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SUMMARY

Classic ‘‘position-effect’’ experiments repositioned
genes near telomeres to demonstrate that the epige-
netic landscape can dramatically alter gene expres-
sion. Here, we show that systematic gene knockout
collections provide an exceptional resource for inter-
rogating position effects, not only near telomeres but
at every genetic locus. Because a single reporter
gene replaces each deleted gene, interrogating this
reporter provides a sensitive probe into different
chromatin environments while controlling for genetic
context. Using this approach, we find that, whereas
systematic replacement of yeast genes with the
kanMX marker does not perturb the chromatin land-
scape, chromatin differences associated with gene
position account for 35% of kanMX activity. We
observe distinct chromatin influences, includ-
ing a Set2/Rpd3-mediated antagonistic interaction
between histone H3 lysine 36 trimethylation and the
Rap1 transcriptional activation site in kanMX. This
interaction explains why some yeast genes have
been resistant to deletion and allows successful
generation of these deletion strains through the use
of a modified transformation procedure. These find-
ings demonstrate that chromatin regulation is not
governed by a uniform ‘‘histone code’’ but by
specific interactions between chromatin and genetic
factors.
INTRODUCTION

Transcription requires the precise coordination of genetic signals

encoded in DNA with epigenetic signals such as modification of

histones (Jaenisch and Bird, 2003; Rando and Winston, 2012).

To study which chromatinmodification signals aremost informa-

tive, powerful genome-scale methods have been applied for

correlating profiles of histone modification state with profiles of
gene expression measured over all genes (Schones and Zhao,

2008). These studies have identified a number of histone states

that associate with transcriptional activity, such as trimethylation

of lysine 4 in histone H3 (H3K4), which is found preferentially at

the 50 regions of highly expressed genes (Santos-Rosa et al.,

2002). Both histone states and gene expression state vary along

a genome, however, making it difficult to discern which of these

states is the cause and which is the effect. Moreover, methods

based on genome-wide correlation identify only the most

general chromatin effects and miss those that apply preferen-

tially to subsets of genes or promoters, i.e., epigenetic-genetic

interactions. For example, the genome-wide-positive associa-

tion between H3K4me3 and transcription contradicts a previ-

ously identified role for H3K4me3 in promoting gene silencing

at telomeres, silent mating-type loci, or rDNA regions (Briggs

et al., 2001; Nislow et al., 1997). Such interactions are increas-

ingly important for understanding human diseases such as

cancer, in which both genetic and epigenetic alterations can

specifically enable oncogenes and tumor suppressor genes

(Chi et al., 2010; Feinberg et al., 2006).

Isolating the pure chromatin contribution to gene expression

would mean controlling for the genetic sequence as the chro-

matin context was varied. This is precisely the means by which

position-effect variegation was first observed in Drosophila (re-

viewed by Henikoff, 1990). Gottschling et al. (1990) went on to

establish the now classic ‘‘position effect’’ in yeast, in which relo-

cating genes from their wild-type loci to positions near telomeric

heterochromatin revealed repressive effects on gene expression

due to the distinct chromatin landscape.

Ideally, such position-effect experiments could be performed

systematically by measuring the expression of the same gene

positioned at each chromatin context, i.e., across all gene posi-

tions in the genome. Such a systematic screen has never been

performed, perhaps because of the perceived difficulty of such

a task. We reasoned that this task might be feasible, however,

using the gene knockout library constructed in budding yeast

by the SaccharomycesGenome Deletion Project (Winzeler et al.,

1999). This project targeted each yeast open reading frame (ORF)

for replacement with the kanMX cassette, which contains the

TEF promoter from Ashbya gossypii upstream of the kanR gene

conferring resistance to the antibiotic G418 (Wach et al., 1994).
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Figure 1. kanMX Expression on Chromo-

some I

(A) A systematic position-effect screen in yeast.

An antibiotic-resistance gene, kanR, driven by

a Rap1-activated promoter, pTEF, together

referred to as kanMX, is inserted at each locus

on chromosome I (Chr I) to produce a library of

yeast strains (colored cells). Expression of the

reporter gene is measured by qRT-PCR.

(B) Expression of kanMX as a function of position

on chromosome I. Each point represents the

mean of six independent biological replicates;

error bars indicate 95% confidence intervals.

Positions that are significantly over- or underex-

pressed (p < 0.05, one-sample t test) are colored

orange. Subtelomeric regions are shaded gray;

telomeres are shaded black. The centromere is

marked by a dotted vertical line.

(C) Position effects account for increased vari-

ability in gene expression. To visualize the contri-

bution of position effects to expression variation,

we sorted the observed kanMX expression at

each position (black dots) for comparison with an

empirical null model without position effects con-

structed using random samples from all collected

data (gray squares; Experimental Procedures).

Each gray data point represents the mean ex-

pression at that rank across all sampled data sets;

error bars represent 95% confidence intervals.

