ndings, we used a valida-

tion cohort consisting of 1,789 additional TCGA patients for 

whom full data (tissue type and somatic alterations) became 

available only after the start of our study (Supplementary 

Fig. S1B and S1C).   

  Associations between Germline and 
Tumor Site of Origin 

 We fi rst sought to identify germline markers associated 

with the site at which the tumor develops, i.e., incidence 

of tumors of a particular tissue type. Previous studies have 

focused on individual tumor types in isolation; thus, it 

remains unclear to what extent cancer-associated alleles are 

general versus site specifi c. All tumors of a particular type 

were compared with all other types pooled; separate compari-

sons were performed for each of the 22 TCGA tumor types. 

SNP or haplotype markers were selected as initial candidates 

if their  P  values of association were less than the “sugges-

tive” threshold commonly used in GWAS ( 26 ): 1 × 10 −5  by 

Fisher exact test, corrected for the number of tumor types 

assessed. Different tumor types were collected at different 

times by TCGA; to minimize false-positive associations due to 

such batch effects, we removed markers displaying strong 

association with batch or plate (Supplementary Fig. S2) and 

used genomic control to adjust for infl ated  P  values (Supple-

mentary Fig. S3). In cases in which multiple tumor types were 

each weakly associated with a genotype, these were combined 

for testing for stronger association as a group. All candidate 

associations were then tested in the validation cohort, and 

empirical false discovery rates (FDR) were estimated using 

matched numbers of random associations. By this procedure, 

we identifi ed 916 markers of potential interest, 395 of which 

could be replicated at an empirical FDR < 0.25 ( Fig. 1C  and 

 2A ; Supplementary Table S1). Additional markers at each 

locus were imputed to provide a more complete view of the 

association. Although all TCGA patients have been diagnosed 

with some type of cancer, these germline markers provide pre-

dictive information about where the tumor develops.  

 As an example, markers at locus 8q24.13 were identifi ed for 

their specifi c and signifi cant association with breast cancer 

( P  < 2 × 10 −10 ;  Fig. 2B ), which was reinforced by a second 

fi nding of association with age of breast cancer onset ( Fig. 

2C ). Although this region had not previously been implicated 

in cancer predisposition, it had been reported to harbor 

frequent somatic amplifi cations in breast cancer cell lines 

( 27 ). In addition, breast tumors overexpressing genes in this 

region are associated with shorter time to recurrence ( 28–31 ). 

Among the many other loci associated with tumor type, we 

identifi ed an SNP at 13q14.2 that falls into an intron of the 

tumor suppressor  RB1  and is associated with multiple tumor 

types, and an SNP at 11q22.3, a region encoding the cancer 

genes  DDX10  and  ATM  that is associated with breast cancer 

(Supplementary Table S1). Epigenetic silencing of  DDX10  was 

recently reported in ovarian cancer ( 32 ), and rare germline 

coding variants in  ATM  have previously been reported in fam-

ilial breast cancer ( 33 ). 

 To examine the correspondence of this TCGA analysis with 

previous GWAS of cancer, we analyzed 557 cancer-associated 

SNPs recorded in the National Human Genome Research 

  Figure 1.       Study design and data.  A,  2.3 
million germline markers comprising 700K 
single-nucleotide polymorphisms (SNP) 
and 1.6 million multi-SNP haplotypes were 
tested for association with primary tumor 
type and somatic mutation status of 
138 known cancer genes.  B,  Principal compo-
nent analysis of TCGA European ancestry 
samples with HapMap III was used to evaluate 
population substructure. The fi rst two 
principal components explain 87% of the 
variation in genotype among samples. A 
black box frames the 4,165 samples used 
for the discovery cohort.  C,  Summary of 
association results from the discovery phase 
( P  < 10 −5 ) along with the subset of these 
observed at an FDR < 0.5 in the validation 
phase. Counts are provided for each class of 
somatic event. Markers detected at FDR < 0.5 
or lower are also reported in Supplemen-
tary Tables S1 and S3. SSM, subtle somatic 
mutation; CNV, copy-number variant .    
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  Figure 2.       Germline variants infl uencing primary tumor type.  A,  Ideogram of all loci associated with a single tumor type (blue triangles). Red triangles 
indicate an association with the specifi c somatic alteration of a cancer gene.  B,  Manhattan (LocusZoom) plot ( 78 ) displaying markers at 8q24.13 associ-
ated with incidence of breast cancer. Markers are colored according to linkage disequilibrium ( r  2  values) derived from the 1000 Genomes European samples. 
 C,  Markers at 8q24.13 also associated with age of diagnosis with breast cancer. A/A indicates individuals homozygous for the major allele; A/a and a/a 
indicate individuals with one or more copies of the minor allele.  D,  Quantile–quantile plot showing the observed  P  values of association (vs. random 
expectation) for 557 loci associated with cancer risk in previous studies. The substantial elevation above the diagonal (red) indicates support for many of 
these previous loci in the present TCGA analysis.  E,  Manhattan plot displaying markers at 9q22.23 associated with thyroid carcinoma and genes encoded 
within that region. Colored genes were found to have altered expression in thyroid tumors in the presence of the minor allele.  F,  Mean expression of genes 
highlighted in  E  versus the number of minor alleles. Bars show standard error on mean estimates.    
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Institute (NHGRI) GWAS Catalog ( 26 ). Most of these previous 

SNPs had been identifi ed based on an increase in risk for devel-

oping cancer as compared with nondiseased controls, whereas 

the SNPs identifi ed in our study are based on an increased 

prevalence of tumors of one particular tissue as compared with 

other tissues. Despite this difference, the previously published 

markers of cancer risk had substantial correspondence to the 

markers associated with tumor site, with the strongest signal 

seen for approximately 15 markers ( Fig. 2D ; Supplementary Fig. 

