
Genomic technologies have spawned numerous 
research efforts to decipher the molecular basis of 
disease, producing ever-increasing amounts of ‘omics’ 
data. Identifying significant patterns in these data has 
become a central challenge in genetics and medicine 
and involves dealing with noisy and incomplete obser-
vations, which requires the integration of multiple data 
types within a single analysis framework. A promising 
approach to overcome these hurdles and to boost the 
signal-to-noise ratio is to analyse the data in the con-
text of molecular networks, be they physical, genetic, 
co-expression or other networks1.

A molecular network model consists of nodes, rep-
resenting molecules such as proteins, and edges that 
connect the nodes, representing pairwise relation-
ships between the corresponding molecules, such 
as protein–protein interactions (PPIs). It serves as  
a convenient computational model for molecular data 
owing to its generality, representation simplicity and 
power to detect complex patterns, such as clusters, 
which cannot be readily gleaned from the pairwise 
data2.

In the context of genetic association, early network 
analysis methods relied on the principle of ‘guilt by 
association’, based on observations that a gene or pro-
tein shares many molecular and phenotypic character-
istics with its direct interactors3. Generalizing beyond 
direct connections to the concept of a local network 
neighbourhood has led to a plethora of methods for 
finding clusters or modules in a network4; however, 
module-based approaches were found to be less effec-
tive than ‘direct’ methods at associating proteins with 
their functional roles5,6.

Recently, a new group of methods accounting for 
the global structure of the network has emerged as 
the state-of-the-art in genetic association7,8. At the 
heart of these methods lies the common paradigm 
of network propagation, which amplifies a biological 
signal based on the assumption that genes under-
lying similar phenotypes tend to interact with one 
another9. To this end, prior information associat-
ing genes with a phenotype of interest (for example, 
membership in a biological process or the presence of 
polymorphisms linked to a disease) is super imposed 
on the nodes of the network. The information is 
then propagated through the edges to nearby nodes 
in an iterative manner for a fixed number of steps or 
until convergence. The final value of a node is influ-
enced by the values of its direct network neighbours, 
which in turn are affected by their neighbours, and 
so on. New nodes that were not included in the prior 
information can nonetheless be associated with the 
phenotype, with their propagation values reflecting 
proximity to the prior nodes (FIG. 1).

Because this propagation paradigm is very pow-
erful, it has been discovered and re-discovered in 
numerous fields under different guises10–14. For exam-
ple, graph theoreticians investigate random walks on 
graphs11,15; the data science community applies var-
iants of the Google PageRank search algorithm12,16; 
statistical physicists study heat diffusion processes17,18; 
electrical engineers compute minimum energy states 
within an electrical circuit14,19; and the machine- 
learning community considers different forms of 
graph kernels20. In biology, these different formulations 
of network propagation have been used for various 
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Nodes
The objects modelled by  
a network. In biological 
networks, nodes can represent 
proteins, genes, metabolites, 
RNA molecules, or even 
diseases and phenotypes.

Edges
Relationships between pairs of 
nodes in a network, for 
example, molecular 
interactions between the genes 
or proteins that correspond to 
these nodes. Two nodes 
sharing an edge are said to be 
adjacent, neighbours, or 
directly connected by it.

Network propagation: a universal 
amplifier of genetic associations
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Abstract | Biological networks are powerful resources for the discovery of genes and genetic 
modules that drive disease. Fundamental to network analysis is the concept that genes 
underlying the same phenotype tend to interact; this principle can be used to combine and to 
amplify signals from individual genes. Recently, numerous bioinformatic techniques have been 
proposed for genetic analysis using networks, based on random walks, information diffusion and 
electrical resistance. These approaches have been applied successfully to identify disease genes, 
genetic modules and drug targets. In fact, all these approaches are variations of a unifying 
mathematical machinery — network propagation — suggesting that it is a powerful data 
transformation method of broad utility in genetic research.
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Network propagation
A family of stochastic 
processes that trace the flow of 
information through a network 
over time.

Random walks
Mathematical formalization of 
the paths resulting from taking 
successive random steps. 
Classical examples of random 
walks are Brownian motion, the 
fortune of a gambler flipping  
a coin or fluctuations of the 
stock market. In the context of 
networks, a random walk 
typically describes a process in 
which a ‘walker’ moves from 
one node to another with  
a probability that is 
proportional to the weight of 
the edge connecting the nodes.

Kernels
Symmetric similarity functions 
with the property that one can 
assign vectors (in some 
abstract space) to its 
arguments such that the 
similarity of two elements is 
the dot-product between their 
corresponding vectors.

Disease module
A network module, the 
member genes of which are 
associated with a particular 
disease.

applications, including gene function prediction6,21, 
module discovery22, disease characterization23,24 and 
drug target prediction25.

In this Review, we discuss these different methods 
and their applications, focusing on network propaga-
tion as a unifying paradigm. We start by describing 
network propagation and outlining its suitability for 
network analysis. We then review early applications of 
this approach to biological research, primarily to the 
problem of protein function prediction. The focal part 

of this Review describes the applications of network 
propagation to analyse human diseases, including 
gene prioritization, disease module discovery, disease 
subtyping and drug target prediction.

