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Abstract

Many biological and clinical outcomes are based not on single proteins, but on modules of proteins embedded in protein
networks. A fundamental question is how the proteins within each module contribute to the overall module activity. Here,
we study the modules underlying three representative biological programs related to tissue development, breast cancer
metastasis, or progression of brain cancer, respectively. For each case we apply a new method, called Network-Guided
Forests, to identify predictive modules together with logic functions which tie the activity of each module to the activity of
its component genes. The resulting modules implement a diverse repertoire of decision logic which cannot be captured
using the simple approximations suggested in previous work such as gene summation or subtraction. We show that in
cancer, certain combinations of oncogenes and tumor suppressors exert competing forces on the system, suggesting that
medical genetics should move beyond cataloguing individual cancer genes to cataloguing their combinatorial logic.
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Introduction

Biological complexity, it is thought, is not a simple function of

the number of genes in a genome. It likely stems from a variety of

factors, including the number of protein states and, as importantly,

the number of combinations in which proteins assemble into

functional modules [1,2]. In development, it is largely combina-

torial modules of transcription factors that give rise to the diversity

of tissues [3]. Protein combinations are equally instrumental in the

pathogenesis of human disease, for instance the inappropriate

fusion of Bcr and Abl that leads to chronic myelogenous leukemia

[4] or the abnormal interactions acquired by the huntington

protein in Huntington’s Disease [5].

An intriguing question is how the states of single proteins jointly

determine the higher level states of protein modules. In classic

biological studies, protein modules have been shown to encode

basic logic functions such as AND, OR and NOT which are

further combined within larger modules to code for complex

programs [6]. A canonical example is the pigment cell module in

sea urchin embryos [7]. There, the SuH/Groucho repressor

complex forms in the absence of Nic which, in turn, is determined

by the lack of Delta signaling. Once Delta signaling is received, the

SuH/Groucho repressor complex is displaced by the SuH/Nic

activator complex, which activates the GCM gene to induce

pigment cell specification. In this case, the module activity can be

summarized using basic AND and NOT functions:

IF Groucho AND SuH AND NOT Nic THEN NOT

GCM (NOT

Pigment Cell)

IF Nic AND SuH THEN GCM (Pigment Cell)

Another example of network-encoded logic is the BAF

chromatin remodeling complex [8]. The stem-cell specific version

of the complex (esBAF) is characterized by presence of BRG1 but

not BRM, and BAF155 but not BAF170 [9]. The neuron-

progenitor version (npBAF) contains both BAF155 and BAF170

and also incorporates BRM and BAF60C while excluding

BAF60B [10]. Pathological forms of BAF have also been

characterized. For example the core subunit of the complex,

SNF5, is inactive in malignant rhabdoid tumors, a highly

aggressive cancer of early childhood [11].

Given the importance of protein modules and their outputs, a

major activity within the field of Systems Biology has been to

identify such modules systematically through analysis of global

data sets [12–16]. Many computational methods have been

developed to integrate a panel of gene expression profiles with

protein-protein interaction maps or pathway databases, with the

goal of associating modules with a biological or clinical outcome

[17–30]. Among these, several approaches have investigated how

protein modules can be used to classify samples. In these methods,

each module defines a set of interacting proteins whose expression

levels are combined to determine the module activity, which in

turn is used to predict the phenotypic class of the sample.

However, with one recent exception [28] these methods have

assumed that the activity of every module of interest is

homogenous and follows a single general function, such as the

sum of gene expression levels in a module [20,25] or the difference

in expression levels across interacting genes in a module [15,27]

(Figure 1A). While these simple functions (as well as more
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advanced frameworks [22,24,29]) can identify coherently ex-

pressed or perturbed modules, they do not provide the rich logical

framework known to occur in biological systems.

Here, we develop a novel method called Network-Guided Forests

(NGF) to learn the network modules whose logic specifies key

biological and clinical outcomes. NGF integrates key ideas from

Random Forests (RF) [31] with biological constraints induced by a

protein-protein interaction network— the first use of protein

networks in ensemble learning [32]. Rather than relying on a

general measure of module activity, NGF fits specific logic functions

to each module directly from data. In contrast to Chowdhury et al.

