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The clinical course of patients with
chronic lymphocytic leukemia (CLL) is
heterogeneous. Several prognostic fac-
tors have been identified that can stratify
patients into groups that differ in their
relative tendency for disease progression
and/or survival. Here, we pursued a
subnetwork-based analysis of gene ex-
pression profiles to discriminate between
groups of patients with disparate risks for
CLL progression. From an initial cohort
of 130 patients, we identified 38 prognos-

tic subnetworks that could predict the
relative risk for disease progression re-
quiring therapy from the time of sample
collection, more accurately than estab-
lished markers. The prognostic power of
these subnetworks then was validated on
2 other cohorts of patients. We noted
reduced divergence in gene expression
between leukemia cells of CLL patients
classified at diagnosis with aggressive
versus indolent disease over time. The
predictive subnetworks vary in levels of

expression over time but exhibit increased
similarity at later time points before
therapy, suggesting that degenerate path-
ways apparently converge into common
pathways that are associated with dis-
ease progression. As such, these results
have implications for understanding can-
cer evolution and for the development of
novel treatment strategies for patients
with CLL. (Blood. 2012;120(13):2639-2649)

Introduction

Chronic lymphocytic leukemia (CLL) is characterized by accumu-
lation of monoclonal B cells in the blood, marrow, and secondary
lymphoid tissues. The clinical course of patients with CLL is highly
variable. Some patients are free of symptoms for many years,
during which time treatment is typically not necessary. For others
the disease is relatively aggressive and requires therapy soon after
diagnosis. Because standard therapies are associated with potential
morbidity and are not considered curative, current recommenda-
tions are to withhold treatment until the patient manifests disease-
related complications or clear evidence of disease progression.!
Several prognostic markers have been defined that can identify
patients with poor prognosis at early stages of the disease. For
example, patients segregate into 2 major subgroups based on
whether their leukemia cells express immunoglobulin heavy chain
variable region (IGHV) genes that have incurred somatic muta-
tions.? Patients with CLL cells that express IGHV lacking muta-
tions generally have more aggressive disease than patients with
CLL cells that express IGHV genes that have incurred somatic
mutations.>* Similarly, patients that have CLL B cells that express
high levels of CD38 or the (-associated protein of 70 kDa
(ZAP-70) progress on average more rapidly than those with
CLL cells that have low or undetectable levels of these proteins.*3
For many cancers, an increasing number of prognostic markers
have been identified through analysis of genome-wide expression
profiles.® Marker sets are selected by scoring each individual gene
for how well its expression level discriminates between different

classes of disease. Several microarray studies have reported sets of
genes that are useful as surrogate markers for known prognostic
factors in CLL, such as the IGHV mutational status.” Other
studies have instead correlated gene expression levels directly with
median time of patient survival or progression-free survival.!%-!!

Despite their promise, expression-based biomarkers continue to
face serious challenges because of their variable accuracy for
predicting patient outcomes.!? Furthermore, the marker sets identi-
fied by different research groups often share few genes in common.
Two landmark studies, Rosenwald and colleagues’ and Klein and
colleagues,® each identified approximately 100 genes that were
expressed differentially by CLL cells that use mutated versus
unmutated IGHV genes. However, only 4 marker genes were
identified in common between these studies. This discrepancy may
reflect the subtle nature of the changes in expression of the
relatively few genes governing disease progression compared with
that of the downstream effectors, which can vary considerably from
patient to patient.!?

As an alternative approach for identifying disease markers,
several groups have integrated gene expression measurements over
sets of genes that encode proteins known to interact within protein
subnetworks or pathway databases.'*?! Such prognostic profiles
are not listings of individual genes or proteins, but the aggregate
expression of subnetworks of genes or proteins within a vast
interaction network. These subnetworks can identify gene expres-
sion differences between different populations of patients that
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account for their diverse clinical behavior and—unlike conven-
tional analysis—the roles of these genes in disease are interpretable
in the context of networks and pathways.

Here, we pursued a subnetwork-based analysis of gene
expression profiles to discriminate between groups of patients
with disparate risks for CLL progression. The clinical character-
ization of patients, blood sample preparation, and microarray
processing all follow the unified protocol implemented by the
Microarray Innovations in LEukemia (MILE) program,?>23
which proposed standards for microarray-based assays in the
diagnosis and subclassification of leukemia. Unlike conven-
tional prognostic algorithms using known factors or gene
markers, we make no assumptions about the time of oncogen-
esis. From these analyses, we identified subnetwork signatures
that changed over time, converging on a high-risk profile
associated with progressive disease requiring therapy.

Methods

Gene expression profiling of peripheral blood from CLL
patients

Leukemia cells were isolated from blood samples of CLL patients enrolled
in the MILE study who had not received prior therapy for CLL, as per the
MILE protocol.?> Expression data were gathered from samples found to
have a CLL cell population with greater than 90% CD5*CDI9", as
accessed via flow cytometry. Total RNA was isolated and hybridized to
Affymetrix HG-U133+2 GeneChips. Of the total of 20 606 genes repre-
sented on the microarray, a total of 15 348 had expression levels that were
reliably detected in at least 8 patients (5% of the University of California,
San Diego cohort [UC San Diego cohort]). For details on microarray hybridiza-
tion and data processing, see supplemental Methods (available on the Blood
Web site; see the Supplemental Materials link at the top of the online article). The
data discussed in this publication have been deposited in NCBI's Gene
Expression Omnibus?* and are accessible through GEO Series accession no.
GSE39671 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39671).