Why network propagation?
Often in disease genetics, we are given a list of genes 
that previous studies have shown are associated with  
a disease (for example, by genome-wide association 
studies), and we wish to prioritize other genes that 

Figure 1 | Schematic illustration of network propagation. a | A step‑by‑step demonstration of network propagation. 
The propagation process is depicted at different time points until convergence (steady‑state (t =∞)). Arrows depict the 
direction of the flow or walk. Nodes are colour‑coded according to the amount of flow that they receive. D indicates nodes 
that are known (square node) or that are predicted (circular node) to be associated with a disease phenotype. b | Example 
network with initial high scores for two of nine nodes (step 0, nodes A and H; score shown by colour bar). These scores are 
allowed to propagate over stepwise iterations 0–9; note that convergence is reached by approximately step 5 and thus 
the colours do not change markedly in subsequent steps. c | Illustration of a biological network with gene scores before 
and after propagation, performed independently for two data sets (profile 1 and profile 2). Propagation results in greater 
concordance between the data sets, as is evident from the greater number of green nodes (dashed oval). Part c is adapted 
with permission from REF. 89, Macmillan Publishers Limited.
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False positives
Error in prediction whereby 
negative examples are 
predicted to be positive. For 
example, when predicting 
disease genes, a false positive 
would correspond to a 
non-disease gene that is 
wrongly predicted to be 
disease-related.

False negatives
Error in prediction whereby 
positive examples are 
predicted to be negative. For 
example, when predicting 
disease genes, a false negative 
would correspond to a disease 
gene that is missed and 
predicted to be unrelated.

Edge weight
An abstract measure of the 
‘strength’ of the connection 
between a pair of nodes in  
a network, typically 
represented as a real number 
between 0 and 1.

may be associated with that disease. Given a network 
of interactions among these genes (such as a previ-
ously measured PPI network), we invoke the principle 
that disease- related genes are more likely to have bio-
logical interactions with each other than with randomly 
chosen genes.

A straightforward analysis approach might be to 
predict that all the direct neighbours of disease genes 
in the network are also disease genes26 (FIG. 2a; left 
panel). However, such a naive approach would poten-
tially introduce false predictions (false positives) that are 
connected to disease genes by irrelevant edges; it would 
also miss genes (false negatives) that do not directly 
interact with known disease genes, even if such genes 
are well connected to the known genes through mul-
tiple longer paths (FIG. 2a,b). To address this issue, one 
could examine longer paths in the network and could 
define the distance between pairs of genes by the length 
of the shortest path between them. One could then pri-
oritize new genes on the basis of their distance to the 
prior list27 (FIG. 2a; middle panel). However, the diffi-
culty with this approach is that many genes will be near  
disease genes owing to the ‘small world’ property of 
most biological networks28; that is, the property that 
most nodes can be reached from every other node in 
a small number of steps. Thus, such an approach might 
return many false-positive genes that connect to disease 
genes through paths that contain irrelevant or erroneous 
interactions (FIG. 2a,b).

Network propagation offers a more refined approach 
by simultaneously considering all possible paths between 
genes (FIG. 2a; right panel). The application of network 
propagation to gene ranking can thus overcome some 
of the difficulties associated with shortest path-based 
approaches (FIG. 2a,b). Specifically, potentially spurious 
predictions (false positives) that are supported by a single 
(shortest) path are down-weighted, and true causal genes 
that are potentially missed, even though they are well 
connected to the prior list (false negatives), are promoted.

To illustrate the power of network propagation in a 
different application, we consider the problem of pre-
dicting genes that when somatically mutated contribute 
to the growth and development of cancer. Given the fre-
quency of somatic mutations in genes across a cohort 
of patients with cancer, one approach to distinguish 
cancer-causing ‘driver’ genes from randomly mutated 
‘passenger’ genes is to rank the genes according to their 
mutation frequency across patients29. However, ranking 
genes by mutation frequency alone performs poorly 
because driver and passenger genes can be mutated at 
similar frequencies, particularly in cohorts of a modest 
size30. However, by ‘smoothing’ the mutation frequen-
cies across the network using a propagation process, the 
resulting predictions become highly significant because 
cancer driver genes tend to cluster in the network31 
(FIG. 2c).

A unifying formulation
Network propagation describes multiple techniques that 
follow the same underlying strategy (BOX 1). Suppose we 
have a partially labelled network, in which the labels on 

the nodes correspond to genes that are known to have 
certain molecular or phenotypic properties that are likely 
to be shared with genes in their local network neighbour-
hood. Consider the following propagation or diffusion 
process (FIG. 1a): a label is replaced with a certain amount 
of fluid, and at each time step the fluid flows to the neigh-
bours of the corresponding node, either in equal propor-
tions (in an unweighted network) or proportional to its 
edge weight. Then, halt this process after a small number 
of steps, when most of the fluid is still close to the original 
(labelled) nodes. We estimate that an unlabelled node has 
the property in question with a probability proportional 
to the amount of fluid that reached it from the labelled 
nodes. Despite its conceptual simplicity, the propagation 
process has several desired properties that account for 
the global structure of the network: first, it can score dis-
tant nodes that are not direct neighbours of the labelled 
nodes, as fluid will also reach those nodes; second, the 
process automatically adjusts for local connectivity, in the 
sense that nodes that are well connected through many 
short paths to the labelled node will receive more fluid; 
and third, the process automatically deprecates paths 
that go through highly connected or hub nodes, because 
in such paths the fluid will diffuse through to the many 
neighbours of the hub and so each neighbour will only 
receive a small share.