[28] who learned network state functions to select informative gene

sets that were further used to train a neural network model, the

functions identified here are used directly in the classification

process. NGF can also readily be applied to continuous gene

expression measurements and problems with more than two classes.

Using NGF, we explore the functions used in diverse biological

programs related to tissue differentiation, breast cancer metastasis,

or mesenchymal transformation of brain tumors. For each case a set

of network modules is identified which captures known causal

mechanisms of development or disease and – in contrast to classical

Random Forests – provides robust biomarkers across different

sample cohorts. The modules implement diverse logic functions

Author Summary

Biological outcomes are often determined by modules of
proteins working in combination. In classic biological
studies, these modules have been shown to encode a
diverse repertoire of logic functions which provide the
means to express complex regulatory programs using a
limited number of proteins. Here, we integrate gene
expression profiles and physical protein interaction maps
to provide a systematic and global view of combinatorial
network modules underlying representative developmen-
tal and cancer programs. We develop a new method that
associates decision trees with concise network regions to
identify network decision modules predictive of biological
or clinical outcome. The resulting network signatures
prove robust across different sample cohorts and capture
causal mechanisms of development or disease. Further-
more, we find that the most predictive network decision
functions rely on both coherent and opposing gene
activities. Notably, in cancer progression the predictive
gene associations often map to physical interactions
between known oncogenes and tumor suppressors, where
the combined activity of these genes determines disease
outcome.

Figure 1. Method overview. (A) Representative module activity functions used by previous methods are compared to logic functions considered
in this study. Logic functions capture a wide range of differential activities that are not captured by any single function. Our method uses logic
functions directly in the classification process and extends to classification scenarios with more than two classes. (B) Network-guided search for
decision trees associated with network modules. Each decision tree maps to a connected subnetwork. (C) Decision tree and the corresponding logic
function represented as a truth table. The decision tree assigns each sample to a class by performing a series of tests where each test determines
whether the expression of a selected gene is higher (.) or lower (,) than a threshold value. The gene is interpreted as being up-regulated if its
expression is above the threshold. Otherwise the gene is down-regulated. Each path from root to leaf in the tree defines a single decision rule which
maps to a different row in the truth table. Decision trees are typically not grown to the full extent and thus not all genes must be tested along each
path if a subset of the genes is sufficient to determine the output.
doi:10.1371/journal.pcbi.1002180.g001
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using both coherent and opposing gene activities, in which the

module output depends on expression increases for some genes and

concomitant decreases for others. Notably in cancer progression,

the most predictive decision functions can often be linked to

interactions between known oncogenes and tumor suppressors, such

that the combined activity of both types of genes determines the

disease outcome.

Results

Overview of NGF approach and data
The NGF framework learns a set of decision trees (the ‘‘forest’’)

in which each tree maps to a connected component of the protein-

protein interaction network (Figure 1B). The decision tree

specifies a function that determines the output of the network

component based on the activity of its genes. In turn, the collection

of all tree outputs is used to predict the cell type or disease state of

the biological sample (the ‘‘class’’). When binary gene activities

and two-class decision problems are considered, decision trees

map directly to Boolean logic functions [33] (Figures 1C, S1). In

general, however, decision trees can be readily applied to

continuous gene activity values and multi-class scenarios [34].

To build a decision tree, NGF selects an initial gene to partition

the samples by high versus low gene expression and it scores how

well this partition separates the classes. Samples for which the

expression of the selected gene is high are placed in the right

subtree while those for which the expression is low are placed in

the left subtree. NGF then conducts a network-guided search

which progressively adds new genes to the tree to improve its

discrimination between classes, with new genes chosen from the

network neighborhood of genes already in the tree (Figure 1B;

Materials and Methods). Many trees are built, starting from many

different initial genes, to define the forest.

By construction, decision trees include genes that influence a

phenotypic outcome both individually and through multi-way

interactions with other genes [35]. As in the standard Random

Forests algorithm, NGF uses a permutation-based procedure to

assess the importance of each gene on the classification accuracy of

the forest (Materials and Methods). Motivated by [36], we also

assess the importance of pairs of genes in a tree — in our study

these pairs are constrained by the network neighborhood. Genes

and gene pairs with significantly high importance scores are placed

into clusters that capture similar patterns of presence/absence

across the forest of decision trees. Each cluster aggregates genes

that fall into the same network region and, in combination, have

predictive power over the sample class. Hence these clusters are

termed ‘‘consensus decision modules’’.