S4A–S4D; Supplementary Table S2). The loci validated by both 

types of study can be prioritized as a set of clearly reproducible 

cancer risk factors that are also specifi c to tissue of origin. 

 Even where the new associations recapitulate a previously 

reported cancer locus, new insights may be gained, as illus-

trated for the thyroid cancer locus 9q22.23 (refs.  34, 35 ;  Fig. 

2E ). SNP rs1867277 at this locus, in the promoter region of 

the  FOXE1  transcription factor, was previously reported to be 

the cause of association; the minor allele was shown to recruit 

the USF1/USF2 transcription factors, resulting in allele-

specifi c  FOXE1  transcription ( 35 ). In TCGA, we observed 

allele-dependent expression of  FOXE1 , but also of three 

nearby genes ( Fig. 2F ):  c9orf156  ( NAP1 ), involved in nucleo-

some assembly with the potential to widely alter gene regu-

lation ( 36 );  TRIM14 , which may regulate the expression of 

multiple cancer genes ( 37 ); and  CORO2A , which derepresses 

expression of Toll-like receptors to initiate the infl ammatory 

response ( 38 ). In TCGA,  FOXE1  expression decreased with 

an increasing number of minor alleles at this locus, whereas 

Landa and colleagues reported increased  FOXE1  expression 

(ref.  35 ;  Fig. 2F ). This discrepancy in  FOXE1  expression levels 

may arise from performing the analysis in patient tumors, 

whereas the previous report was based on experiments in 

cancer cell lines, and in part because risk in this region is 

driven by at least two distinct haplotypes that may affect the 

expression of different genes ( 39, 40 ). Interestingly, targeted 

overexpression of  FOXE1  was not in itself capable of causing 

thyroid cancer in mice ( 41 ), suggesting other genes in this 

region may play a role. Thus, reanalysis of this locus using 

genotype and mRNA expression from the TCGA suggests 

that its role in thyroid cancer may be more complex than 

previously appreciated.  

  Associations between the Germline and 
Somatic Alteration of Specifi c Genes 

 We next sought to identify associations between inherited 

germline variants and the occurrence of somatic mutations 

in particular cancer genes. We hypothesized that germline 

background could generate a context in which a loss- or gain-

of-function event in a particular gene could be advantageous 

to a tumor. As loss- or gain-of-function is commonly achieved 

through DNA mutation or amplifi cation/deletion, we con-

sidered both somatic mutation and somatic copy-number 

changes in our analysis. We used a previously published set of 

138 cancer genes that had been compiled based on a strong 

signal of positive selection for subtle somatic mutations 

(SSM, i.e., point mutations, insertions, or deletions) or copy-

number variants (CNV) in tumors ( 2 ). Such evidence of posi-

tive selection suggests that the alterations affecting these 

genes are likely to be enriched for functional drivers. Indeed, 

genes under positive selection in cancer exhibit a bias toward 

mutations predicted to interfere with protein activity ( 42, 

43 ). Because these genes play a central role in many cancers, 

we expected that germline loci associated with their alter-

ation status in tumors would provide insight into specifi c 

biological contexts that infl uence which cancer genes most 

effectively promote tumor growth and survival. For the most 

frequently mutated genes in this set, such as  TP53,  which 

is altered in approximately 35% of TCGA tumors, we esti-

mated that we had 80% statistical power to detect changes 

in mutation rate of ≥1.8-fold (Supplementary Fig. S5A). For 

genes near the median mutation frequency in this set, such as 

 BRCA1,  which is altered in ∼3% of tumors, we were powered to 

detect changes in mutation rate of ≥3 fold. 

 Association testing identifi ed a total of 62 associations 

between germline markers and specifi c cancer genes, of which 

17 were found to replicate in the validation cohort at an 

empirical FDR < 0.25, and of which 35 were deemed of 

potential interest (empirical FDR < 0.5;  Fig. 1C ; Supplemen-

tary Table S3). These 35 associations covered 28 germline 

loci and 20 cancer genes. Somatic alteration rates for cancer 

genes tended to increase with the number of minor alleles 

at the germline locus, with the largest increases coinciding 

with the least frequent germline alleles ( Fig. 3A–C ). The effect 

sizes were quite large, corresponding to increases in mutation 

frequency of 1.8- to 14.8-fold ( Fig. 3A ), and were well corre-

lated between the discovery and validation cohorts ( r  = 0.43,  

P  < 0.01; Supplementary Fig. S5B). Such large effects linked 

to common SNPs are particularly striking in comparison 

with typical GWAS, where effect sizes tend to fall beneath 

2-fold ( 13 ). For example, a haplotype on 15q22.2 resulted 

in a 13-fold increased chance of acquiring a CNV affecting 

GNAQ.  

 In what follows, we further investigate validated germline–

cancer gene associations at 16p13.3 and 19p13.3 as instruc-

tive examples. At each of these loci, one or more genes encoded 

at the germline locus participate in the same biological path-

way as the somatically mutated cancer gene ( Fig. 3A and C , 

associations labeled in red).  