Scoring, searching, and pruning subnetworks

A subnetwork is defined as a gene set that induces a single connected
component in the protein interaction network. Given a particular subnet-
work M, let a represent its vector of activity scores over the patients, and let
T represent the corresponding vector of treatment-free survival (time from
sample collection to treatment [SC—TX]). To derive a, expression values
gij are normalized to z-transformed scores z; which for each gene i have
w = 0and o = 1 over all samples j (supplemental Figure 3). The individual
z;; of each member gene in the subnetwork are averaged into a combined
z score, which is designated the activity «;. The predictive score S(M) is an
estimation of the statistical significance of a as the sole predictor variable on
a patient’s treatment need in a Cox proportional hazard model on
T:H(t)/H(t) = ek, where H(t) is the hazard function at time ¢ and Hy(¢) is
the baseline hazard for an individual when the value of a equals zero. S(M)
is defined as —log P value of a x? test on the above model of the hazard over
a null model of only the baseline hazard. Given the predictive score
function S, a greedy search is performed to identify subnetworks within the
protein interaction network for which the scores are locally maximal.
Candidate subnetworks are seeded with a single protein and iteratively
expanded, with every protein serving as a seed in a separate search. At each
iteration, the search considers addition of a protein from the neighbors of
proteins in the current subnetwork. The addition that yields the maximal
score increase is adopted. After each addition, the search considers deletion
of each protein from the current subnetwork (except those proteins essential
to subnetwork connectivity), and deletions that yield higher score are
accepted. The search ends when no addition or deletion increases the score
over a specified improvement rate r. The parameter r is chosen as 0.1 to
avoid overfitting to the expression data used. To assess the significance of
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the identified subnetworks, 3 tests of significance are performed. In this
study, significant subnetworks are selected that satisfy all 3 tests with
P1 < .05, P2 < .05, and P3 < .00005. For details on estimation of a null
distribution of S by permuting the network and expression data as well as
mergence of overlapped subnetworks, see supplemental Methods.

Prognosis evaluation

Given a set of subnetwork markers, patient samples in a training set are
clustered into 2 subgroups by a 2-means clustering method based on
similarity in activity. The 2 clusters of the training samples are labeled as
low- or high-risk groups according to their treatment-free survival curves in
a Kaplan-Meier analysis. A nearest shrunken centroid classifier? is then
trained on the subnetwork activity matrix (significant subnetworks vs
patient samples) with the risk labels learned from the clustering analysis.
For a new patient of unknown prognosis, the expression profile is first
transformed into a subnetwork activity profile in the same way as for the
training samples. The nearest shrunken centroid classifier assigns the new
activity profile to 1 of the 2 risk groups whose shrunken mean activity of
subnetworks over training samples is more similar to the activity of the new
sample. For gene markers, similar risk stratification and outcome prediction
procedures are performed on the original gene expression matrix.

Subnetwork and gene markers were evaluated using 2 approaches:
(1) cross-validation within the UC San Diego cohort and (2) an independent
validation using this cohort as training data and the European cohort and the
cohort in Friedman and colleagues.?® In the cross-validation, one-fifth of the
UC San Diego samples were designated as “test” data and withheld during
risk-group assignment and classifier training. Subnetwork markers and top
gene markers were identified using only the training data. Each of the
5 patient subsets in the UC San Diego cohort was evaluated in turn as the
test set, while training on the other 4 sets. The risk-group predictions among
the 5 test sets were pooled to plot 2 treatment-free survival curves in a
Kaplan-Meier analysis. In the second validation approach, subnetwork
markers or top gene markers were selected using the whole dataset. Patients
in the independent cohorts were assigned to 1 of the 2 risk groups by the
classifier learned from the UC San Diego cohort. In both validation
schemes, a log-rank test was used to estimate the significance level of the
difference between the survival curves in a Kaplan-Meier analysis.

For details on real-time PCR for serial gene expression and flow
cytometry and immunoblot analyses for protein expression, see supplemen-
tal Methods.

Results

Gene expression profiling of peripheral blood from CLL
patients

We profiled genome-wide mRNA expression of leukemia cell
samples of 130 CLL patients registered at the University of
California San Diego Moores Cancer Center (referred to as the UC
San Diego cohort; see “Gene expression profiling of peripheral
blood from CLL patients”). Lymphocytes were isolated from the
blood samples of patients who had not received treatment before
sample acquisition. We also examined an independent cohort of
17 patients from European sites (Rome and Munich) in the MILE
study (referred to as the European cohort) who had leukemia cell
gene expression profiles that were obtained using the same protocol
as that used with the UC San Diego cohort.