To apply this framework to study the logic of biological

decisions, we obtained mRNA expression data from three diverse

studies related to (1) Development of germ layers, (2) Breast cancer

metastasis, or (3) Progression of glioma, respectively (Materials and

Methods). While these studies collectively span a wide range of

human biology, each makes use of mRNA expression profiles to

discriminate between classes of development (study 1) or disease

(studies 2 and 3). To provide a complementary protein network,

we downloaded a set of 5227 physical interactions measured

among pairs of human transcription factors, many of which have

been recently reported using the mammalian two hybrid system

[15]. NGF was used to combine this protein network with each

expression data set to derive a forest of decision trees and

corresponding network decision modules for each study

(Figure 2). To allow comparison to other module-finding

approaches, we also obtained a network of 57,228 human

protein-protein interactions as used previously in [20,24]. Further

information about each expression and network data set is

provided below and in Table S1.

Network modules reveal causal mechanisms of
development and are robust

Tissue differentiation is largely governed by combinatorial

interactions among transcription factors [1]. To identify protein

modules involved in tissue development, we applied NGF to qRT-

PCR expression profiles collected for 34 human tissues (Ravasi et

al. dataset [15]) classified according to their embryonic origin:

endoderm, mesoderm, non-neural ectoderm, central nervous

system (CNS) or cell lines (Figure 2). NGF integrated these data

with the transcription factor protein interaction network (Table
S1) to reveal a set of 16 consensus decision modules, each

containing genes frequently used in combination to predict tissue

origin (Figures 2, 3A). Among these modules, we recognized a

number of well-established regulatory complexes with known

decisive roles in development (Table 1). For instance, the single

most predictive interaction identified was between HOXC8 and

SMAD1, a transcriptional heterodimer that is known to induce

osteoblast differentiation [37]. Also consistent with the logic

identified by NGF (Figure 2), HOXC8 is highly expressed in

ectoderm and mesoderm during mouse early embryogenesis [38].

A systematic functional analysis of the modules (Materials and

Methods) indicated that they were highly enriched for genes whose

perturbation is linked to prenatal lethality or improper organ

development in mammals (Figure 3B), as reported in the Mouse

Genome Informatics (MGI) database [39] — an established source

of functional associations for both mouse genes and their human

orthologs [13]. Gene Ontology analysis [40] indicated that the

network was significantly enriched for pattern-specification

homeobox genes (19/48 genes) and other developmentally

important gene categories, for example embryonic morphogenesis

and skeletal system development (Figure S2). Furthermore, we

found that the genes used by NGF to identify a particular tissue

origin (endoderm, mesoderm, ectoderm) were generally implicated

in developmental processes specific for that type of tissue

(Figure 3C and Text S1).

To examine the robustness of these decision modules, we

investigated whether they could be reproduced from random

subsets of the input gene expression profiles, as well as from an

independent set of profiles. We found that the protein combina-

tions co-occurring within the same module were highly reproduc-

ible across subsets of expression profiles, much more so than the

protein combinations identified by the standard Random Forest

algorithm (Figure S3). Further, NGF was used to analyze a large

expression profiling study by Muller et al. [13] consisting of 153

types of multipotent stem cells, where each cell type is attributed to

the mesoderm, endoderm or ectoderm. We analyzed the single

proteins and protein pairs identified as being significantly

predictive in the previous dataset (Ravasi et al.; Figure 3A) and

compared them to the same number of top scoring proteins and

protein pairs identified in the dataset from Muller et al. While only

two of ten significant proteins (20%) were identified in common

based on single feature analysis, we found that 14 of 38 proteins

(37%) were reproduced based on importance scores for pairs of

genes (Figures 3D, S4). Among non-trivial decision modules (i.e.,

those with three or more proteins), five out of six (83%) were

recovered in both studies (Figures 3D, S4). In comparison, the

standard Random Forest algorithm, which did not use the

network, was not able to identify any reproducible gene

combinations (Figure 3E; Text S1). Moreover, randomized

runs of NGF (in which the assignment of expression profiles to

network nodes was permuted) identified only 8% of the same

Protein Networks as Logic Functions
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genes and 3% of the same gene-gene combinations (Figure 3E).