See also Figure S1.
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Deletion strains have been constructed for approximately

6,000 yeast genes representing >90% of known or suspected

ORFs (Giaever et al., 2002). Although this deletion library was

originally constructed to study gene function, it also possesses

the critical feature needed for a systematic position-effect as-

say: each strain carries the same promoter and gene positioned

over the range of chromatin environments presented by a

genome.

Here, we show that the Saccharomyces Genome Deletion

library indeed provides a foundation for systematic gene position

experiments. These experiments, which effectively separate

epigenetic from genetic effects, permit estimates of the total

genome-wide contribution of chromatin to gene transcription

while preserving genetic and epigenetic integrity far from

the site of gene replacement. Integration of the resulting data

with genome-wide maps of histone modifications leads us to

propose a specific role for histone H3 lysine 36 trimethylation

(H3K36me3) in transcriptional control, via an epigenetic-genetic

interaction with the Rap1 transcriptional activation site in the TEF

promoter.
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RESULTS

A Systematic Position-Effect
Screen Using the Saccharomyces

Gene Deletion Library
To explore the use of gene deletion

libraries for position-effect studies, we

selected yeast strains from the heterozy-

gous diploid collection corresponding to
all kanMX-mediated gene replacements on chromosome I.

Heterozygous diploids retain one functional copy of the deleted

gene and thus minimize unwanted effects of gene deletion on

cell function (Deutschbauer et al., 2005). This assumption was

supported by the finding that these strains havewild-type growth

phenotypes and mRNA-expression profiles (Figures S1A–S1L).

Next, we used quantitative RT-PCR (qRT-PCR) to obtain sextu-

plicate measurements of kanMX expression in each of the chro-

mosome I deletion strains (Figure 1). As a group, the expression

measurements showed significant variation from locus to locus

(F test, p < 2.04 3 10�11). This variation was due to at least 19

loci that had significantly higher or lower expression (Figures

1B and 1C), with a 4-fold dynamic range between the highest

and lowest expressing loci. A comparison of expression variance

at each position with variance across all measurements revealed

that gene position accounts for approximately 35% of variation

in kanMX expression (Experimental Procedures). In addition,

decreased expression was observed at telomere-proximal

loci (i.e., subtelomeric loci defined by Kellis et al., 2003),

showing that our assay recapitulated well-established results
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(Figure S1M). In contrast, the two pericentric loci were expressed

at near-average levels (Figure S1M), also consistent with

previous observations that S. cerevisiae centromeric regions

remain somewhat transcriptionally active (Perrod and Gasser,

2003). Because each kanMX insertion is directly downstream

of the native wild-type gene promoter, it is possible that tran-

scriptional machinery recruited by the native promoter directly

influences kanMX expression. To assess this possibility, we

compared our kanMX expression measurements to the expres-

sion levels of the wild-type genes being replaced and found

no relationship between wild-type and kanMX expression and

no difference in kanMX expression between loci that are

silenced versus actively expressed in wild-type (Figure S1N).

Nonetheless, it remains conceivable that the native promoter

contributes to chromatin state at kanMX that then indirectly

alters expression—we consider this a part of the position effect

being examined.

Insertion of kanMX Does Not Significantly Perturb the
Chromatin Landscape
Although it is assumed in position-effect assays that the inserted

construct inherits the chromatin landscape of its new position,

we sought to test this assumption directly by comparing the

levels of different histone modifications along the kanMX

cassette with their corresponding levels along the wild-type

gene. The technique of chromatin immunoprecipitation followed

by qRT-PCR (ChIP-qRT-PCR) was used to quantify levels of

five different histone modifications: trimethylation of histone H3

lysines 4, 36, and 79 (H3K4me3, H3K36me3, H3K79me3,

respectively) and acetylation of histone H3 lysines 9 and 14

(H3K9ac and H3K14ac, respectively). Measurements were

made at sites along the promoter and gene at each of ten

different gene knockout positions on chromosome I, two of

which had been observed to express kanMX at significantly

higher or lower levels than average (Figure S2A; Table S1). For

all histone modifications tested, the chromatin landscape was

found to be very similar between the kanMX cassette and wild-

type (Figures 2A–2J and S2). Correlations were particularly

strong over the kanMX regulatory region and the corresponding

50 region of the wild-type gene (Pearson r R 0.82, Figures 2A–

2E), suggesting that the insertion of kanMX does not significantly

perturb the histone modification landscape in heterozygous

diploid gene deletion strains.

kanMX Expression Is Negatively Correlated
with H3K36me3 at the Promoter
Because the insertion and expression of kanMX do not appear

to perturb histone modifications, we next sought to test the

converse hypothesis: that histone modifications are predictive

of kanMX expression. We used a sliding-window approach

to compute the correlation between the kanMX expression levels

we hadmeasured along chromosome I and the published occur-

rence at these loci of seven different histone modifications:

H3K4me1, H3K4me2, H3K4me3, H3K36me3, H3K79me3,

H3K9ac, and H3K14ac (from Pokholok et al., 2005; Figures

S2D–S2F; Experimental Procedures). Previous studies have

shown that H3K4me3, H3K9ac, and H3K14ac are enriched

at the 50 region of yeast genes at levels that correlate with
transcription, whereas H3K4me2 and H3K4me1 are enriched in

the gene body and 30 regions, respectively (Pokholok et al.,

2005; Santos-Rosa et al., 2002). H3K36me3 is found over middle

and 30 regions of genes, where it is thought to repress spurious

intragenic transcription (Carrozza et al., 2005). H3K79me3 is

enriched within gene bodies, but its deposition is not closely

linked with transcription (Pokholok et al., 2005).

Of the modifications examined, we identified strong anticorre-

lation between kanMX gene expression and H3K36me3 occu-

pancy at the promoter (Figure 2K). Such an association was

not identified previously in genome-wide histone profiling

studies. In contrast, the expression profile of the wild-type genes

along chromosome I showed no correlation with H3K36me3

but was positively correlated with other chromatin states such

as histone acetylation and H3K4me3 (Figure 2L), relationships

that have been previously well established (Millar and Grunstein,

2006). Thus, it appears that H3K36me3 has a negative associa-

tion with expression of the kanMX gene, but not with genes

in general, which tend to be associated with a variety of other

modifications (Figure 2M).

H3K36me3 Occupancy Is Predictive of kanMX

Expression
If the negative interaction we have identified between

H3K36me3 and kanMX expression on chromosome I is general,

we reasoned that levels of this histone modification should

be predictive of kanMX expression on the other 15 yeast chro-

mosomes (II–XVI). Among these chromosomes, ten loci were

randomly selected from genomic regions with either reduced

or elevated H3K36me3 occupancy. Measurements by qRT-

PCR revealed that kanMX expression levels were substantially

higher when kanMX is positioned in regions of reduced

H3K36me3 in comparison to regions of elevated H3K36me3

occupancy (Figure 3A). Therefore, the dependency of kanMX

expression on the absence of H3K36me3, a relationship inferred

from loci on chromosome I, is indeed predictive of kanMX

expression throughout the genome.

H3K36me3 Antagonism of kanMX Expression Depends
on the Set2-Rpd3 Pathway
H3K36me3, amodification catalyzed by the Set2methyltransfer-

ase (Krogan et al., 2003), is a known element contributing to

the repression of spurious transcription initiation via recruitment

of the Rpd3 histone deacetylase complex (Carrozza et al., 2005;

Lickwar et al., 2009). To test the hypothesis that this mechanism

of regulation may also play a role in relation to kanMX, we

measured kanMX expression in strains without SET2 or RPD3.

We observed increased kanMX expression compared to wild-

type at each of ten gene positions in an rpd3D background

and eight out of nine positions in a set2D background (p <

0.003 and p < 0.05, respectively, paired t test; see Figure 3B).

These results suggest a causal role for H3K36me3 in the regula-

tion of kanMX gene expression and that this regulation is medi-

ated through Set2 and Rpd3.

To further explore the connection to SET2 and RPD3, we

looked for differences in chromatin organization that might

co-occur with H3K36me3 to explain significantly higher or

lower kanMX expression. We found additional support for
Cell Reports 3, 1–10, January 31, 2013 ª2013 The Authors 3
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Figure 2. Insertion of kanMX Does Not Perturb Chromatin but Chromatin Does Perturb kanMX Expression

Comparisons of histone modification enrichment between wild-type and knockout strains show high correlation across all ten strains at a given primer position

(A–E) and across gene promoter and body positions for any individual knockout strain (F–J).

(A–E) Scatterplots comparing ChIP-qRT-PCR enrichment of histone modifications at the kanMX promoter (y axes) and the 50 region of the corresponding native

gene (x axes). Measurements weremade using antibodies to H3K4me3 (A), H3K36me3 (B), H3K79me3 (C), H3K9ac (D), and H3K14ac (E). All measurements were

normalized by H3 content.

(F–J) Traces depicting histone modification enrichment at the yal003wD::kanMX cassette (summarized by dotted line; individual data points denoted with ‘‘X’’)

and at the YAL003W native gene (solid line; triangles). Histonemodifications are ordered as in (A)–(E). The x axis indicates position relative to start codon. See also

Figures S2A–S2C.

(K and L) Correlation significance of H3K36me3 (K) and H3K4me3 (L) as a function of position around the transcription start site (TSS) (from 2 kb upstream to 2 kb

downstream; see also Figures S2D–S2F). Black lines represent correlation with wild-type expression; orange lines represent correlation with kanMX expression.

Positive correlations rise above the x axis; negative correlations fall below.