As formulated above, the propagation process is not 
informative if it is run for too long, because the fluid 
will eventually spread out over the whole network and 
will no longer capture the local neighbourhood of the 
labelled nodes. As an alternative to halting the process 
after a small number of steps, the random walk with 
restart (RWR) formulation adds a reset parameter: at 
each step of the propagation process, with some fixed 
probability (the restart value), rather than the fluid at  
a node continuing to propagate, it is returned to the orig-
inal source node. This restart value serves as a damping 
factor on long walks, so that the fluid that reaches a node 
exponentially decreases on the basis of its distance from 
the source. This version has the advantage that the prop-
agation process can be run to a steady state, and that the 
diffusion is confined to the local neighbourhood even at 
steady state (FIG. 1b).

The description thus far assumes that propagation 
to neighbours occurs at discrete time steps. However, 
some formulations of network propagation, particularly 
in physics, model a continuous fluid flow over time. In 
a formulation of network propagation in which the pro-
cess is halted after a fixed number of discrete time steps, 
the amount of fluid that ends up at all network nodes 
can be computed by direct simulation. In formulations 
in which the underlying propagation process is contin-
uous and/or in which one seeks to measure the amount 
of fluid at steady state, the result can be computed using 
classical matrix algebra (BOX 1).

We note that network propagation is inherently 
directed, as the fluid flows away from the source nodes; 
thus, the propagation result at node i when diffusing 
from node j may differ from the propagation result at 
node j when diffusing from node i. However, the under-
lying network over which the propagation process is run 
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is typically assumed to be undirected32, either because 
it models undirected relationships (such as co-complex 
membership) or because of missing information about 
edge directions (which is the case for most PPIs33).  
The asymmetry in the propagation process has moti-
vated the development of several variants of network 

propagation to symmetrize this process, yielding ker-
nels that can be easily incorporated into standard 
machine-learning pipelines. Nevertheless, some net-
works are naturally directed, such as signalling and 
regulatory networks. Although the basic network prop-
agation paradigm can be adapted to the directed case 

Figure 2 | Network propagation for discovery and prioritization of 
disease genes. a | A schematic example in which a single disease gene 
(orange) is used to identify additional disease‑related genes; known 
disease genes are denoted by D. Predicting the involvement of the direct 
interactors of this gene (yellow; left panel) leads to many false positives, as 
well as to a false negative (shown in the two other panels). Looking at more 
distant neighbours that are up to two steps away (yellow; middle panel) 
again introduces many false positives. Network propagation overcomes 
these problems by simultaneously considering all paths between genes 
(yellow; right panel). b | A real example of a protein interaction network 
that is associated with bare lymphocyte syndrome type 1. Propagation of 
the signal from any of the three known disease genes (red) ranks the other 
known disease genes very highly, owing to the many paths between them. 
Genes in yellow are ranked highly by alternative network analysis methods 

(which consider direct neighbours or shortest paths); however, these are 
false positives. c | Receiver operating characteristic (ROC) curves for 
recovering known cancer genes defined by the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) glioblastoma pathway101. Performance over 
a set of 591 glioblastoma samples is shown for four different gene rankings 
according to differential mRNA expression between the tumour and 
normal samples (green)102, somatic mutation frequencies in tumours 
(black)102, network‑propagated differential mRNA expression (mean 
across samples; blue) and network‑propagated somatic mutations (mean 
across samples; red). Both network propagation variants considerably 
outperform their frequency‑based counterparts (compare the blue curve 
to the green curve, and the red curve to the black curve). Part b is 
reproduced with permission from REF. 73, Elsevier. Part c is reproduced 
from REF. 31, Elsevier.
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Adjacency matrix
A matrix representation of a 
network such that the (i,j) entry 
denotes whether nodes i and j 
are adjacent (in which case its 
value is 1) or not (value 0).

Box 1 | The mathematics of network propagation

Network propagation encompasses related and, in certain cases, mathematically equivalent techniques, including random 
walks on a graph, diffusion processes on a graph and current computations in electric networks (see the table). The starting 
point is a vector p0(v) of scores on genes representing our prior knowledge or experimental measurements. For example, 
we could set p0(v) = 1 for known disease genes and p0(v) = 0 for all other genes. Alternatively, we could set p0(v) to represent 
some measure of confidence in the role of v in a disease, for example, its frequency of somatic mutations when studying 
cancer cohorts. Conceptually, one can think of p0(v) as an amount of heat, fluid or information that diffuses (or flows) over 
the edges of the network. At each time point k, the amount of information at each node v depends on the sum of the 
information at the neighbouring (adjacent) nodes N(v) at time k−1, in proportion to the weights on the corresponding 
edges, according to the following equation:

 (1)

where w(u,v) is the (normalized) weight or the confidence of the interaction between u and v. If we run this process for  
k steps, then the values in the resulting vector pk(v) give us a ranking of each node. When k is small, the ranking is close to 
the initial distribution p0(v), but when k is large, the information diffuses away from the initial distribution and reflects the 
network topology.