Protein subnetworks stratify CLL patients into different risk
groups

Figure 1 shows the overall process of subnetwork-based disease
prognostics, which involves the integration of expression levels of
genes encoding proteins known to interact with one another (Figure
1A), and then clustering the samples into subgroups based on their
relative subnetwork activities (Figure 1B). Kaplan-Meier survival
analysis then is used to assign low-risk and high-risk labels to each
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Figure 1. Schematic overview of subnetwork identification and definition of risk groups. (A) The expression profile of each gene is projected onto its corresponding
protein in a protein-protein interaction subnetwork. A greedy search is performed to find subnetworks for which the activities are associated with the time from sample collection
to treatment (SC—TX). Significant subnetworks are selected based on null distributions estimated from permuted data. Subnetworks are used to identify disease genes, and
the subnetwork activity is used to characterize the signatures of different risk groups. (B) K-means clustering segregates patients by their distinct subnetwork activity patterns.
(C) Patient clusters are assigned high versus low risk based on median treatment-free probabilities in a Kaplan-Meier analysis.

subgroup (Figure 1C). To define human protein interaction subnet-
works, we assembled a pooled dataset comprising 45 526 experi-
mentally validated interactions among 9800 human proteins,
integrated from yeast 2-hybrid experiments?”-?8 and assessed from
the literature for both protein-protein and protein-DNA binding?°-3+
(see supplemental Methods for details). Of the 15348 genes
reliably detected in CLL, a total of 7589 encoded proteins were
covered in this compiled interaction network. We integrated the
expression values of each gene encoding a protein in the interaction
network, allowing us to consider sets of genes whose aggregate
expression profiles defined a subnetwork “activity” score (see
“Scoring, searching, and pruning subnetworks”).

Using this framework, we searched for subnetworks whose
activity scores across the 130 patients in the UC San Diego cohort
were associated with the treatment-free survival from the time of
sample collection (abbreviated as SC—TX). We identified
38 prognostic subnetworks that satisfied 3 separate tests for
statistical significance, covering a total of 230 genes (see supplemen-
tal Methods). The prognostic subnetworks included proteins in-
volved in WNT signaling® (Figure 2A), sensitivity to apoptosis®
(Figure 2B), cell division (Figure 2C-E,J,N,T), cell-cell communi-
cation (Figure 2K), receptor signaling (Figure 2L.P), resistance to
apoptosis (Figure 2R,T), or cell metabolism?” (Figure 2J,Q,S), all
of which are known or potential factors in CLL pathogenesis.
Clustering of the patients by subnetwork activity resulted in
1 cluster of 54 patients for which the median treatment-free
survival was low and a second cluster of 76 patients for which the
median SC—TX was substantially longer (Figure 3A). Interest-
ingly, we found that the low-risk group could be divided further
into 2 clear subgroups, designated low-risk I and II, with very
different subnetwork activity profiles (Figure 3A). The low-risk I
patients, whose subnetwork profiles were almost perfectly anticor-
related with those of the high-risk patients, were also associated
with longest treatment-free survival SC—TX (Figure 3B).

Twenty-two of the 38 significant subnetworks had increased
activity in the defined high-risk group (referred to as pro-onconets;
eg, Figure 2A-0), whereas the other 16 had decreased activity
(referred to as anti-onconets; eg, Figure 2P-T). Among the protein
functions significantly enriched within the 38 subnetworks, the
majority related to cell metabolism (45.4%), cell survival/
proliferation/death (36.7%), and cell-signal transduction (13.2%,
Figure 3C). Several key signaling proteins implicated in CLL, such
as those encoded by MAPK/ERK, TGFB, CREB, or WNT, were
involved in regulation of multiple subnetworks (Figure 3D, supple-
mental Methods).

Predicting the time of therapy from the date of sample
collection

We next explored the power of the subnetwork markers to predict
the risk for requiring imminent therapy. For this purpose, a patient’s
average gene expression level was calculated for each of the
38 subnetworks; the list of 38 average levels was designated as the
patient’s subnetwork profile. This profile was predicted as “high
risk” if it correlated with the average subnetwork profiles of the
high-risk group better than those of the low-risk group. Conversely,
the patient subnetwork profile was predicted as “low risk” if it
better correlated with the average subnetwork profiles of the
low-risk group.

Cross-validation within the UC San Diego cohort (see “Progno-
sis evaluation”) showed excellent predictive performance
(P =3.5X107% black lines in Figure 4A). A similar cross-
validation procedure was applied using individual gene expression
markers instead of subnetworks. Although these gene-based mark-
ers also held prognostic value (P = 5.24 X 104, gray lines in
Figure 4A), they were significantly less robust than the network-
based approach in predicting risk for disease requiring therapy.
Both prognostics compared favorably with either the IGHV
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mutation status (P = .01) or those reported in previous microarray
studies (the red bars in Figure 5D).