Taken together, these results indicate that the tissue-specific

network expression pattern identified by NGF is both biologically

relevant and robust across sample cohorts.

Informative and robust models of breast cancer and
glioma progression

While normal developmental programs are tightly regulated,

pathological states including cancer can reflect regulatory

programs gone awry. To investigate how well NGF can predict

cancer progression and identify robust biomarkers, we selected a

cohort of 295 nonfamilial breast cancer patients (van de Vijver

dataset [41]), for 78 of whom metastasis has been detected during

a follow-up visit within five years after surgery. The accuracy of

NGF and other algorithms in classifying metastatic vs. non-

metastatic samples was assessed using a five-fold cross validation

scheme repeated 100 times. The average area under the ROC

curve (AUC) for Network-Guided Forests was 0.74 (Figures 4A,
S5A), which was better by 3–6% than previously reported results

for a variety of standard and network/pathway-based classification

methods [24,25,27].

Interestingly, the performance of NGF was on par with regular

Random Forests (non-network-based), as well as with NGF applied

to randomized networks in which the edges were permuted while

maintaining the original degree distribution (NGF**; Figures 4A,
S5A). Thus, it appears that the decision tree framework used by all

three methods is able to find predictive feature sets regardless of

the restriction imposed by the protein-protein interaction network.

However, in contrast to Random Forests we found that NGF

identified many more genes with known roles in breast cancer or

cancer in general (Figure 4B). Closer inspection showed that

known cancer genes are often not among the most differentially

expressed, but are predictive in combination with their network

neighbors so that they appear among the most abundant genes in

the forest (Figure 4B). In contrast, permuted networks identified

far fewer cancer genes among the most abundant features,

indicating that the network neighborhood provides crucial

information which guides NGF to the biology of disease.

To study the robustness of markers identified by NGF, we

compared the most abundant features from the van de Vijver

dataset to those found in an independent study of 106 metastatic

and 180 non-metastatic breast cancer samples described by Wang

et al. [42]. The correlation of the resulting gene rankings based on

their occurrences in the forest was 0.73 for NGF versus 0.01 for

the regular Random Forest algorithm. Altogether, 31 genes were

shared among the 100 most abundant genes from the two datasets,

compared to 2 common genes identified by Random Forests

(Figure 4C). Thus, the regularization imposed by the network

serves to focus the training process on true cancer susceptibility

genes, which are observed reproducibly across data sets.

These general findings were also observed in a different process

related to cancer progression: mesenchymal transformation of

brain tissue. Mesenchymal transformation has been associated

with exceedingly aggressive forms of high-grade gliomas (HGGs) –

Figure 2. Network decision modules underlying embryonic origin, breast cancer metastasis and mesenchymal transformation of
brain tumors. Expression profiles for each of the three case studies are combined with a network of protein-protein interactions among human
transcription factors. Network-guided forests are used to identify key network modules that are most important for correct sample classification
(representative modules are shown for each study). Grey edges indicate physical protein-protein interactions, blue edges indicate protein
combinations that often co-occur in the same decision trees and are most important for classification (as indicated by the permutation test). Node
color indicates protein importance whereas edge width indicates the importance of a protein combination. Each module is assigned a decision tree
that specifies the output of the module based on the activity of its genes (see also Figure S1).
doi:10.1371/journal.pcbi.1002180.g002
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the most common type of brain tumor in humans. To study

network activity patterns leading to the mesenchymal phenotype,

we trained the NGF framework on expression profiles of 76 HGG

samples previously assigned to one of three groups: proneural,

proliferative or mesenchymal [43]. Proneural and proliferative

samples were grouped together as ‘‘non-mesenchymal’’ and

treated as a control group for detecting the mesenchymal network

signature. As with breast cancer, we found that NGF outper-

formed the benchmark classifier Naı̈ve Bayes in terms of

classification accuracy and performed as well as the standard

Random Forest algorithm (Figures S5B, S6A). Furthermore,

NGF identified more cancer susceptibility genes among the top

ranked features (Figures S6B).