  Intronic SNP in  RBFOX1  Enables Somatic 
Mutation of  SF3B1  to Affect Splicing 

 In one noteworthy connection between germline and 

somatic gene mutations, we observed a haplotype at 

16p13.3 that was associated with a markedly increased risk 

of somatic mutation in  SF3B1 , encoding a component of the 

U2snRNP spliceosome ( Fig. 4A , a striking >8-fold increase 

in mutation rate under the homozygous minor allele). 

The most strongly associated haplotype encompassed an 

enhancer in the fourth intron of  RBFOX1  ( Fig. 4B ), the 

only gene at this locus. Like  SF3B1, RBFOX1  also encodes 

an RNA-binding protein involved in splicing, which infl u-

ences the inclusion or exclusion of exons in alternatively 

spliced isoforms ( 44 ). This suggested a model whereby the 

germline confi guration of RNA splicing, linked to variation 

in  RBFOX1  expression, modulates the sensitivity of RNA 

splicing to subsequent somatic mutations in the U2 spliceo-

some ( Fig. 4C ).  

 In support of this hypothesis, we fi rst found that the minor 

allele at this locus tends to substantially increase  RBFOX1  

expression, especially in homozygotes ( Fig. 4D , normalized 
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  Figure 3.       Germline interactions with somatic alteration of specifi c cancer genes.  A,  Overview of all potentially interesting (FDR < 0.5; dark gray labels) 
and validated (FDR < 0.25; black labels) associations of this class displayed according to the effect size (increase in alteration rate, y-axis) versus the 
frequency of the germline minor allele (x-axis). We see large effects (from 2–14-fold changes in alteration rate) and an inverse relationship between 
the magnitude of this effect and the MAF. Validated loci associated with  PTEN  mutation and  SF3B1  mutation (red) are highlighted in the main text and 
subsequent fi gures.  B,  A Circos plot ( 80 ) depicting germline–somatic interactions discovered (blue arrows) and replicated in the validation cohort (orange 
arrows for FDR < 0.5 and red arrows for FDR < 0.25).  C,  For each somatically altered gene in  A , the alteration rate is plotted separately for patients with 
each associated genotype (homozygous major allele, AA; heterozygous, Aa; homozygous minor allele, aa) as a function of the MAF. Regression lines show 
the trends for each genotype: homozygous minor allele (red), heterozygous minor allele (orange), and homozygous major allele (blue).    
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  Figure 4.       Potentiating  SF3B1  mutation through 16p13 germline variation.  A,  Increase in  SF3B1  somatic mutation rate with the rs8051518 minor 
allele at 16p13.  B,  Manhattan plot of germline association with  SF3B1  mutation rate across this locus, which encodes the single gene  RBFOX1 .  C,  Current 
model by which RBFOX1 functionally interacts with SF3B1 to regulate RNA splicing.  D,   RBFOX1  increases in mRNA expression in the presence of the 
rs8051518 minor allele. Analysis is across all TCGA tissues, normalizing for mean expression within each tissue type.  E,  The number of differentially 
spliced exon–exon junctions was compared between individuals homozygous for the rs8051518 major allele and those harboring one or more copies of 
the minor allele. The number of differentially spliced junctions in each group was determined by comparing tumors with WT  SF3B1  to tumors with mutant 
 SF3B1 . For correct comparison, individuals with the major allele are subsampled so that this cohort is the same size as that of the minor allele (43 individuals; 
error bar shows ±2σ).    
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across tissue types). Next, we investigated how the germline 

state of  RBFOX1 , somatic mutation of  SF3B1 , or the combi-

nation of both of these factors affected RNA splicing patterns 

in TCGA patients. In patients with the major  RBFOX1  allele, 

 SF3B1  mutation had minimal effect on splicing. In contrast, 

in patients with the minor allele,  SF3B1  mutation led to 

changes in splicing patterns within a number of transcripts 

( Fig. 4E ). Altogether, we identifi ed splice junctions in 12 

genes for which there were signifi cant increases or decreases 

in the fraction of cryptic transcripts, dependent on  SF3B1  

somatic mutation ( Fig. 4E ). Such genes include those driving 

cellular proliferation and metabolism (ribosomal subunits, 

protein turnover) as well as  YBX1 , a regulator of alternative 

splicing. A functional relationship between  RBFOX1  germline 

status and  SF3B1  somatic mutation was also supported by 

statistical modeling, which revealed a signifi cant interaction 

of these two factors in predicting the overall fraction of cryp-

tic transcripts in a patient ( P  < 0.04).  

  19p13.3     Allele Magnifi es Effect of  PTEN  
Alteration on mTOR Signaling 

 A germline haplotype at locus 19p13.3 was associated 

with a substantial increase in somatic mutation rate of the 

 PTEN  tumor suppressor gene, from approximately 5% for the 

homozygous major allele to 22% for heterozygotes ( Fig. 5A ). 

We noted that two genes at this locus,  GNA11  and  STK11 , 

function in the PIK3CA/mTOR signaling pathway in which 

 PTEN  plays a major repressive role ( Fig. 5B ). In particular, 

GNA11 can act as an oncoprotein by activating mTOR signal-

ing ( 45 ), whereas STK11 inhibits mTOR activity downstream 

of PTEN ( 46, 47 ). The convergence of these three proteins on 

the mTOR pathway suggested a model in which the minor 
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allele of 19p13.3 affects mTOR signaling, conferring sensitiv-

ity of this pathway to later somatic mutation of  PTEN .  