Although cross-validation is a useful starting point, it can inflate
estimates of accuracy because both the training and testing phases
are performed on the same cohort of patients. Therefore, we also
examined the data collected independently on samples collected in
the European cohort. The activity signatures of the 38 subnetworks
identified from the UC San Diego cohort were able to deliver a
robust prognosis on the European cohort (P = .027, Figure 4B).
However, the gene expression markers identified from the UC San
Diego cohort failed to correctly identify patients in this cohort who

were at high risk for requiring therapy (P = .714, Figure 4B). Use
of the IGHV mutation status also failed to segregate these patients
(P = .681 in supplemental Figure 1A). Strikingly, these gene
expression markers actually mis-segregated the high-risk patients
into a subgroup that had a longer treatment-free survival than that
of the other patients (Figure 4B). Furthermore, none of the
10 previously published gene marker sets could stratify patients in
this European cohort into subgroups that differed significantly in
their intervals of SC—TX.

As yet another independent test of prediction accuracy, we
examined an external dataset drawn from a previous study outside


http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl

From bloodjournal.hematologylibrary.org at UNIV OF CALIFORNIA SAN DIEGO on November 13, 2012. For

BLOOD, 27 SEPTEMBER 2012 - VOLUME 120, NUMBER 13

A 130 patients

MMHM[L..UJJJJJJJJ[ML“IJMMLJJJMLIL BC—e T

L p L Alads |

: ..lm " |l|||. Ll

personal use only.

SUBNETWORK-BASED ANALYSISOF CLL 2643

DX — TX

proliferation
&

[ =]
= 2A
£ 0 _ >z death
=
o] ; .
®©T | o R o e oy signalog
5
3 =z 20
metabolism
defined high-risk I defined low-risk
activily
suppressed basal elevated
C Others D
B 473% 0 14
i %] m Proonco-net
defined low-risk | g i = Antionco-net
Proliferation -3; 8
n 30.34%
£ a0 eell eyele miopalymer < 3
= madification 'g
= p-value = 2e-15 calludar nucleatide FHEE
- macromelecula matabaoliem e
= r:serabausrr. regulation Q
@ = - eas e - e - - - pratain : of || L] 1] - - - ]
3 defined low-risk 11 mesahllam “% o " MAPK TGF) CRES Wni ErbB §53 EGF PDGF GUS G2M Allr  MAL
40 4 e W-T1 hosphe - Il‘ L | /
- motsboism FEER protecton TR Signaling pathway Fno
= ] .
s 20 requiation ol_. E
22 metabalism " - - - -
5 defined high-risk — O TV Dﬂﬁ"“!i.ég'sh'"s" Dﬂf‘"“'ié?‘"'"“
b P
! : ! k : opchymer Unmutated IGHYV 32 25
metabalism e e

o 2 4 B a 10
SC — TX (years)

Metabolism
45.35%

p-value = 0.008
Death 6.36%

Signaling 13.21%

Figure 3. Subnetwork signatures of CLL disease progression. (A) Activity of the 38 significant subnetworks (rows) across the 130 patients (columns). The color of each
block scales with the activity level of a subnetwork in a particular patient. Patients are clustered into high/low-risk groups, and subnetworks are clustered into 3 functional
categories (proliferation and death, signaling, and metabolism). Blue bars above the heatmap show the intervals of SC—TX for each sample while green bars chart the
intervals of DX—TX. (B) Kaplan-Meier analysis yields treatment-free probabilities with regard to the 3 risk groups defined by subnetwork activity patterns. (C) Distribution of the
predominant cellular functions associated with the 38 subnetworks. Related functions are clustered into categories named on the outer circle. The marked functions in the inner
circle are associated with at least 2% of the subnetworks. See supplemental Figure 4 for all enriched functions. (D) Top enriched signaling cascades. Bars show numbers of the
38 subnetworks, which have member genes involved in each pathway. (E) Comparison of patient stratification by subnetwork prognosis versus IGHV mutation status.

of the MILE program.?® The subnetwork signature could stratify
patients in this independent patient cohort (P = .035 in Figure 4C).
However, neither the individual gene expression markers nor the
IGHV mutation status (supplemental Figure 1B) were indicative of
SC—TX of patients in this cohort.

Treatment-free survival from the time of sample collection
provides an alternative measure of patient status and cannot
be reliably predicted by gene markers from previous
microarray studies

We found that the low- and high-risk groups defined on SC—TX of
the UC San Diego cohort had a strong association with IGHV
status. Patients with CLL cells that used mutated IGHV genes (with
< 98% germline sequence homology) comprised 63% of the
patients in the low-risk patient group (longer SC—TX), but only
40% of the high-risk group (association P = .008 using a Fisher
exact test, Figure 3E). On the other hand, over one-third of the
patients in each group were categorized differently by the subnet-
work profiles than by IGHV mutation status. However, the risk
groups did not show a significant difference in the length of the
time from diagnosis (DX) to therapy (TX), a commonly used
indicator of disease aggressiveness (abbreviated as DX—TX; see
the green bars in Figure 3A).

We next sought to evaluate whether sets of marker genes
proposed by previous studies were prognostic of SC—TX. On the
UC San Diego cohort, 5 of the 8 CLL marker sets published
previously for their prediction power on DX—TX were able to
segregate patients into 2 risk groups with an acceptable difference
in their median times of DX—TX (P = .01 in 5-fold cross-
validation in Figure 5D). However, none of these sets reached the
same statistical significance in predicting DX—TX as did the
IGHV mutation status. Moreover, none showed prognostic power
on SC—TX. On the other hand, the 2 gene sets, both of which were
from studies that took time of SC into consideration, are prognostic
of SC—TX, but not of DX—TX (the rightmost 2 sets of bars in
Figure 5D), further suggesting the dynamic difference in these
2 time measures.