(M) Summary of correlations at the TSS for seven histone modifications. Colors as in (K) and (L). Asterisks denote significant correlations (p < 0.05).
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a connection to the Set2-Rpd3 pathway by comparing histone

acetylation levels (Kurdistani et al., 2004; O’Connor and Wyrick,

2007) between loci for which kanMX is expressed at either

high or low levels. Five acetylated lysines (H2AK7, H2BK11,

H2BK16, H4K12, and H4K16) were significantly associated

with kanMX expression (Mann-Whitney U test, p < 0.05; Figures

S3A–S3E) and significantly anticorrelated with H3K36me3

(Pearson r < �0.7, p < 0.05; Figures S3F–S3J, red dots). The
4 Cell Reports 3, 1–10, January 31, 2013 ª2013 The Authors
anticorrelation between H3K36me3 and the acetylated lysines

was particularly striking in comparison to the background

correlation among all loci, which was insignificant in all five

cases (Figures S3F–S3J, black dots). Notably, each of these

lysine residues except H4K16 is a known deacetylation

target of Rpd3 (Millar and Grunstein, 2006) and lends further

support to a role for the Set2-Rpd3 pathway in kanMX

expression.
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Figure 3. kanMX Is Repressed by

H3K36me3 via the Set2-Rpd3 Pathway

(A) H3K36me3 levels predict kanMX expression

on other chromosomes. Ten loci on yeast chro-

mosomes II–XVI were predicted to have either high

(red) or low (blue) kanMX expression based on

wild-type H3K36me3 enrichment. Expression was

measured relative to a strain from chromosome I

that expresses kanMX at average levels with low

variance across replicates. Each bar represents

the mean of three independent biological repli-

cates, and error bars represent SEMs.

(B) kanMX expression increases upon deletion of

RPD3 or SET2. To probe the mechanism for the

effects observed relative to H3K36me3 in (A),

rpd3D and set2D strains were constructed using

the natMX marker and crossed with strains in (A).

The ybr191wD strain could not be recovered in the

set2D background. mRNA expression of kanMX

was then assayed by qRT-PCR. All ten assayed

strains in an rpd3D background and eight out of

nine strains in a set2D background showed higher

mean kanMX expression compared to wild type

(**p < 0.003 and *p < 0.05, respectively, paired t

test). Each point represents the mean of three

independent biological replicates.

See also Figure S3.
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An Antagonistic Interaction between H3K36me3
and Rap1 Binding
The canonical mechanism for chromatin-mediated transcrip-

tional regulation involves modulation of transcription factor (TF)

binding upstream of a gene (Rando and Chang, 2009). Because

the kanMX cassette is activated by binding of the Rap1 TF to

an upstream activation sequence in the TEF promoter (Steiner

and Philippsen, 1994), we hypothesized that the repressive

interaction between H3K36me3 and kanMX might act through

modulation of Rap1 binding. To test this idea, we used anti-

bodies to either Rap1 or H3K36me3 to perform ChIP-qRT-PCR

in five knockout strains. We found that Rap1 binding is indeed

elevated at loci with low levels of H3K36me3 occupancy and

depressed at loci with high levels of H3K36me3 (Pearson

r = �0.97; Figure 4A). Thus, elevated levels of H3K36me3 are

predictive not only of reduced kanMX expression but also of

reduced binding of Rap1 to the kanMX promoter.

Another test of the apparent antagonism between H3K36me3

and Rap1 is to examine whether this interaction takes place not

only at the kanMX locus but also at the numerous other Rap1

binding sites encoded across the genome. For this purpose,

we compared the genome-wide binding profiles of Rap1 and

H3K36me3, both of which have been published previously

by Koerber et al. (2009) and Pokholok et al. (2005). We found

that the genomic regions associated with lower levels of

H3K36me3 do indeed tend to be bound more frequently by

Rap1 (Figure 4B).

Gene Expression Downstream of a Rap1 Motif Is
Inversely Correlated with H3K36me3
Rap1 recognizes multiple cis-regulatory motifs in DNA (Piña

et al., 2003), and it is known to take on different conformations

depending on the sequence to which it is bound (Idrissi et al.,
1998). Further investigation showed that the Rap1/H3K36me3

association is strongest at promoters containing an identical

Rap1 binding motif to the one carried in the kanMX cassette

(GCCCATACAT, henceforth called the Rap-kan box). Indeed,

among genes downstream of a Rap-kan box, expressed

transcripts have lower occupancy of H3K36me3 relative to non-

expressed transcripts (Mann-Whitney U test, p < 5.43 10�4, Fig-

ure 4C, n = 30 expressed, 13 nonexpressed), whereas H3K4me3

levels are nodifferent (p = 0.89, Figure 4D). Interestingly, a slightly

different histone distribution is observed when considering

genes bearing a more general motif (ACACCCRYACAY, hence-

forth called the Rap box; Lieb et al., 2001). In this more general

set of genes (n = 130 expressed, 134 nonexpressed), the distri-

bution of H3K36me3 among nonexpressed genes appears

bimodal, with roughly half of the genes associated with high

H3K36me3 occupancy and half of the genes associated with

low H3K36me3 occupancy. Even for this expanded Rap box

motif, however, it is still the case that H3K36me3 is significantly

elevated in nonexpressed genes relative to expressed genes

(p < 3.2 3 10�4), whereas H3K4me3 is significantly depressed

(p < 5.9 3 10�3, Figure S4).