 In support of this hypothesis, we observed that mRNA 

expression of  GNA11  was higher in the presence of the minor 

19p13.3 allele in a majority of tumor types examined ( P  < 0.05, 

one-sided Mann–Whitney test with multiple testing correc-

tion;  Fig. 5C ). To investigate the impact of changing  GNA11  

expression, we next placed transcription of  GNA11  under exog-

enous control in HEK293T cells and measured the relationship 

between  GNA11  expression level and mTOR signaling activity. 

Increases in  GNA11  mRNA led to corresponding increases in 

mTOR signaling in wild-type cells; however, this effect was 

greatly magnifi ed by  PTEN  knockdown ( Fig. 5D ). Interestingly, 

we observed that STK11 loss of function (mutation or deletion) 

was signifi cantly more likely in the presence of a GNA11 gain-

of-function event (mutation or amplifi cation; OR: 2.87,  P  < 1 × 

10 −12 , Fisher exact test). Based on this result, we anticipated 

that  STK11  might also interfere with  GNA11  activation of 

  Figure 5.       Potentiating  PTEN  mutation through 19p13 germline variation.  A,  Increase in  PTEN  somatic mutation rate depending on the rs25673 minor 
allele at 19p13. Among the genes encoded at this locus,  GNA11  and  STK11  function in the mTOR signaling pathway with  PTEN .  B,  Current model in which 
mTOR signaling, as measured by phospho-S6 (pS6), is activated by  GNA11  and repressed by  PTEN  and  STK11 .  C,   GNA11  increases in mRNA expression 
in the presence of the minor allele in lung adenocarcinoma, renal clear cell carcinoma, and head and neck squamous cell carcinoma.  D  and  E,  Exogenous 
control of  GNA11  expression regulates mTOR signaling as measured by pS6. The relationship between  GNA11  and pS6 is exposed by either ( D )  PTEN  
knockdown by siRNA or ( E )  STK11  knockout by CRISPR/Cas9.  F,  Increased expression of GNA11 results in increased phosphorylation of STK11 with 
concomitant increase in phosphorylated AMPK.    
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mTOR signaling, because like  PTEN  it serves as a repressor 

of mTOR signaling. Indeed, we observed that the increase in 

mTOR signaling due to  GNA11  was greatly magnifi ed under 

 STK11  knockout ( Fig. 5E ), just as we had observed for  PTEN  

knockdown. Although further work is needed, these fi ndings 

lend support to a model by which alterations at locus 19p13.3 

increase the activity of  GNA11,  which, in turn, increases the 

selective advantage provided by  PTEN- inactivating mutations 

during tumorigenesis. 

 Given this particular sensitivity of GNA11-driven mTOR 

signaling to  STK11  knockout, we hypothesized that GNA11 

may also act upstream of STK11. Indeed, GNA11 expression 

was suffi cient to increase the level of STK11 protein phos-

phorylation with a concomitant increase in phosphorylation 

of AMPK ( Fig. 5F ), a direct target of STK11 ( Fig. 5B ; ref.  48 ). 

These fi ndings suggest that GNA11 increases mTOR func-

tion while indirectly stimulating AMPK-based inhibition of 

mTOR via STK11 ( Fig. 5B , dotted line).  

  Tumor Classifi cation by Germline Identifi es 
New Gene Mutation Landscapes 

 Because we had identifi ed 28 germline loci that increase 

the occurrence of somatic alterations in well-known cancer 

genes, we hypothesized that these same loci might infl uence 

mutation rates of other genes not previously linked to cancer. 

To explore this idea, we used MutSigCV ( 49 ) to identify all 

genes mutated more frequently than expected when grouping 

TCGA patients in the discovery cohort not by tissue, as has 

been performed successfully many times in the past ( 49 ), but 

according to the state of their germline at each of the 28 loci. 

This analysis identifi ed 20 additional genes that had a sig-

nifi cantly higher somatic mutation rate than expected when 

analyzed in a specifi c germline context ( Fig. 6 ). Some genes 

had an elevated mutation rate in the presence of the minor 

allele ( Fig. 6 , purple blocks), whereas others were mutated only 

with the homozygous major allele ( Fig. 6 , green blocks). An 

elevated mutation rate relative to the background expectation 

is a signature of positive selection; thus, this approach has the 

potential to identify genes under positive selection in cancer 

on a particular genetic background.  

 Of the 20 genes identifi ed by MutSigCV, 15 had not previ-

ously been identifi ed as frequently mutated in any TCGA or 

ICGC cancer genome study. Evidence suggests that several of 

these genes could be relevant to carcinogenesis; for instance, 

 CD86  plays a role in the early T-cell response ( 50 ),  TPTE  

encodes a phosphatase with very high sequence similarity 

to the known tumor suppressor  PTEN  ( 51 ), and  DEFB115  is 

often comutated with the protein kinase C isozymes  PRKCG, 

PRKCH,  and  PRKCQ,  which have been implicated as tumor 

suppressors ( 52 ). Thus, mutation analysis based on cohorts 

defi ned by genotype, rather than tissue, can provide a power-

ful strategy to identify novel genes in cancer.   

  DISCUSSION 
 Thus far, most studies of the cancer genome have been 

concerned with understanding the somatic mutations or 

transcriptional changes that arise during tumor progres-

sion. Recently, however, there has been a growing focus on 

the role of inherited variation in adult cancer, with a view 

toward next-generation risk assessment and prevention ( 53 ). 