Transcriptional activity converges between patients of different
IGHV status as disease advances

As in most CLL studies, the time from diagnosis (DX) to sample
collection (SC; abbreviated as DX—SC) varied significantly
among the UC San Diego cohort of 130 patients, which were
assayed at various times after diagnosis, but before therapy (Figure
5A). Approximately 40% of these patients were sampled within
1 year of diagnosis, whereas 16.9% of the patients had samples
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San Diego. Survival analyses on SC—TX are shown for both the low- (dashed lines)
and high- (solid lines) risk groups predicted by subnetwork signatures (black lines) or
by gene signatures (gray lines). (B-C) Survival curves on SC—TX for (B) the
17 European patients or for (C) the patient cohort in Friedman et al.26 The 2 risk
groups are predicted by 2 sets of markers developed on the UC San Diego cohort,
including the 38 subnetworks (black lines) and the top 230 genes (gray lines).

collected 5 years or more after diagnosis. As expected, the patients
in this cohort experienced heterogeneity in the interval of DX—TX,
as well as in the interval of SC—TX (Figure 5B). The samples
collected from patients at an earlier disease phase (“E” in Figure
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5B; defined as having SC—TX > 4 years) displayed different
transcriptional activity than those of patients with an imminent
need of treatment (“L” in Figure 5B; defined as having
SC—TX < 1 year; the leftmost bar in Figure 5C). Such differences
in gene expression could not be fully explained by differences in
the IGHV mutation status of the patients (the second bar from the
left in Figure 5C). This might reflect the fact that some patients
with CLL cells that used mutated IGHV genes provided samples
for these analyses many years after diagnosis, but shortly before
requiring treatment (the “L” black bars in Figure 5B).

Next, we compared the expression profiles of CLL cells that
used unmutated versus mutated IGHV genes and that were
collected at similar disease phases (similar time lengths of SC—TX).
The comparison showed that the level of differential gene expres-
sion between the 2 subgroups became lower as SC approached TX
(Figure 5C middle panel), suggesting that transcriptional differ-
ences between CLL cells of different IGHV mutation status
converged with disease progression. Interestingly, the number of
gene differences between CLL cells that used unmutated versus
mutated IGHV genes at a later disease phase was not significantly
larger than that observed in comparisons between random samples
(Figure 5C rightmost bar).

As expected, patients with leukemia cells that used unmutated
IGHV genes had a shorter median time from DX—TX than did
patients with CLL cells that used mutated IGHV genes (P = 107;
Figure 5D leftmost blue bar). However, the IGHV mutation status
was not predictive of SC—TX for patients whose SC was obtained
more than a year after DX (P = .16, Figure 5D red bar marked by #
sign), reflecting perhaps the fact that IGHV mutation status is a
fixed parameter that does not change over time. As such, even
patients with CLL cells that use mutated IGHV genes ultimately
may progress to requiring therapy, even though they continue to
have the so-called “good” prognostic feature.

Convergence of dynamic CLL subnetwork transcriptome with
disease progression

Thus far, patients were sampled at only 1 time point. To investigate
the correlation between dynamic subnetwork activities and CLL
progression, we next selected an additional 9 patients of various
progression paces and sampled their leukemia cells serially at
2 different time points (SC1 and SC2) after DX, but before TX
(Figure 6A). Some patients had an aggressive activity pattern on
the onconets (high on pro-onconets and low on anti-onconets
relatively soon after diagnosis (patients 7, 8, and 9 at SC1) whereas
the others showed the reverse pattern, reflecting the heterogeneous
nature of CLL disease progression. As disease progressed, 2 more
patients (patients 3 and 6 at SC2) obtained the aggressive activity
pattern on the onconets, suggesting over time the activity patterns
can change in any one patient to converge on what appears to be
that associated with more aggressive disease. As discussed in
Figure 5C, the activity convergence could not be explained by the
static type of clinical factors, such as mutation status of IGHV and
ZAP70 expression.