H3K36me3 Has Likely Interfered with Deletion of Some
Yeast Genes
The Saccharomyces Genome Deletion Project constructed

knockout strains covering many but not all genic positions

throughout the genome. Of the 528 yeast ORFs that have not

yet been included in the collection, 321 were attempted

but did not yield successful transformants (A. Chu, personal

communication). Given the observed H3K36me3-mediated

transcriptional repression of kanMX, we postulated that this

interaction might explain why certain ORFs failed the deletion

process. In support of this hypothesis, we observed that
Cell Reports 3, 1–10, January 31, 2013 ª2013 The Authors 5



Figure 4. H3K36me3 Is Inversely Propor-

tional to Rap1 Binding at the kanMX

Promoter

(A) ChIP-qRT-PCR measurements of Rap1 occu-

pancy are plotted against measurements of

H3K36me3 at the kanMX locus in five knockout

strains (two replicate growths per strain). Error

bars represent SEs.

(B) ChIP-seq counts (log2 transformed) of Rap1

bound nucleosomal sequences (Koerber et al.,

2009) plotted against H3K36me3 in wild-type

cells (Kirmizis et al., 2009). Many loci with low

H3K36me3 levels are enriched for Rap1 binding

(red circle).

(C) Among yeast genes that possess a kanMX

binding motif, expressed genes (red, n = 31) are

associated with low H3K36me3 enrichment rela-

tive to silenced genes (blue, n = 13, p < 3 3 10�4).

(D) Among the same set of genes as (C), ex-

pressed genes exhibit no significant differences

in H3K4me3 compared with silenced genes (p =

0.89).

See also Figure S4.
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H3K36me3 is significantly enriched at ORFs that failed deletion

(Figure 5A, p < 23 10�16). Different ORF deletions were attemp-

ted a different number of times, however, potentially introducing

a sampling bias. To guard against such bias, we also examined

the set of ‘‘Dubious ORFs’’ for which deletion was attempted

once and only once. Even in that restricted set, H3K36me3

remained significantly enriched at loci that failed deletion (Fig-

ure 5A, p < 5 3 10�6).

To accommodate reduced kanMX expression during the

gene deletion procedure, we developed a modified transforma-

tion protocol in which the drug-selection condition is milder

than in the original (Experimental Procedures). Four ORFs

were selected from loci with elevated H3K36me3 levels that

were also unsuccessfully deleted in the Saccharomyces

Genome Deletion Project. Using the modified protocol, we

successfully generated gene deletion strains for three of these

four ORFs on our first attempt. To test whether these loci

express kanMX at particularly low levels due to H3K36me3

occupancy, we measured kanMX expression in these strains

relative to a strain from chromosome I that expresses kanMX

at average levels (with low variance across replicates). We

found that all three of the newly constructed strains expressed

kanMX at significantly lower levels than average (Figure 5B,

p < 0.01, one-sample t test). All three kanMX transformants

also had low expression relative to loci with elevated

H3K36me3 that were nonetheless successfully targeted by

the Saccharomyces Genome Deletion Project (Figure 3A).

Thus, H3K36me3-mediated suppression appears to explain,
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at least in part, why some ORFs failed

in the systematic gene deletion process.

DISCUSSION

More than 20 years have passed since

the classic position-effect experiment in
yeast, in which genes were repositioned to the telomere to

show that the epigenetic landscape dramatically alters gene

expression (Gottschling et al., 1990). Here, we have explored

proof of principle that gene knockout libraries can be ‘‘repur-

posed’’ as a resource to study the effects of gene position not

only at the telomere but systematically across an entire eukary-

otic chromosome. Using the Saccharomyces Gene Deletion

collection in this mode, we have identified an antagonistic

interaction involving a chromatin mark (i.e., the H3K36me3

histone modification) and a genetic element (i.e., the Rap1

binding site on the kanMX gene cassette).

H3K36me3 and Rap1-Activated Gene Expression:
An Epigenetic-Genetic Interaction
Although the presence of H3K36me3 at the promoter does not

generally repress gene expression, our results show that it is

repressive in the context of a Rap1 binding site (Figure 2). In the

same context, other marks such as H3K4me3 that correlate with

expression in general are not correlated for a Rap1-driven gene.

Thesedifferencespoint to specific chromatin effects on transcrip-

tion that depend on the context of the gene being transcribed.