Here, we have described a genome-wide analysis of germline–

somatic interactions, based on the availability of germline 

genotypes and somatic phenotypes for most TCGA patients. 

We found evidence that genetic background can infl uence 

the somatic evolution of a tumor in at least two ways: in 

determining the site of tumorigenesis and by modifying the 

likelihood of acquiring mutations in specifi c cancer genes. 

The ability to analyze matched genotypes, somatic genome 

alterations, and mRNA expression profi les enabled us not 

only to identify germline–somatic genome linkages but also 

to investigate which genes at a given locus are affected tran-

scriptionally and thus may mediate the effects of germline 

variants. Moreover, by grouping tumor samples according to 

the state of inherited genetic variants, it was possible to dis-

cover recurrent somatic mutations that were not identifi able 

  Figure 6.       Comprehensive screen for genes with 
elevated somatic alteration rates, conditioned 
on germline minor allele status. MutSigCV analy-
sis identifi ed multiple genes with an elevated 
mutation rate in the presence of the minor allele 
at 13 loci that were found to infl uence the somatic 
alteration rate of a known cancer gene. Among 
the genes identifi ed, 15 had not previously been 
identifi ed as frequently mutated genes in cancer 
(red stars).    
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by any previous cancer analysis, highlighting novel cancer 

gene candidates. 

 Collectively, this resource of germline–somatic interactions 

in cancer will generate many testable hypotheses about the 

molecular mechanisms underlying adulthood cancer risk. 

Interactions that are most readily interpreted are those for 

which genes at the germline locus function in the same bio-

logical pathway as the gene that is somatically altered. For 

example, a locus associated with  PTEN  mutation encoded 

two cancer genes in the same pathway,  GNA11  and  STK11 ; all 

three of these genes regulate growth signaling via mTOR ( Fig. 5 ). 

We were able to show experimentally that both STK11 and 

PTEN interfere with GNA11 activation of mTOR, suggest-

ing that germline variants increasing the activity of GNA11 

could increase the selective advantage of  PTEN  mutations 

during tumor progression. Another locus associated with 

 SF3B1  mutation encoded  RBFOX1 ; both genes regulate alter-

native RNA splicing ( Fig. 4 ). Further investigations showed 

that  SF3B1  mutation is associated with signifi cant differences 

in cryptic RNA splicing, exclusively in individuals with the 

minor allele. We expect that further analysis of the many 

additional germline–somatic interactions reported in this 

resource will provide clues about the underlying molecular 

relationships that promote cancer. 

 Some frequently altered cancer genes, such as  TP53  and 

 PIK3CA , were not found to be infl uenced by common ger-

mline variants. This result is somewhat puzzling because, 

due to their frequent mutations in TCGA, our analysis was 

highly powered to fi nd germline associations with these 

genes (Supplementary Fig. S5A). One explanation is that the 

mutation of these genes is so critical to cancer that it provides 

a selective advantage to tumor cells regardless of germline 

background. Another possibility is that germline interactions 

take place with specifi c mutation sites within the gene, but 

not with the gene as a whole, as was previously reported for 

germline control of  JAK2  mutation ( 16 ). 

 An important question is to what extent germline vari-

ants, including the ones identifi ed here, can affect precision 

medicine. Thus far, translating cancer GWAS to the clinic 

has been challenged by the generally small effect sizes of risk 

variants identifi ed ( 13 ). Here, among individuals with cancer, 

we identifi ed germline alleles that had very large effects on 

the progression of later somatic events (e.g., a 15q22.2 allele 

that increases somatic alteration of  GNAQ  by >10-fold,  Fig. 

3A ). Moreover, a number of the reported associations were 

with minor germline alleles that are quite common in the 

human population (e.g., markers at 10p15.1 or 18q21.2 at 

frequencies >30%,  Fig. 3B ), or involve cancer genes with very 

high somatic mutation frequencies, such as  PTEN,  which is 

mutated in >60% of some cancer types ( 54 ). Such interac-

tions may be of particular interest for their ability to stratify 

patients with cancer, although the true utility of these large 

effect sizes in a multigenic disease setting remains to be 

determined. Future studies of germline associations with 

other clinically important somatic phenotypes, such as site 

of metastasis, measures of aggressiveness, or therapeutic 

response, may also reveal large networks of informative inter-

actions. Ultimately, the infl uence of many germline variants 

on specifi c somatic changes in tumors suggests it might be 

possible to anticipate key events during tumor development, 

enabling a preventative rather than reactionary approach 

to therapy.  

  METHODS 
  Two-Phase Study 

 Data were obtained from the TCGA and divided into a discovery 

and a validation cohort based on availability of all data types before 

or after May 2014. Distribution of tumor types in each cohort is 

shown in Supplementary Fig. S1C. Assignment of each sample to dis-

covery or validation cohorts is provided in Supplementary Table S4. 

We acquired genotype, clinical, copy-number, and somatic mutation 

data for all available samples. Human genome assembly GRCh37/

UCSC hg19 coordinates were used for all genomic data.  

  Genotypes 
 Normal (nontumor) level 2 genotype calls generated from Affym-

etrix SNP6.0 array intensities using the BirdSuite software ( 55 ) were 

retrieved from the TCGA data matrix. In these fi les, each SNP was 

annotated with an allele count (0 = AA, 1 = AB, 2 = BB, −1 = missing) 

and a confi dence score between 0 and 1. Genotypes with a score larger 

than 0.1 (corresponding to an error rate of >10%) were set to missing 

and the data were reformatted with PLINK v1.9 ( 56 ).  