The propagation process described in Equation 1 can be written in matrix notation as follows:

pk = Wpk–1 (2)

where W is a normalized version of the adjacency matrix of the network of interest. Repeated iteration of this equation 
yields pk = Wkp0, where p0 represents our initial, or prior, information on genes. If W is a stochastic matrix, that is, its columns 
sum to 1, this process is equivalent to a random walk on the network, where a walker traverses the nodes, each time moving 
to a random neighbour of the present position with a probability given by (the transpose of) W. Alternatively, we can view 
the edges as representing conductance in an electric network with some designated source and target. If one unit of 
current flows through the source, then the amount of current flowing through any edge is the frequency with which  
a random walker traverses that edge on the way from the source to the target.

Another version of the propagation process is the random walk with restart (RWR; also known as insulated diffusion and 
personalized PageRank):

pk = αp0 + (1–α)Wpk–1 (3)

where the parameter α describes the trade-off between prior information and network smoothing. When the network is 
connected and the eigenvalues of W are at most 1 in absolute value, then this process can be shown to converge to  
a steady-state distribution:

p = α (I– (1–α)W )–1 p0 (4)

Different variants may use different ways of defining W based on the adjacency matrix A of the network (which could be 
weighted or unweighted) and the diagonal degree matrix D, the diagonal entries of which hold the node degrees and all 
other entries are 0. The random walk above uses W = AD−1. Other approaches set W to D−1/2AD−1/2, which also satisfies the 
convergence conditions.

In both cases, the final ranking can be obtained from the initial ranking by matrix multiplication: if we denote by  
p either the steady-state distribution or the diffusion at some time point k, then p = Sp0 for some appropriately defined 
matrix S. This matrix can be interpreted as a (potentially asymmetric) similarity matrix, in which each entry Sij gives the 
amount of information propagated to node i, given that the initial ranking p0 is an elementary vector with 1 at entry j and 
0 elsewhere.

Furthermore, if S is symmetric and positive semi-definite, then S defines a kernel. For example, the diffusion kernel is the 
continuous-time analogue of RWR, where S = e−αW and W = D − A is called the network’s Laplacian matrix. The kernel 
framework for interpreting S is a useful one, because kernels can be easily plugged into general machine-learning 
algorithms for classification and regression.

The propagation variants described above can be readily generalized to weighted networks, but the situation with regard 
to directed networks is more complex. Although PageRank and personalized PageRank were developed and studied in  
a directed setting, the closed forms for the RWR steady-state and kernel formulations given above only hold for the 
undirected case. Chung99 defined a natural analogue of the Laplacian matrix for directed graphs and used it to study the 
rate of convergence of random walks in the directed case. Other strategies for dealing explicitly with directed edges are 
surveyed in REF. 100.

Name Similarity matrix Weight normalization Equivalent methods

Random walk Wk W = AD−1 Electric network

Random walk with restart α(I − (1 − α)W)−1 W = AD−1; W = D−1/2AD−1/2 Insulated diffusion;  
personalized PageRank

Diffusion kernel e−αW W = D − A Heat kernel

k denotes the number of time steps; A denotes the adjacency matrix, which could be weighted or unweighted; D denotes the 
diagonal degree matrix; α is the smoothing parameter

pk(v) = pk–1(u)w(u, v)Σ
u∈N(v)
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Orthology
The evolutionary relationship 
between two genes in two 
species that have descended 
from a common ancestor.

(that is, to send fluid only along outgoing edges)34, the 
associated algorithmics and the utility of the propagation 
process in this setting are still active areas of research.

Application to protein function prediction
Network propagation has a decade-long history in bio-
logy, and among its earliest applications were techniques 
for detecting homology between protein sequences. 
For example, the Rankprop algorithm35 applied net-
work propagation to predict protein-fold classes on  
a multi-species network based on protein sequence 
similarity; importantly, it was shown to outperform the 
yardstick PSI-BLAST algorithm, a profile-based rank-
ing approach. Rankprop was later extended to account 
for amino acid sequence motifs36 and PPI information37. 
Similar ideas were used by Isorank38 and its follow-up, 
IsoRankN39, to predict functional orthology by aligning 
PPI networks from multiple species.

This early success of network propagation and related 
approaches40–42 led to the development of numerous 
propagation-based algorithms for protein function pre-
diction (TABLE 1). These algorithms can be categorized 
based on whether they operate on a single network (with 
edges of potentially multiple types) or whether they inte-
grate propagation information from multiple networks 
using machine-learning techniques.