Logic functions embedded in protein networks
We next wished to determine whether there were particular

network decision functions that were common across biological

data sets or, alternatively, which functions were distinct. For this

purpose, protein interactions in the decision trees were function-

ally categorized according to the sign of their proteins in classifying

a given phenotype (Figure 5A; Text S1). The three functional

combinations were: ‘‘A AND B’’, ‘‘NOT A AND NOT B’’ and ‘‘A

AND NOT B’’. We asked which of these functions can best

separate the samples into class-homogeneous groups and which

types of functions are preferred.

Indeed, we found that particular functions were overrepresented

among the most predictive gene combinations and that these

functions differed across the different biological processes

investigated (Figure S7). Interestingly, across all cancer datasets,

decision functions used to predict the more aggressive phenotype

were more likely to be associated with ‘‘A AND NOT B’’ logic

than other functions (Figures 5A, S7). Such opposing gene

combinations were instrumental in many decision modules

identified by NGF. For instance, in breast cancer a highly

predictive consensus decision module was identified among C/

EBPb, STAT5A, and HSF1 (Figure 2) – three genes whose

activity has been shown to directly influence cancer progression

[44–46]. The unfavorable metastatic phenotype is associated

with high levels of C/EBPb and HSF1 and low levels of

STAT5A (Figures 2, S1A). Consistent with this prediction,

upregulation C/EBPb can induce acquisition of an invasive

phenotype [44], and expression of HSF1 is required for cellular

transformation and tumorigenesis in HER2-positive breast

tumors [46]. STAT5, on the other hand, has been shown to

inhibit invasive characteristics of human breast cancer cells and

is often lost during metastatic progression [45]. Similarly, for the

brain tumor case study, NGF identified a key logic function

which associates the mesenchymal phenotype with the upregu-

lation of STAT3 and downregulation of SS18L1 (Figures 2,
S1B). STAT3 is a known oncogene recently identified as a

driver of mesenchymal transformation in brain tumors [14],

while SS18L1 is a protein normally required for calcium-

dependent dendritic growth and branching in cortical neurons

[47].

Across all functional categories, we found that the top scoring

decision functions identified in cancer were enriched for

interactions between known cancer-related genes (P = 4.9261024

and P = 1.9461023 for the mesenchymal transformation of brain

tumors [43] and breast cancer metastasis [42], respectively).

Moreover, opposing functional combinations (‘‘A AND NOT B’’)

predictive of the mesenchymal transformation were significantly

enriched for interactions between products of oncogenes and

tumor suppressors (Figure 5B). In turn, the coherent combina-

tions ‘‘A AND B’’ or ‘‘NOT A AND NOT B’’ were enriched for

known interactions between oncogenes or between tumor

suppressor genes, respectively (Figure 5B; Table S2). These

results support a model in which the aberrant cancer-related

activity is caused by combinations of oncogenes and tumor

suppressors co-occurring in the same pathways [48-50] and

suggest that decision modules reported by NGF may be an

excellent means to identify such combinations for further study

(Table S2).

Table 1. Network modules corresponding to known regulatory complexes in development.

Module Known role/tissue specificity References

GATA3-LMO1-TAL1 Activates the transcription of RALDH2 in T-cell Acute Lymphoblastic Leukemia [64]

HOX-PBX-MEIS-SMAD Potential for higher order complexes that modulate tissue activity [54]

HOXA5-TWIST1 HOXA5 partially restores inhibitory effects of Twist on p53 target genes in breast cancer cells [65]

HOXA9-PBX1-MEIS1 Regulates CYBB transcription in myeloid differentiation [66]

HOXA10-SIRT2 Promotes histone deacetylation; represses gene transcription [67]

HOXB7-NFKBIA NF-kB and IkB-a increase transactivation by HOXB7 [68]

HOXC8-SMAD1 Promotes osteoblast differentiation [37]

HOXC8-SMAD6 Hoxc8 represses BMP-induced expression of Smad6 [69]