  Somatic Phenotypes 
 Information on tumor type was available for all samples. Exome-

wide profi les of somatic DNA mutations and genome-wide CNVs 

were accessed from the Broad Firehose Analysis Pipeline (ref.  57 ; 

April 16, 2014, release; Supplementary Fig. S1B). Somatic mutations 

for 1,099 validation samples were obtained using MuTect ( 58 ) and 

Somatic Indel Detector from GATK release 2.2-2 ( 59 ). 

 In addition to TCGA CNV calls, we used the PennCNV (v1.0.3) 

Affymetrix pipeline to call CNVs using default parameters ( 60 ). The 

Affymetrix Power Tools software package was used to generate signal 

intensity data from raw CEL fi les. PennCNV was used to split the signal 

intensity fi les by individual, generate CNV calls, merge adjacent CNVs, 

and annotate CNV calls with UCSC hg19 knownGene annotation. 

 For each patient, a gene was considered mutated if a DNA 

mutation mapped to a protein sequence change with SNPEffect4.0 

(ref.  61 ; GRCh37.31, canonical transcripts only). A gene was con-

sidered CNV altered if it received a GISTIC2.0 ( 62 ) thresholded score 

of −2 or 2 (0 or 4+ with PennAffyCV) corresponding to homozygous 

deletion or high level amplifi cation similar to previous studies ( 63 ). 

SSMs, CNVs, and their union were each recoded as a binary vector for 

every tumor, denoting the presence or absence of an event for each of 

138 cancer genes. 

 CNV and somatic mutation rates were used as covariates for 

statistical modeling. Somatic mutation rate was modeled by the 

nonsynonymous mutations per MB reported in the Firehose MutSig 

analysis ( 49 ), and CNV rate was modeled as the number of CNVs per 

sample, approximated by the number of times each sample appeared 

in the focal_input.seg.txt fi le from the Firehose GISTIC2.0 analysis 

( 62 ). In each case, values could be assigned to most tumor samples 

(Supplementary Fig. S1B).  

  TCGA Discovery Phase 
 We discarded 322 SNPs with probe names that did not match 

the hg19 UCSC genome browser Affymetrix track (track: SNP/CNV 

Arrays, table:snpArrayAffy6). Allele counts were converted to alleles 

using the defi nitions in metadata distributed with Birdsuite, and 

negative strand genotypes were fl ipped to the positive strand using 

PLINK. 

 European ancestry samples were identifi ed using the TCGA 

metadata (Supplementary Fig. S1A). Genotypes were fi ltered with 
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PLINK to remove SNPs with call rate < 95%, SNPs with MAF < 1% 

and individuals with genotype coverage < 95%. Additional samples 

were dropped due to ambiguous or confl icting gender assignment 

and unexpectedly high or low rates of heterozygosity. SNPs not in 

Hardy–Weinberg equilibrium ( P  < 10 −5 ) and nonautosomal SNPs 

were discarded. Batch effects associated with processing groups of 

samples together (plate effects) can lead to bias in estimates of allele 

frequencies between groups of samples ( 64 ). Thus, we discarded 

10,436 additional SNPs demonstrating strong plate associations 

( P  < 10 −8 ). SNPs associated with > 4 plates were retained. After 

fi ltering, 706,538 out of 906,600 SNPs remained. Post association 

testing, any tumor type–associated markers with plate or batch 

associations ( P  < 10 −4 ) were excluded from further analysis (Sup-

plementary Fig. S2).  

  TCGA Validation Phase 
 Affymetrix SNP6.0 genotypes for 1,789 validation samples were fi l-

tered for call rate, coverage, and MAF. SNPs not present in the discov-

ery set were removed, and SNPs missing from the discovery set were 

imputed using PLINK. Validation set genotypes were phased using 

Beagle v3.3.2, and haplotype markers were assigned based on agree-

ment of phased SNP sequences with best associated SNP sequence 

for each discovery set haplotype as determined by the cluster2hap 

utility and as previously described ( 65 ).  

  Population Stratifi cation 
 To further control for population substructure, we performed 

principal component analysis with the combined TCGA and Hap-

Map Phase III populations. We discarded 107 samples that did not 

cluster closely with HapMap III European populations. HapMap 

Phase III genotypes ( 25 ) were obtained from the NCBI HapMap ftp 

site and lifted to hg19 using the liftOver utility ( 66 ). Genotypes were 

merged and reduced to a set of independent SNPs by linkage-based 

fi ltering using PLINK. The reduced set of 33,724 independent SNPs 

was used to calculate pairwise identity-by-state (IBS) between all 

individuals. After performing PCA on the IBS matrix, we removed 

10 TCGA individuals clustering with Masai and Yoruban samples 

and 97 individuals clustering more closely with individuals from the 

Mexican and Gujarati populations.  

  Haplotype Inference 
 Haplotypes were inferred using Beagle software v3.3.2 ( 67 ) and 

encoded as binary markers using the psuedomarkers.jar java util-

ity (parameters: edgecount = 60 and othercount = 10), resulting in 

1,598,830 haplotype markers.  

  Power Calculations 
 Power to detect association with gene alteration status was esti-

mated using the Genetic Power Calculator ( 68 ) via the ldDesign R 

package ( 69 ). Empirical estimates of case–control ratio were mod-

eled by the number of TCGA samples harboring alterations in each 

gene. Allele frequency and prevalence were set to 0.01. D′ was set to 

1 and the same frequency was used for the marker and quantitative 

trait locus, simulating the best-case scenario where the causal SNP 

is genotyped.  