We further examined the overall activity changes of all the
38 subnetworks in a prior study examining for changes in gene
expression of CLL cells collected from patients at different times
before therapy!'® (Figure 6B). In this study, 13 patients were
profiled at each of 2 time points, 1 obtained at diagnosis and the
other just before therapy. On average, more than half of the
pro-onconets increased in activity between the time of diagnosis
and the time of therapy. Conversely, the anti-onconets decreased in
activity over the course of the disease. Remarkably, among the
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Figure 5. Disparity in gene expression between pretreatment samples collected at various times after diagnosis. (A) Histograms depicting the proportion of patients in
the UC San Diego cohort who had sample collection (SC) at various years after diagnosis (DX), as indicated below the graph. The blue bar indicates the proportion of patients
who had SC less than 1 year after DX. (B) Inverse histograms depicting the proportion of patients in the UC San Diego cohort who had SC at 1 or more years before therapy, as
indicated in the scale above the graph. The samples are considered representative of patients with early-phase disease (“E”) if they were collected more than 4 years before
therapy (green bars), intermediate phase (“I”) if collected 4 or less, but 1 or more, years before therapy (yellow bars), or late phase (“L”) if collected less than 1 year before
therapy (red bars). The black bars in each colored bar depict the proportion of samples collected in that respective year before therapy that had CLL cells with mutated IGHV.
(C) Gene expression differences between different phases of the disease (leftmost panel) and between IGHV subgroups at different phases (middle panel). Bars chart the
mean number of differentially expressed genes from 5 trials of 2-tail ftests on 12 versus 12 samples with Pvalue cutoffs at .05. Permutation tests on the same sample sets were
performed to assess the numbers of false positives (rightmost panel). (D) Treatment-free survival analyses of all 130 UC San Diego patients using published marker sets. Bars
chart the Pvalue of the difference between the low- and high-risk groups, defined by each marker set reported previously. Each marker set is evaluated on both DX—TX (blue
bars) and SC—TX (red bars). Bars with * or # denote P value of the difference between SC—TX for samples segregated via IGHV mutation status when the time from DX—SC

was less than 1 year (*) or more than year (#), respectively.

22 pro-onconets, 11 showed significant activity induction before
therapy (P = .05 from a paired ¢ test in Figure 2A,C-D,G,I-L,N-O);
3 of the 16 anti-onconets were significantly repressed before
treatment (Figure 2R-T).

To verify the relationship between the onconet activity changes
and disease progression, we selected another 30 patients and
performed serial expression of 27 genes by quantitative RT-PCR as
an orthogonal validation tool. We measured expression changes of
genes in a panel of 27 genes in the onconets significantly associated
with disease progression in the data from the study by Fernandez
and colleagues'® (Figure 6A). Genes were selected based on
2 criteria: (1) their inclusion in the predictive subnetworks (pro- or
anti-onconets) related to cell cycle (Figure 2C-D), regulation of
c-MYC (Figure 2E-F)N), G-protein signaling (Figure 2I,L), macro-
molecule metabolism (Figure 2G-H,S), or resistance to apoptosis
(Figure 2R,T), and (2) their differential gene expression observed

in the UC San Diego cohort (more suitable to be quantified by
RT-PCR).

Based on the changes on gene expression in the onconets, the
patients could be segregated into 2 groups (Figure 7A). Cluster 1,
which had samples that increased expression levels of the probed
genes in the pro-onconets over time and decreased expression
levels for the anti-onconets, resembles the transcriptome changes
of the high-risk patients seen on subnetwork analysis of microarray
data. As suggested by the transcriptome changes in the onconets,
patients in cluster 1 indeed had a higher likelihood to be in need of
treatment compared with the rest of the patients (Figure 7B).

To determine whether the activity changes inferred from
transcription have a functional effect on CLL progression, we
selected a MYC-associated subnetwork involved in cell-cycle
regulation (Figure 2E) and examined for changes in protein
expression of some of the genes encoded in that subnetwork over
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time in 16 CLL patients (a subset of patients in Figure 7A; see
supplemental Methods). Several patients had samples with el-
evated expression of c-MYC that increased over time (Figure
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7C-D). Elevated expression levels also were observed in the
samples of such patients in the c-MYC interacting partner encoded
by SMAD?2 (Figure 7D). Another protein TNFRSF7 (Figure 7C)
included in this subnetwork also showed increasing expression
levels over time. Besides the MYC subnetwork, the increase in
expression of subnetworks encoding proteins that promote progres-
sion though the cell cycle, exemplified by CCT4 (Figure 7D),
further suggested that our transcriptome-based subnetworks have
functional implications for disease progression.

Discussion

In this study, we examined for gene expression differences that
could segregate patients who were at different risks for requiring
therapy relatively soon after sample collection. Many of the
prognosis indicators used for segregating CLL patients into differ-
ent risk categories for disease progression defined subgroups that
differed in the median times from diagnosis to initial therapy.
However, many patients are asymptomatic at diagnosis, but are
detected through incidental laboratory findings. Some patients who
receive infrequent medical evaluations may have undetected CLL
for years before diagnosis, potentially shortening the interval
between diagnosis and initial therapy. Taking such uncertainties
and needs into consideration, we sought to identify gene expression
subnetworks that could distinguish patients who soon would
require therapy from those who would have continued indolent
disease after sample collection. Unlike many prior microarray
studies, which segregated patients using established prognostic
markers, we focused on defining markers associated with treatment-
free survival. Support for using this approach came from our
analyses of gene expression differences between samples collected
from patients at different phases of the disease. Samples from
patients segregated using established fixed prognostic parameters,
such as IGHV mutation status, had the most divergent gene
expression profiles when collected within 1 year of diagnosis,
whereas samples collected from patients years after diagnosis had
gene expression profiles that apparently converged on that of
samples from patients with high-risk disease. This observation
suggests that the leukemia might evolve over time into one that has
characteristics of disease requiring therapy, albeit at different rates,
which may depend on factors that differentially segregate with
fixed parameters such IGHV mutation status.