Protein function prediction using a single network. In 
the most common prediction scenario, a single network 
is used to estimate the functional similarity between 
proteins. The proposed approaches differ in the prop-
agation variant and in the type of networks used. For 
example, Can et al.43 used RWR for a fixed number of 
time steps to predict pathway and co-complex member-
ships based on a PPI network: the number of times the 
walk landed on a protein when it was started at a ran-
dom known member of the pathway or complex was 
used to rank all the other proteins as potential members 
of that pathway or complex. Voevodski et al.44 suggested 
a PageRank affinity measure, which takes the minimum 
of the two random walks between a pair of proteins (that 
is, from the first protein to the second protein and vice 
versa) as a measure of how likely they are to be members 
of the same protein complex. Suthram et al.45 used the 
electrical circuit formulation of network propagation to 
pinpoint genes that underlie expression variation. To 
this end, they modelled the flow of information from  
a potential source gene to target genes as electric  
currents through a protein network.

In the previous examples, the computations were 
done with respect to a PPI network in which it is 
assumed that the shorter the path between two pro-
teins the more likely the proteins are to share similar 

Table 1 | Software tools based on network propagation

Tool Goal Type Platform Web site

Function prediction

DSD48 and 
capDSD34

Function prediction Single network Web server and 
software for download

http://dsd.cs.tufts.edu/server/ and http://dsd.cs.tufts.
edu/capdsd

GeneMANIA 103 Function prediction Single network Cytoscape plugin http://apps.cytoscape.org/apps/genemania

Mashup56 Function prediction Integrative Software for download http://mashup.csail.mit.edu/

RIDDLE70 Function prediction Single network Web server http://www.functionalnet.org/RIDDLE/

Disease characterization

CATAPULT82 Gene prioritization Integrative Web server and 
software for download

http://marcottelab.org/index.php/Catapult

Cytoscape 
‘diffuse’ service104

General propagation 1D and 2D Software for download • http://cytoscape.org
• Native in version 3.5 and greater

DADA80 Gene prioritization 1D Software for download http://compbio.case.edu/dada/

Exome Walker72 Gene prioritization 1D Web server http://compbio.charite.de/ExomeWalker

GUILD105 Gene prioritization 1D Software for download http://sbi.imim.es/web/index.php/research/software/
guildsoftware

HotNet2 (REF. 30) Module detection 2D Software for download http://compbio.cs.brown.edu/projects/hotnet2/

NBS89 Patient stratification Integrative Software for download http://chianti.ucsd.edu/~mhofree/NBS/

NetQTL79 Gene prioritization and 
module detection

1D Software for download https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/
index.cgi#netqtl

PRINCIPLE106 Gene prioritization and 
module detection

1D Cytoscape plugin http://www.cs.tau.ac.il/~bnet/software/PrincePlugin/

SNF90 Patient stratification Integrative Software for download http://compbio.cs.toronto.edu/SNF/SNF/Software.html

TieDIE91 Module detection Integrative Software for download https://sysbiowiki.soe.ucsc.edu/tiedie

ToppGene107 Gene prioritization 1D Web server https://toppgene.cchmc.org/

capDSD, confidence, augmented pathway diffusion state distance; CATAPULT, combining data across species using positive‑unlabeled learning techniques; DADA, 
degree‑aware disease gene prioritization; DSD, diffusion state distance; GeneMANIA, multiple association network integration algorithm; GUILD, genes underlying 
inheritance linked disorders; NBS, network‑based stratification; PRINCIPLE, prioritization and complex elucidation implementation; RIDDLE, reflective diffusion and 
local extension;SNF, similarity network fusion; TieDIE, tied diffusion through interacting events.
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Classifier
A machine-learning algorithm 
that predicts the class of  
a sample given some 
characteristics of it. For 
example, a classifier can aim to 
distinguish between disease 
and non-disease genes based 
on their network proximity to 
known disease or non-disease 
genes.

Network modules
Regions of a network with 
some topological property; for 
example, a set of nodes that 
densely interact with one 
another.

Node degree
The number of other nodes 
that are adjacent (that is, 
directly connected) to a node.

functional roles. By contrast, in genetic interaction net-
works, the length of a path may depend on the type 
of relationship between two proteins. In particular, 
co-complex relationships might be characterized by 
even-length paths, as genetic interactions were found 
to be particularly enriched between genes belonging to 
different pathways or complexes (implying that genes 
from the same complex are likely to have even-length 
paths between them)46. This observation led Qi et al.47 
to devise a parity-aware variant of network propaga-
tion that takes into account odd-length versus even-
length paths to predict genetic interactions and protein 
co-complex memberships47.

Beyond the direct applications of network propaga-
tion, the diffusion state distance (DSD) of Cao et al.34,48 
represented each node (that is, protein) by a vector record-
ing its expected random walk distance to all other nodes, 
and defined a distance measure between these vectors. 
The authors then predicted the function of a protein based 
on the known functions of the proteins that were closest to 
it in DSD. Similarly, Compass49 used a symmetric version 
of network propagation to quantify the functional similar-
ity between proteins and to thereby predict protein func-
tion. Finally, GeneMANIA50 used a two-stage prediction 
process, in which multiple sources of data are first com-
bined into a single function-specific association network, 
and then a propagation-based approach is applied to the 
resulting network to predict gene function.