  Discovery Phase Testing 
 When testing for marker association with tumor type, samples 

were partitioned using a one-versus-rest strategy. For marker associ-

ation with somatic alteration status at each of the 138 cancer genes, 

samples were partitioned into two groups based on the presence or 

absence of a somatic alteration ( Fig. 1A ). 

 Association testing between all marker–gene and marker–tumor 

type pairs was performed using a two-sided Fisher exact test with 

PLINK. This test is not affected by class imbalance, which occurs for 

most phenotypes in this study. Candidate associations were selected 

based on the “suggestive” GWAS signifi cance threshold, adjusted by 

the number of phenotypes tested (1 × 10 −5 /22 for primary tumor 

type and 1 × 10 −5 /138 for mutation status of cancer genes).  P  values 

were adjusted for infl ation using genomic control (Supplementary 

Figs. S3 and S6). Because allelic tests are biased for SNPs violating 

Hardy–Weinberg equilibrium, candidate associations were subjected 

to permutation to obtain empirical  P  values; somatic alterations 

were permuted across samples 1 × 10 8  times to generate an empirical 

null distribution capable of providing a  P  value with a resolution of 

1 × 10 −8 .  

  Multitumor Association 
 To gain power to identify SNPs associated with multiple tumor 

types, tumors with correlated ORs were tested for association as 

a group. Specifi cally, loci receiving at least one weak but insignifi -

cant association ( P  < 0.05) were reevaluated by grouping correlated 

tumor types. All tumors at the locus with an OR > 1.2 were grouped 

and a Fisher exact test was performed to determine their combined 

OR and  P  value. This joint  P  value was compared with an empirical 

distribution obtained by permuting tumor type label 1,000 times, 

grouping tumor types with OR > 1.2 and repeating the Fisher exact 

test. Markers were selected for validation if they were among the top 

5 most signifi cant tests after permutation and had a combined OR 

> 1 and a  P  value < 1 × 10 −5 .  

  Controlling for Covariates 
 Firth’s penalized logistic regression (R logistf package; ref.  70 ) was 

used to control for covariates, including population substructure 

(fi rst two principal components PC1 and PC2), individual-specifi c 

somatic mutation and/or copy-number alteration rates, and gender. 

For associations with cancer genes, we also controlled for primary 

tumor type. The Wald test was used to reject the hypothesis that the 

slope contribution of the genotype in the fi tted model was 0 (i.e., that 

the genotype does not provide information about the phenotype) in 

the presence of covariates.  

  Validation 
 For both gene alteration status and tumor type associations, 

validation testing was performed using a one-sided Fisher exact test 

consistent with the odds ratio observed in the discovery screen. Can-

didate associations achieving an empirical FDR < 0.5 were considered 

to be of potential interest and are listed in Supplementary Tables S1 

and S3. We considered a marker to have “validated” at an empirical 

FDR < 0.25. These associations are visualized as a custom track in 

the UCSC Genome Browser ( http://ideker.ucsd.edu/apps/germline/ ).  

  Empirical FDR Estimation 
 For each candidate marker–phenotype pair carried forward for 

validation testing, phenotype labels were permuted 10,000 times. 

Each of these 10,000 sets of permutated marker–phenotype pairs was 

then evaluated in the validation cohort. The expected number of false 

discoveries at a particular signifi cance threshold was estimated as the 

mean number of marker–phenotype pairs detected at that threshold 

across the 10,000 permutations. The empirical FDR was estimated 

as the ratio of false discoveries to the total number of candidates 

detected at a particular signifi cance threshold. Empirical FDRs were 

estimated at signifi cance threshold intervals of 0.05.  

  MutSigCV Analysis 
 MutSigCV version 1.4 ( 49 ) with default parameters and confi gur-

ation fi les was used to identify genes with an elevated mutation rate 

on each germline background. Discovery-phase samples were divided 
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into two groups: those with one or more copies of the minor allele, 

and those with none. MutSigCV was run separately on both groups to 

identify genes that were mutated at higher frequency than expected 

according to their gene-specifi c background mutation model.  

  Expression Analysis 
 Expression data (level 3 normalized data) for all TCGA samples 

were obtained from the April 16, 2015, Firehose run ( 71 ). To deter-

mine a pan-cancer relationship between gene expression and geno-

type, log 2  expression was regressed on minor allele count and tumor 

type. Signifi cance of effect size was determined by fi rst regressing 

expression on primary tumor type alone. Variance due to tumor type 

was removed by summing the expected value over all samples and the 

residuals after regressing on tumor type. Effect sizes were estimated 

using a one-sided  t  test to evaluate the difference in distributions for 

samples with one or more copies of the minor allele versus samples 

homozygous for the major allele.  T  tests were performed when at 

least 5 samples were present in both groups.  