The idea that epigenetic-genetic interactions can differ ac-

cording to the identity of the bound TF has previously been

explored by Guccione et al. (2006), and in one instance,

a Rap1 promoter was shown to be particularly sensitive to

Rpd3-mediated repression relative to promoters driven by

other TFs (Deckert and Struhl, 2002). Genome-wide studies

have also identified chromatin-TF interactions that operate on
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(A) ORFs resistant to deletion in theSaccharomyces

Genome Deletion Project (Giaever et al., 2002) are

significantly enriched for H3K36me3 relative to

successfully deleted ORFs (Mann-Whitney U test,

*p < 2.2 3 10�16). Among dubious ORFs, which

were uniformly attempted once and only once,

H3K36me3 remains enriched for ORFs that did not

producesuccessful transformants (**p<5.1310�6).

(B)Of theORFs thatwere resistant todeletion, three

were selected for elevated levels of wild-type

H3K36me3 at the ORF promoter and, subse-

quently, knocked out using a modified selection

strategy (Experimental Procedures). Expression

from all three loci is significantly depressed (p <

0.005, one-sample t test) relative to the chromo-

some I strain used as a reference in Figure 3A. Each

bar represents the mean of ten independent bio-

logical replicates, and error bars represent SEMs.
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only a subset of genes (Buck and Lieb, 2006). In support of

distinct interactionswithin a cohort of genes bound by a common

TF, Lickwar et al. (2012) recently found that subsets of Rap1

bound genes with different binding motifs (one of which is

a near-perfect match for the Rap1 motif in kanMX) are associ-

ated with different functional outcomes such as gene activation

and local nucleosome positioning. Here, we show that genes

with an identical kanMX motif bear a distinct interaction with

chromatin modifications not found when considering larger

sets of genes (Figures 4C, 4D, and S4) and that the Set2-Rpd3

pathway is likely involved in modulating kanMX expression.

Thus, it appears that H3K36me3- and Set2-Rpd3-mediated

gene repression have a greater effect on kanMX expression rela-

tive to their effect on average genes.

Causality in Chromatin-Mediated Transcriptional
Regulation
Recently, Henikoff and Shilatifard (2011) have countered the

popular histone code hypothesis—whereby histone modifica-

tions play a causal role in regulating transcription—with the

idea that the data equally support a ‘‘reverse model’’ in which

DNA binding regulatory factors modulate the landscape of

histone modifications. Under the reverse model, one would

expect insertion of a genetic sequence such as kanMX to induce

concurrent changes in the chromatin landscape. In this study,

we did not observe such changes: levels of histone modification

at the kanMX gene cassette remained largely unchanged in

comparison to wild-type (Figure 2). Conversely, differences in

levels of H3K36me3 at different gene positions were found to

inversely correlate with kanMX expression. Moreover, disruption

of the genes whose protein products catalyze and interact with

H3K36me3 (SET2 and RPD3, respectively) results in increased

levels of kanMX expression (Figure 3B). The clearest interpreta-

tion of these results is that H3K36me3 plays a causal role in regu-

lating kanMX gene expression, not vice versa.

It remains to be seen whether such a causal link can be gener-

alized to expression of other genes or whether it is specific to

kanMX. Recent findings do suggest different models of chro-

matin regulation for different genes. A study of the GAL1/10
promoter exemplifies the argument that DNA sequence deter-

mines chromatin architecture (Floer et al., 2010). Studies of

MYC1 TF binding in human B cells demonstrate how a TF can

induce specific histone modifications at its binding target (Guc-

cione et al., 2006; Martinato et al., 2008). A study in yeast sepa-

rates TFs into two groups: those that are histone sensitive, and

those that are histone insensitive (Cheng et al., 2011). It is

possible that the eukaryotic genome may take advantage of

multiple modes of regulation, in which case, systematic posi-

tion-effect screening may provide a suitable method for estab-

lishing directionality in the epigenetic-genetic relationship.

Gene Knockout Libraries as General Resources for
Epigenomics
The demonstration that yeast knockout libraries can be used for

position-effect screening opens the door for future studies,

which we foresee falling along several lines. First, the positioning

of a single gene into many different chromosomal locations is

a general feature of gene knockout collections for many eukary-

otic organisms, including Schizosaccharomyces pombe (Spirek

et al., 2010), Neurospora crassa (Dunlap et al., 2007), Caeno-

rhabditis elegans (Vallin et al., 2012), Arabidopsis thaliana

(Alonso et al., 2003), Drosophila melanogaster (Bellen et al.,

2004; Thibault et al., 2004), and Mus musculus (Skarnes et al.,

2011). These other species present modes of epigenetic regula-

tion not present in Saccharomyces, such as DNA methylation

and RNAi targeting, which the gene knockout collections may

help elucidate. Second, the relative ease of genetic manipulation

in S. cerevisiae, as well as the growing use of zinc finger and

TALE nucleases for targeted genome editing in higher eukary-

otes (Miller et al., 2011; Urnov et al., 2010), may allow the study

of position effects involving other genes beyond that presented

by the kanMX cassette. In yeast, employing well-established

methods for exchanging the kanMX marker with an exogenous

DNA sequence (Goldstein and McCusker, 1999; Romanos

et al., 1992), one can envision screening for epigenetic interac-

tions with well-conserved candidate human disease genes and

promoters (Perocchi et al., 2008; Steinmetz et al., 2002) posi-

tioned at loci encompassing a wide array of epigenetic states.
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The resulting strains could be assayed for any desired output,