Propagating over multiple networks for protein func-
tion prediction. When multiple protein networks are 
available, rather than merging them into a single net-
work, several methods have been proposed that sepa-
rately propagate information on each network and then 
integrate the results to increase the confidence in the 
subsequent predictions. For example, Peng et al.51 car-
ried out random walks across three different networks 
(representing PPIs, functional similarity and domain 
co-occurrence), combining the propagated scores after 
each propagation step as an input to the next step. More 
sophisticated machine-learning methods were used by 
Lanckriet et al.52, Lee et al.53 and Tsuda et al.54,55 who fed 
the network propagation results as an input to a pro-
tein function classifier. Recently, Cho et al.56 and Wang 
et al.57 have introduced the Diffusion Component 
Analysis method. Their starting point was RWR, but 
they then applied a dimensionality reduction technique 
to reduce the dimension of the propagation results in a  
way that well-approximates the RWR matrix. They 
argued that the low-dimensional representation is less 
sensitive to noise in the network. This scheme was also 
generalized to handle multiple molecular networks 
simultaneously, producing state-of-the-art results in 
predicting gene function and genetic interactions56.

Other important work includes the use of network 
propagation to discover network modules, or communi-
ties, in a PPI network58–60. For example, Macropol et al.60 
ranked nodes (representing proteins) using RWR to 
greedily grow candidate modules; each time, the highest 
scoring node with respect to RWR from the members of 
a current module was added to the module. This process 

continued until the score of the node to be added fell 
below a pre-set threshold or until a maximum number 
of nodes had been reached.

Network propagation has also been used, although 
to a lesser extent, in many other applications. These 
applications include ranking differentially expressed 
genes61, predicting gene essentiality and pleiotropy (that 
is, association with multiple phenotypes)62,63, identifying 
signalling-regulatory pathways64,65, predicting drug side 
effects66, reducing noise in PPI networks67,68, defining 
functional similarity69 and predicting functional asso-
ciations of unannotated gene sets70. This diverse set of 
applications underscores the generality and utility of the 
propagation technique.

Application to human disease
Capitalizing on the multiple successful biological appli-
cations, network propagation techniques are now being 
applied to the study of human diseases (TABLE 1). These 
applications can be classified into three broad cate-
gories (FIG. 3): 1D methods that seek to score genes;  
2D methods that score gene–gene similarities and that 
use these scores to derive gene modules; and integrative 
approaches that combine multiple 1D computations 
using multiple data sources.

Scoring genes with 1D network propagation methods. 
The first applications of network propagation to study 
human disease were for gene prioritization. Multiple 
researchers71–77 aimed to predict causal genes for a dis-
ease by starting from known causal genes of similar 
diseases (known as ‘seeds’) and applying network propa-
gation to prioritize genes based on their proximity to the 
prior seed set. Although the techniques varied slightly 
in the way the propagation or diffusion was carried out, 
the same propagation engine was common to all. For 
example, Nitsch et al.78 suggested different random walk 
models for gene prioritization based on differential gene 
expression data, and found that the standard network 
propagation technique (which they named heat kernel 
diffusion ranking) performs best78. In another example, 
Kim et al.79 used an electrical circuit model to find phys-
ical pathways that connect copy number variations of 
potentially causal genes to mRNA expression changes of 
target genes between disease and control cases. Applying 
their approach to glioblastoma data, they were able to 
uncover candidate causal genes and pathways that 
potentially explained the expression changes.

The disease gene prioritization framework was later 
extended in several ways. The DADA approach80 cor-
rected for bias in prioritization scores that was due 
to network topology (that is, the overall arrangement 
of the nodes and edges in the network) by estimat-
ing the significance of each score while explicitly 
accounting for node degree. Erten et al.81 applied a 2D 
method for gene prioritization, in which each gene 
was scored by its similarity to every other gene in a 
PPI network based on network propagation. These 
scores were then used to rank candidate genes by their 
similarity to known disease genes. The main novelty 
in this work compared with previous 1D approaches 
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Similarity matrix
A matrix with rows and 
columns that represent the 
same set of objects such that 
the (i,j) entry denotes some 
similarity measure (for 
example, as obtained from 
network propagation) between 
the corresponding elements.

is that candidate genes are evaluated based on their 
topological similarity to disease genes rather than on 
their proximity. Singh-Blom et al 82. developed the 
CATAPULT (combining data across species using 
positive-unlabeled learning techniques) algorithm82 
that applies a ‘truncated’ version of network propa-
gation (considering walk lengths of up to six steps) 
on a hybrid network that contains both genes and 
pheno types; the authors argue that longer paths are 
less informative than shorter paths, with the contri-
bution of paths to similarity scoring becoming less 
substantial with increasing path length. The resulting 
scores of paths of different lengths and edge types were 
rigorously combined by feeding them as features to a 
classifier of gene–phenotype associations.