To interrogate for gene expression signatures that might be
associated with disease progression, we used subnetwork-aided
gene expression analysis, which had several advantages over
previous single-gene expression analyses in identifying signatures
associated with CLL disease progression. First, the subnetwork-
based prognosis appeared more robust. When applied to 2 indepen-
dent validation datasets, the subnetwork-based approach could
more reliably stratify patients at different risks for requiring
therapy than the expression signatures of individual marker genes
selected without network information. By summarizing multiple
gene variables into a network of a holistic view, the network-based
prognosis also reduced potential noise when the sample size was
small. Although 1 of the 2 validation cohorts used to confirm the
subnetwork prognosis—the European cohort—is of a small sample
size, the data were collected in the multi-institutional MILE study,
which was the same as that used to collect the data for the training
set (the UC San Diego cohort). The MILE study implemented the
same clinical and experimental protocols at each site. These


http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl

From bloodjournal.hematologylibrary.org at UNIV OF CALIFORNIA SAN DIEGO on November 13, 2012. For

BLOOD, 27 SEPTEMBER 2012 - VOLUME 120, NUMBER 13

personal use only.

SUBNETWORK-BASED ANALYSISOF CLL 2647

A Cluster 1 Cluster 2 Panel of
— e prognostic subnetworks
8T
e 3C, 3D ’
gkrz cell cycle
average
MYC
TNERSE? ]
e 3E, 3F, 3N c
kP MYC Q
IR Q
sfiAb? l c
PFTK1 9
average
CREB3 2
b el =
SR8 G-protein signaling
yee 3G, 3H *
Y '
Cga':e"grg%i }macromolecule metabolism P
]
CEGPA } 3s =
WED : [=]
CEBPB metabolism Q
average =
o
Coroe 3R, 3T =
SERPINBS apoptosis -
average @
relative gene expression of late versus early sample collection
(log2(SC2/SC1))
<-1 0 >1
B o
GVHUM MMMMMMMUMUMMMU
wmm Cluster 2 in Figure TA MYC
" e Cluster 1 in Figure 7A TNERSF7
p= g : : :
@ relative protein expression of late versus early sample collection
'g (SC2-SC1)/SC1
=l
o -10% 10%
@
o
5 IGVH U u u M M
5 MYG ST e ] T e
= SMAD2 === | wme | - | _—— —
CCT4 — e - -— — —
= p-actin ——q-——-!—_!—q—_
(=]
T T T T T T T
0 1 2 3 4 5 8 7

SC2 -> TX (years)

Figure 7. Serial gene and protein expression of example subnetwork genes during disease progression. (A) Gene expression changes in serial samples of
30 additional patients registered at UC San Diego. Rows and columns represent genes and patients, respectively. The color of each block scales with the log2-transformed
ratio of a gene in the earlier sample (SC1) compared with the later sample (SC2) of a particular patient. Both SC1 and SC2 are before TX. The “average” rows illustrate the
averaged expression change of genes in similar subnetworks across patients. Genes participating in similar subnetworks are clustered together and the figures of the
corresponding subnetworks are indexed next to each cluster. Patients are clustered based on their changes on gene expression by a hierarchical clustering dendrogram.
(B) Survival analyses on SC2—TX are shown for both cluster 1 (red line) and cluster 2 (green line) segregated by gene expression changes in panel A. (C) Heatmap of protein
expression changes of MYC and TNFRSF7 measured by flow cytometry in serial samples of 16 patients registered at UC San Diego. Colors represent the percentage of
change in median florescence intensity of a protein in the later sample compared with the earlier sample of a particular patient. (D) Immunoblotting of MYC, SMAD2, and CCT4

in serial samples of 5 patients.

consistencies in patient management and sample processing mini-
mize artifacts resulting from techniques, arrays, or machines,
making the performance on the data from the validation set
highlight the true biologic and clinical values of the subnetwork
prognosis analyses. The strong performance of the subnetwork
prognosis on the validation set of data collected from a center
outside the MILE study?® further strengthens our confidence in the
prognostic values of the subnetwork signatures. Moreover, the
subnetworks identified in this study were significantly superior to
prognostic algorithms developed from analyses of expression
levels of single genes in stratifying patients of other cohorts.
Another advantage to using the subnetworks approach is that
this method provides models of molecular mechanisms, which

might contribute to CLL disease progression. Indeed, the subnet-
work transcriptomes that distinguish the CLL cells of patients who
will or will not require immanent therapy imply that CLL cells
associated with more aggressive disease have higher rates of
metabolism and cell division, but lower resistance to apoptosis,
than CLL cells associated with more indolent disease. For example,
the MAPK/ERK signaling cascade has 20 member genes found in
our subnetworks. Activation of ERK functions in cellular prolifera-
tion and differentiation.® Aberrations in the MAPK/ERK cascade
have been implicated in a high proportion of human cancers and
deregulation in this cascade has been implicated in the generation
of mitogenic signals in essentially all hematologic malignancies.*
The observations of the 5 MYC-participating subnetworks and the
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14 CREB target genes included in the subnetworks also suggest the
impact of MAPK/ERK signaling on CLL disease progression, given
that activation of MAPK can lead to phosphorylation of MYC and
CRERB. Recent studies in both mice and patients reveal the potential
role of MYC in aggressive disease.*04!