such as candidate gene expression or interaction with regulatory

factors. Third, we foresee novel uses of the molecular barcodes

included in each knockout strain, which may enable position-

effect assays in pooled cultures for parallel analysis. Whereas

each bar code represents a missing gene in a functional geno-

mics assay (Giaever et al., 2002), each bar code in a position-

effect assay represents a distinct position in the genome. For

example, analysis of individual bar codes following ChIP in

pooled cultures might characterize how a TF-DNA interaction

influences or is influenced by epigenetic context. Thus, the

wide availability of gene knockout libraries may, in turn, enable

researchers to deploy a variety of position-effect analyses and

to develop innovative position-effect techniques.

EXPERIMENTAL PROCEDURES

Strains and Growth

All strains are from the S. cerevisiae heterozygous diploid gene deletion collec-

tion in the BY4743 background (Open Biosystems). Constant growth rates

were observed for all heterozygous gene deletion strains regardless of chro-

mosomal position (data not shown). Strains were grown to saturation in

a 96-deep-well plate (Nunc) in rich medium overnight before transferring to

a new 96-well plate on the day of measurement. Cultures were grown to

mid-log phase (1 3 107 cells/ml), and �2 3 106 cells was harvested in each

sample. Confirmations of kanMX positioning via PCR were performed for

a selection of strains, including those exhibiting the most extreme expression

levels. To guard against genetic mutations that may have arisen to produce

aberrant expression, we performed two tests to validate extreme-expressing

strains. First, we sequenced each promoter to look for significant mutations.

Second, each strain was remade, and expression in the remade strain was

compared to the strain used in this study. One extremely low-expressing

strain, yal040cD, failed both tests and was therefore excluded from our anal-

ysis. rpd3D and set2D strains were created using standard yeast transforma-

tion techniques with the natMX gene cassette and selected using rich media

supplemented with 50 mg/l of clonNAT. Each deletion was confirmed via

primers that flank the targeted natMX insertion site, and for set2D, was further

confirmed by protein immunoblot using an antibody to H3K36me3. Each of

these 2 strains was then crossed with the 10 strains in Figure 3A to produce

19 strains that are each homozygous for deletion of either SET2 or RPD3,

and heterozygous for gene deletion by kanMX (1 strain could not be recovered

in a set2D background).

Heterozygous Diploid Strain Analysis

mRNA-seq was performed in four different strains representing different

kanMX positions along chromosome I. Total RNA was isolated as described

by Wong et al. (2004), yielding RNA with an integrity number of at least 7.

mRNA was purified and fragmented to an average of 300 bp as described

by Yoon and Brem (2010). First-strand cDNA was then reverse transcribed

using Superscript III, followed by RNase H digestion and second-strand

synthesis. Libraries were then prepared for analysis on an Illumina HiSeq2000

sequencer. Data were filtered to eliminate clonal reads and aligned using Bow-

tie (Langmead et al., 2009) to the S. cerevisiae genome. Coordinates for each

ORF were downloaded from Saccharomyces Genome Database, and counts

for each ORF were computed as the median number of reads aligned to the

last 200 bp of each ORF. Differential expression was determined using the

‘‘edgeR’’ package in R (Robinson et al., 2010).

RNA Quantification

To minimize batch effects, the mRNA for each replicate of the chromosome I

data was isolated and reverse transcribed into cDNA in parallel in a 96-well

plate format. Cultures were treated with zymolyase (Seikagaku) for 30 min at

30�C, and total RNA was isolated and reverse transcribed in 96-well format

using a Cells-2-Ct kit (Ambion), with the following modifications. Lysis Buffer
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with DNase I was briefly warmed to 25�C immediately before use, and incuba-