Deriving gene modules using 1D and 2D network 
propagation methods. Complex diseases are thought 
to be caused by disease modules, which comprise 
multiple genes that function together to drive specific 
cellular processes. Network propagation methods were 
shown to be instrumental in the inference of disease 
modules83 and have been used in two different modes. 
The first (1D) mode operates by projecting the gene-
based scores on a functional, or physical, interaction 
network, seeking dense regions of this network that 
span high-scoring genes74,84,85. The second (2D) mode 
instead operates on the similarity matrix that records the 
propagation value of every protein when using every 
other protein as a single prior (BOX 1). This similarity 
matrix is clustered in various ways to reveal disease 
modules. This approach was used by the HotNet86 and 
HotNet2 (REF. 30) algorithms to find modules of somatic 
mutations in cancer and modules of common variants 
in complex diseases87. HotNet and HotNet2 differ in 
the diffusion processes and clustering algorithms that 
they use, with HotNet2 accounting for the asymmetry 
in the similarity matrix that results from propagation. 
FIGURE 4a demonstrates the power of this approach in 
detecting modules whose individual genes  are not nec-
essarily highly mutated but co-occur in close proximity 
on the propagated network.

Combining multiple data sets with integrative network 
propagation methods. In addition to the 1D gene prior-
itization and 2D module discovery approaches, integra-
tive approaches that combine multiple 1D computations 
have emerged. These methods integrate multiple lines of 
evidence to improve prediction performance.

For example, Rufallo et al.31 have shown that inte-
grative network propagation is a powerful tool for 
pin pointing cancer driver genes (FIG. 2c). In this study, 
propagation was used to integrate somatic mutation and 
differential expression data from cancer patients, creat-
ing combined features that were fed to a classifier for the 
prediction of causal genes in specific cancer types. In a 
similar study, HIT’n DRIVE88 prioritized cancer driver 
genes by connecting somatic mutations or copy-number 
aberrations to downstream expression changes; in this 
case, a different mathematical formulation was used 
based on the hitting time of a random walk, which was 
defined as the expected number of hops that a random 
walk from a source node takes to first reach a target node.

Network propagations can also serve as a basis for 
stratifying patients to identify disease subtypes89 (FIG. 4b). 
The underlying principle is to use network propagation 
to combat heterogeneity in genetic variants or muta-
tions across a patient population. Although patients 
may have variants that affect very different sets of genes, 
network propagation of the data from each patient high-
lights similar network regions, allowing these patients 
to be clustered together (FIG. 1c). The application of 
this approach to uterine, ovarian and lung cancer data 
led to the identification of putative subtypes and the 
association of disease modules with these subtypes.  
A second example of the use of propagation to integrate 
multiple information sources for patient stratification is 

Figure 3 | Overview of approaches that use network propagation. Network 
propagation approaches take a vector the entries of which (0 or 1 or real‑values) indicate 
the prior information on each gene or node in the network. Following propagation, the 
scores on the nodes are examined using different approaches. a | 1D approaches rank or 
prioritize genes by their propagated scores. b | 2D approaches analyse a similarity matrix 
defined by the propagation and extract modules, or subnetworks, according to both the 
propagated scores and the topology of the network. c | Integrative approaches propagate 
prior information from different data sets, or individuals, across one or more networks, 
forming integrated scores that are used to rank genes and/or to extract modules.
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the similarity network fusion approach90. In this work, 
Wang et al. performed propagation across patient sim-
ilarity networks that were derived from individual data 
types (for example, mutation, mRNA expression and 
DNA methylation data) to form a single patient similar-
ity network, which was used to derive patient subtypes 
with distinct survival profiles.

Another application of network propagation 
methods is for the identification of disease mod-
ules. For example, the TieDIE (tied diffusion through 
interacting events) approach91 searches for disease  
modules in cancer by performing two propagation 
computations: one starting from mutated genes and 
another starting from differentially expressed genes.  

Figure 4 | Applications of network propagation to analyse cancer data. 
a | Identifying disease modules with network propagation. The cohesin 
protein complex is identified using HotNet2, a 2D approach, by propagating 
the frequencies of somatic mutations in 12 cancer types from The Cancer 
Genome Atlas. The right panel shows a mutation matrix, the rows of which are 
the genes in the identified module, and the columns of which are the samples 
(colour‑coded by cancer type) that have a mutation in these genes. Each of 
the genes in the module is mutated at extremely low frequency, but the 
propagation of individual frequencies across the network amplifies this weak 
signal, as these genes are connected by many edges across multiple protein–
protein interaction (PPI) networks (left panel). b | Patient stratification with 
network propagation. The network‑based stratification (NBS) integrative 
approach is used to identify a robust cluster of patients with ovarian cancer, 
suggesting a new disease subtype. A subnetwork of genes that have high 
propagated mutation scores in this patient cluster (denoted by node size) and 
that is most responsible for discriminating the somatic mutation profiles of 
this subtype from others, is shown. Edge width reflects confidence. Filled 
nodes indicate that somatic mutations were found for the corresponding 