Another prominent signaling protein is TGFf3, which induces
apoptosis in numerous cell types.*? It acts as an antiproliferative
factor at early phases of oncogenesis; however, later it might
enhance tumor progression. The participation of TGFf3 in several
pro-onconets implies its promoting role in tumor progression,
consistent with the observation that in vitro addition of TGF3 does
not increase spontaneous apoptosis of B cells in CLL patients,*? but
rather serves as an endogenous growth inhibitor.** The same
numbers of pro-onconets and anti-onconets in our subnetwork
signature include genes involved in TGFp signaling (Figure 3D),
supporting the potential dual role of 7TGFf in CLL development
and progression. Furthermore, the subnetwork signature from
expression analysis also recovers several genes found to have
somatic nonsilent mutations in recent genomic sequencing studies,
including FBXW?7 (Figure 2C) in the NOTCH]I signaling path-
way,* the WNT (Figure 2A) signaling pathway,*® TP53 (Figure 2B)
for DNA damage and cell-cycle control,*’ and SF3BI or XPOI
(Figure 2M), involved in RNA processing or nuclear export of
proteins and mRNAs, respectively.*®

Although genes with known cancer mutations, such as MYC,
TGFp, and TP53, are typically not detected through analysis of
differential expression, they play a central role in the protein
network by interconnecting many expression-responsive genes. We
observed that many known cancer genes were connected with each
other through subnetworks. In all, approximately 27% of the genes
in CLL subnetworks (62 of 230 genes total) were known to be
associated with cancer (hypergeometric P = 2 X 10~ in supple-
mental Figure 2, see supplemental Methods). This fraction was
very high compared with conventional expression analysis, for
which 16.5% of genes (38 of top 230 genes) were known to be
associated with cancer. This higher enrichment was not due solely
to the bias of using literature-curated subnetworks (compared with
random subnetworks in supplemental Figure 2). As one explana-
tion for why subnetwork analysis performs better, we found that the
majority of the cancer genes identified by subnetwork analysis
(49 of 62) did not exhibit an altered expression pattern as the
disease progressed (P > .01 from an univariate Cox hazard model
on SC—TX). Rather, they were included in the subnetworks
because of their connectivity—ie, they were required to intercon-
nect many expression-responsive genes (Figure 2).

It should be recognized that transcriptome-based analyses
cannot distinguish subnetworks that have different activation states
that are not reflected at the level of transcription. This might be the
case for subnetworks involving the T-cell leukemia 1 (7CLI)
proto-oncogene. Consistent with previous reports,**-° the expres-
sion of TCLI correlated modestly with disease progression (P = .01
from an univariate Cox hazard model) in the larger UC San Diego
cohort. However, TCLI did not show up in any of the onconets,
probably because the expression of genes encoding the proteins
interacting with TCL1, including 3 AKT kinases, did not change
with disease progression (P > .5 from an univariate Cox hazard
model). Instead, the activity of this and other such subnetworks
may be governed at a posttranscription level.

The success of correlating treatment-free survival from the date
of sample collection with CLL subnetwork transcriptome suggests
the association between inner cell states and the disease phase,
suggesting that there might be changes in the leukemia cell
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population over time. Alternatively, there might be emergence of
subclones from the tissue microenvironment that express different
subnetworks,*! providing for greater growth and/or survival charac-
teristics that allows them to overtake leukemia cell subpopulations
that express subnetworks associated with indolent disease.

The idea of cancer as an evolutionary process is not new,’! but
little attention has been drawn on the applications of understanding
and predicting neoplastic progression. The association observed
here between treatment-free survival and the subnetwork transcrip-
tome supports the notion that transcriptional activity of these
subnetworks contributes to, or results from, the dynamic evolution
of leukemic cells. With proper normalization on the diverse clinical
courses between patients, we found considerable differences in
gene expression between CLL cells that use mutated versus
unmutated IGHV genes at diagnosis that diminishes as the disease
progresses to the point of requiring therapy. That the transcriptome
difference fades when the 2 subgroups progress, albeit at different
rates, supports the idea of cancer evolution.

Putting these together, we rechallenge the “2 distinct disease”
hypothesis and speculate that (1) the CLL disease transcriptome
evolves over time to reach a state associated with disease requiring
treatment, (2) leukemia cells that use unmutated IGHV genes have
a higher risk for rapid evolution to develop the transcriptome
associated with disease requiring treatment, and (3) the transcrip-
tome of leukemia cells that use mutated IGHV genes transforms
gradually to a subnetwork transcriptome similar to that of leukemia
cells that use unmutated IGHV genes before therapy. Regardless of
their IGHV mutation status, our serial patient samples (as well as
those in a previous longitudinal CLL study), demonstrate elevated
expression of the pro-onconets and declining expression of the
anti-onconets in the identified subnetwork signature over time,
further suggesting that degenerate pathways may converge into
common pathways that govern disease progression.
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