tion time in lysis buffer was extended from 5 to 8 min. qRT-PCR was conduct-

ed with a Bio-Rad iCycler using Bio-Rad SYBR-Green I Supermix. Primers

used to quantify expression are listed in Table S1. qRT-PCR measurements

were analyzed using the Pfaffl method (Pfaffl, 2001), with kanMX transcripts

quantified relative to ACT1. Results for each of six replicates were log2 trans-

formed and plate and median normalized. Centromeric loci were defined as

positions within 1 kb of the centromere. To produce Figure 1C, we constructed

an empirical null model without position effects by sampling, with replace-

ment, 1,000 data sets of equal size (90 sets of six measurements) from all

measurements. Each data set was then ranked. The values displayed in Fig-

ure 1C summarize the distribution of expression observed at each rank across

the null data set. Of the observed measurements, 79% (71out of 90) was more

extreme than the 99% confidence intervals defined in our null model without

position effects. The contribution of position effects to expression variance

was computed as 100 3 (1 � r), where r is the ratio of the within-locus

variance (six replicates per locus, variance averaged over 90 loci) to the total

variance over all 540 measurements. We also assessed whether essentiality

of the replaced gene or proximity to a native binding site for Rap1 may have

influenced kanMX expression. We found that neither correlated significantly

with kanMX expression (data not shown).

ChIP

Each immunoprecipitation (IP) was performed as previously described by Lee

et al. (2002), with the following modifications. For each replicate, 300 ml of

yeast was prepared for cell lysis and sonication. Following formaldehyde treat-

ment, crosslinking was quenched with addition of glycine to a final concentra-

tion of 400mM. Cell lysate was collected into a 14ml tube and sonicated using

a Misonix 3000 (power 8, six cycles, 30 s per cycle) to obtain fragments in the

range 300–600 bp. Whole-cell extract was collected for multiple IPs using

different antibodies on aliquots of the same lysate. The antibodies used

were specific to endogenous H3K4me3 (ab8580; Abcam), H3K36me3

(ab9050; Abcam), H3K79me3 (ab2621; Abcam), H3K9ac (39137; ActiveMotif),

H3K14ac (ab52946; Abcam), histone H3 (ab1791; Abcam), or Rap1 (y-300;

Santa Cruz Biotechnology).

Quantitative ChIP Scoring

At each gene knockout position, qRT-PCR primers were designed to amplify

five loci representing one position upstream of the kanMX insertion site, one

position with primers flanking the insertion site, and three positions in the

kanMX promoter, the 50 region, and the gene body, respectively (Figure S2A;

Table S1). To compare these measurements with wild-type, three additional

primer pairs were designed for use on wild-type ChIP extracts, to measure

the corresponding histone modification enrichments on the native gene

sequence for each of ten gene loci. The wild-type primers were positioned

at the insertion site, in the 50 region of the gene, and in the body of the gene.

The quality of each IP was assessed by evaluating the enrichment of a DNA

sequence known to be bound to each protein (positive control) relative tomito-

chondrial DNA (negative control) (Table S1). Immunoprecipitated DNA

samples with at least 20-fold enrichment were selected for further analysis.

In these samples, enrichments for the kanMX sequence were quantified rela-

tive to whole-cell extract using positive control primers as a reference and ex-

pressed as a log2 ratio of enrichment. Normalization using a positive control

accounts for experimental differences between replicates (i.e., how well

nonspecifically bound DNA was washed away), as well as differences in

protein abundance that may arise in different strains. Enrichments for each

antibody were normalized separately. Each set of replicate measurements

was quantile normalized before subtracting histone H3 enrichments.

Correlation with Histone Modifications

To calculate a value representing histone modification levels at the kanMX

promoter, we averaged previously published histone measurements within

a 500 bp window centered at the transcription start site (TSS). A 500 bp

window size recapitulated known genome-wide correlations with native

gene expression most faithfully. Pokholok et al. (2005) examined chromatin

sheared randomly by sonication and, thus, introduce the possibility that

measurements may include modifications from other regions on random,
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long DNA fragments. To guard against such noise, we employed an approach

that examined histone modifications within a 500 bp sliding window centered

at positions from 2 kb upstream of the TSS to 2 kb downstream (Figures S2D–

S2F). We then searched for peaks of correlation between expression and

histone modification that localized over the promoter and TSS.

Yeast Transformation

Transformation to produce yeast strains was performed as described by the

Saccharomyces Genome Deletion Consortium (a derivative of the method

developed in Gietz and Schiestl, 2007) with the following modifications. First,

we added a short incubation (5–15 min) in 5 mM calcium chloride following

heat shock (Pan et al., 2007). Next, whereas the cited protocol calls for strong

selection with G418 (300 mg/ml) after 3 hr of recovery postheat shock, we

plated transformants directly onto rich medium postheat shock and allowed

for recovery overnight at 30�C in order to allow transformants to generate

sufficient kanMX gene product to promote G418 resistance. Transformants

were then exposed to a graded selection procedure, in which cells were first

replica plated onto rich media bearing 50 mg/ml of G418 antibiotic, followed

by replica plating 2 days later onto rich media bearing 200 mg/ml of G418

and growth at 30�C for 2 more days. Colonies larger than 1 mm in diameter

were assayed for correct integration of the kanMX cassette via PCR (Giaever

et al., 2002).
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