gene in the examined cohort. c | The TieDIE (tied diffusion through interacting 
events) integrative approach is used to integrate gene expression, somatic 
mutations and phosphoproteomic data in castration‑resistant prostate 
cancer (CRPC) to link genomic mutations, kinase regulators and transcription 
regulators. A ‘scaffold’ network that was generated by TieDIE and is centred 
on six cancer hallmark categories is shown. Hallmark genes are colour‑coded 
according to their annotated category. Other network genes that connect 
two or more of these hallmark genes are shown in grey. BLCA, bladder 
urothelial carcinoma; BRCA, breast invasive carcinoma; COAD, colon 
adenocarcinoma; READ, rectum adenocarcinoma; GBM, glioblastoma 
multiforme; HNSC, head and neck squamous cell carcinoma; KIRC, kidney 
renal clear cell carcinoma; LAML, acute myeloid leukemia; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian  
serous cystadenocarcinoma; UCEC, uterine corpus endometrioid  
carcinoma. Note that data for COAD and READ have been combined.  
Part a is adapted with permission from REF. 30, Macmillan Publishers  
Limited. Part b is adapted with permission from REF. 89, Macmillan  
Publishers Limited. Part c is adapted with permission from REF. 92, Elsevier. 
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By combining the resulting rankings (taking the mini-
mum and thresholding the result), Paull et al. could search  
for a subnetwork that connected the high-scoring genes. In  
a follow-up paper92, TieDIE was used in combination 
with phosphoproteomic data to identify active pathways 
in prostate cancer and to derive patient-specific network 
models and potential treatment strategies (FIG. 4c).

Network propagation methods can also be applied 
to facilitate the prediction of novel drug targets. For 
example, Shnaps et al.93 used network propagation to 
simulate the effect of a drug, which targeted a candi-
date protein, on patients with acute myeloid leukae-
mia. To this end, they executed network propagation 
for one patient at a time, using either the complete 
PPI network or the network from which the candi-
date protein was removed. Focusing on the differen-
tially expressed genes (tumour versus normal) of each 
patient, Shnaps et al. ranked each candidate protein 
according to the change that its removal induced on the 
propagated values of these genes. In a different study, 
rather than simulating the effect of a drug, Chen et al.94 
aimed to predict drug–target relationships based on the 
assumption that similar drugs target similar proteins. 
To this end, they successfully applied network propa-
gation to predict drug–target relationships by using 
an integrated network that included target–target,  
drug–target and drug–drug relationships.

Overall, network propagation techniques are 
becoming increasingly abundant and are producing 
state-of-the-art results for a wide variety of applications 
in disease genomics, ranging from gene prioritization to 
genetic module identification and drug target prediction.

Perspectives and conclusions
In this Review, we have described the method of network 
propagation, emphasizing the generality and power of 
the approach. We have reviewed some of the various 
applications of network propagation in biology, focus-
ing on gene ranking (1D), module identification (2D) 
and integrative applications of network propagation for 
the study of human disease. In gene ranking, propaga-
tion methods were shown to amplify weak associations 
of genes with phenotypes. In module identification, 
network propagation methods allowed the inclusion in 
modules of genes for which little or no direct evidence 
of involvement was available. In integrative applica-
tions, network approaches amplified weak similarities 
between different sources of information (such as dif-
ferent molecular species or different patients (FIG. 1c)) 
to create robust similarities that can be used to build 
patient similarity and disease similarity networks. 
We conclude that network propagation is an essential 

tool in any genetic toolbox that seeks to leverage net-
work information in the study of the genes and genetic  
modules that drive disease.

Despite its general applicability and good perfor-
mance, the basic network propagation scheme might 
be improved in several ways to allow more rigorous 
scoring. In particular, the scheme assumes that the 
contribution of a path to the propagation score dimin-
ishes exponentially with its length. This assumption 
can be removed to allow different weights for different 
path lengths. For example, the CATAPULT algorithm82 
learns a weighting in a supervised manner, which 
also accounts for the types of edges included in the 
propagation paths.

Another important scoring issue is the evaluation 
of the significance of a given propagation score. Several 
authors have replaced the propagation scores with  
P values to resolve this concern. This approach has the 
desired effect of down-weighting hubs, which tend to 
have high propagation scores. For example, Mazza et al.85 
computed an empirical P value for every node by observ-
ing the distribution of scores of that particular node 
under the propagations of randomized prior vectors.

We have presented two main ways in which network 
propagation can be applied to a single network: in a  
1D setting in which the output is the final scoring vector 
p, and in a 2D mode in which the output is the corre-
sponding transformation, or similarity matrix. There are 
also several ways in which one could use the prior infor-
mation (for example, binary versus continuous). These 
different choices may affect the analysis, and the best 
performing variant will be application-specific.

Although most studies have so far focused on a sin-
gle network, the integration of multiple networks has 
been repeatedly shown to improve the predictive power 
of different methods22. This observation reinforces 
the value of combining multiple data sources — for 
example, using tissue-specific, cell type-specific and/
or patient-specific networks — to improve the down-
stream analysis. There has been promising research 
into developing such networks84,95, with important 
developments underway from the Genotype-Tissue 
Expression (GTEx) project, which enables the con-
struction of a specific network for each major human 
tissue96. In addition, regulatory networks are increas-
ing in scope and resolution, through efforts such as 
ENCODE97 and the Roadmap Epigenomics project98. 
Thus, network propagation will continue to be a pow-
erful method for integrating an increasingly diverse 
collection of scores across a wide range of biological 
interaction networks, leading to deeper insights into 
biological processes and disease.
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