  Alternative Splicing Analysis 
 TCGA RNA-sequencing data for 95 samples with  SF3B1  mutations 

and 105 controls (Supplementary Table S5) were processed as previ-

ously described ( 72 ). The percentage of cryptic reads at each splice 

site across the genome was calculated for each patient. Only splice 

sites in the top 85th quartile of coverage were considered for the ana-

lyses. Percentages were log transformed and averaged across patients 

with matching genotypes in order to determine the variation in splic-

ing due to the minor allele and  SF3B1  mutation status. Specifi cally, 

the number of sites that were differentially spliced between WT and 

 SF3B1  mutant tumors was determined for individuals with one or 

more copies of the minor allele, and compared with the same statistic 

for individuals homozygous for the major allele. A site with 2-fold 

change in cryptic splicing was considered differentially spliced. In 

order to control for the effect of sample size differences when par-

titioning tumors on germline genotype on identifying differentially 

spliced junctions, samples with the major allele were downsampled 

1,000 times. A two-sample  t  test was used to determine whether 

cryptic splicing occurred at the same frequency for samples with 

the minor allele and without an  SF3B1  mutation as compared with 

all other samples. To correct for any biases, the observed genotypes 

were randomly reassigned 10,000 times and the two-sample  t  test 

reperformed.  

  Imputation, Locus Annotation, and Visualization 
 A gene was considered to be in  cis  with a germline marker if it 

was encoded within 1 MB of the marker. Coordinates of promot-

ers, exons, and introns were determined from Gencode V19 basic 

obtained from the UCSC Genome Browser ( 73 ). Promoters were 

assumed to fall within 2 KB 5′ of a gene’s transcription start site. 

Enhancer coordinates were obtained from Fantom 5 (ref.  74 ; robust 

enhancer set). 

 Post association testing, markers were assumed to occur at the 

same locus if pairwise linkage disequilibrium (LD) was suffi ciently 

large ( r  2  > 0.2; ref.  75 ). To determine overlap of new markers with 

existing cancer GWAS SNPs, GWAS SNPs within 1 MB of candidate 

loci were pulled from the NHGRI GWAS Catalog (downloaded April 

2015; ref.  26 ). Pairwise LD between SNPs at each candidate locus 

and NHGRI cancer GWAS SNPs was assessed using the SNAP server 

( 76 ). The NCBI Genome Decoration Page was used for ideogram 

construction. Published cancer-associated SNPs from the NHGRI 

GWAS Catalog and additional SNP markers at loci implicated in 

this study were imputed using the Michigan Imputation Server (ref. 

 77 ; 1,000 genomes Phase 1v3 reference, Shapeit2). Imputed markers 

were used for visualizing loci using LocusZoom Software ( 78 ). For 

LocusZoom plot construction, we used default recombination rates, 

gene locations, and NHGRI catalog data. LD values were generated 

from the 1,000 Genomes 2012 European population, and promoter 

and enhancer regions were determined as described above.  

  Cell Lines 
 HEK293 cell lines were obtained from the American Type Cul-

ture Collection in 2015 and stored in liquid nitrogen vapor. Cells 

were authenticated using short tandem repeat fi ngerprinting within 

6 months of freezing. HEK293 cells for the current study were thawed 

from this stock. 

 HEK293 control and HEK293 STK11 knockout cell lines were 

grown and maintained in DMEM supplemented with 10% FBS, 

100 units/mL penicillin, 100 μg/mL streptomycin, and 250 ng/mL 

amphotericin B (Sigma Aldrich) at 37°C in humidifi ed air with 5% 

CO 2 . Cells were grown to 70% to 80% confl uence prior to replating 

for transfection experiments.  STK11  knockout cells were engineered 

by the CRISPR/Cas9 gene editing system, using the pSpCas9 (BB)-

2A-Puro (PX459) V2.0 vector (purchased from Addgene #62988). The 

corresponding single-guide RNAs were designed using the CRISPR 

design website following published protocols ( 79 ). Cells were trans-

fected with the CRISPR construct and selected for 3 days using 

puromycin then replaced by fresh medium to maintain the growth of 

the cell. Mass culture of cells was confi rmed to lack STK11 protein 

expression by Western blotting (Supplementary Fig. S7A).  

  PTEN Knockdown and GNA11 Expression 
 Twenty-four hours before transfection, HEK 293 cells were plated 

in 6-well plates at 40% confl uence. When indicated, cells were trans-

fected with siRNA targeting  PTEN  and control siRNA (purchased 

from Dharmacon, ON-TARGET plus SMART pool) at a fi nal concen-

tration of 10 nmol/L, using Turbofect transfection reagent (Thermo 

Fisher) according to the manufacturer’s instructions. The following 

day, cells were transfected with increasing amounts of pcDNAlll–

 GNA11  where indicated, to control GNA11 protein expression levels 

at 0, 0.25, 0.5, 1, 2, and 4 μg/well. Cells lysates were harvested after 

24 hours, serum starving for the last 4 hours. Reproducibility of 

 PTEN  siRNA knockdown was confi rmed by Western blot (Supple-

mentary Fig. S7B).  

  Western Blotting 
 Immunodetection was carried out using antibodies from Cell 

Signaling Technology against PTEN (1:1,000), STK11 (1:1,000), 

phospho-STK11 (Ser428; 1:1,000), ribosomal protein S6 (1:20,000), 

phospho-S6 (Ser240/244; 1:5,000), AMPK (1:5,000), and phospho-

AMPKα (Thr172; 1:5,000). Antibodies targeting GAPDH (1:20,000) 

and α-tubulin (1:3,000) were included as a loading control. GNA11 

(D-17; 1:400) was detected using a primary antibody from Santa 

Cruz Biotechnology (sc-394). Secondary horseradish peroxidase–

linked goat anti-rabbit IgG antibodies (1:20,000) were obtained from 

Southern Biotech.   
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