PAX3-SOX10 Mediates activation of c-RET enhancer in neural crest precursor cells [70]

doi:10.1371/journal.pcbi.1002180.t001

Figure 3. Network modules capture causal developmental factors and are reproducible. (A) Consensus network modules underlying
tissue origin (modules of size greater than 2 are encircled). Gene pairs that often co-occur in the same decision trees and are most important for
classification are shown in blue. Node color indicates protein importance whereas edge width indicates the importance of a protein combination. (B)
Enrichment for developmentally-related phenotype categories in the MGI database (FDR is reported above each bar). (C) Enrichment of germ-layer
specific genes identified by NGF based on the Gene Ontology (FDR is reported above each bar). (D) Percentage of genes, interactions, and modules
that were reproduced based on an independent dataset. (E) Percent of reproduced single genes and gene combinations (Fisher’s Exact Test P-values
are reported). NGF* indicates the result for NGF applied to networks with perturbed expression measurements.
doi:10.1371/journal.pcbi.1002180.g003
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Discussion

Previous efforts to mine networks for differentially-expressed

modules have assumed that module activity can be represented with

a single functional form. This hypothesis is expressed in the scoring

function that is applied to each module to assess its differential

activity. However, our analysis of a representative sample of diseases

and developmental programs indicates that the most effective

decision functions are in fact not homogeneous, but involve a

combination of coherent and opposing gene-gene interactions.

While the biological programs covered in this paper are

certainly not a comprehensive survey of molecular decision-

making, it is significant that both the developmental and cancer

modules lead to similar conclusions. First, the network signatures

identified by NGF are robust as evidenced by their support from

multiple independent datasets. Of the development modules

reported by NGF, 83% are reproduced across developmental

datasets, in contrast to 0% reproduced by a network-free

approach. In breast cancer, we observed a 73% correlation

between the features selected for breast cancer, in contrast to 1%

for a network-free approach.

Second, while the overall classification performance of NGF

does not differ from regular Random Forests, network informa-

tion does achieve sharp focus on genes and gene combinations

that are close to the causes of development or disease. A known

difficulty with classification using molecular profiles is that it is

possible to construct many alternative classifiers all of which have

equivalent performance but are based on very different sets of

genes [51,52]. This is due to the relatively small number of

samples as well as the large number of genes that are correlated

with outcome. Among the many alternative classifiers, some rely

on genes that are close to the true disease mechanisms, while

most rely on distantly associated genes. NGF constrains the

selected gene features to fall into contiguous protein interaction

subnetworks. These network-derived features are more repro-

ducible and strongly enriched in the expected gene functions:

Developmental modules are highly enriched for development,

and cancer modules are highly enriched for known cancer

susceptibility factors. Thus the prior knowledge of the protein

interactions serves to filter the set of all possible classifiers [53]

allowing NGF to identify those that are based on biologically

relevant markers.

Finally, network analysis reveals how single factors form

predictive combinations. In development, NGF identifies a concise

network of HOX genes interacting with developmentally impor-

tant cofactors, whose tissue-specific roles are just beginning to be

illuminated [37,54]. In cancer, combinations of interacting

oncogenes and tumor suppressors are found such that their

combined activity determines disease outcome. Beyond develop-

ment and cancer, it is likely that for many biological programs,

molecular interaction networks will provide a useful framework to

guide computational approaches towards biologically-relevant and

reproducible genetic logic.

Figure 5. Network functions underlying cancer progression. (A) The decision trees for mesenchymal transformation are dissected by
assigning their gene pairs to one of three functional categories based on the sign of gene expression in predicting the more aggressive phenotype.
The percentage of gene pairs assigned to each of the three functional categories is shown as a function of the score threshold used for selecting gene
pairs. Accuracy is calculated as the average Laplace score (Text S1) over all trees in the forest. (B) Enrichment for interactions between oncogenes,
between tumor suppressors and between an oncogene and a tumor suppressor among functional categories identified using NGF. Percent of such
interactions among top scoring pairs in each functional category is reported along with the Fisher’s Exact Test P-value of enrichment.
doi:10.1371/journal.pcbi.1002180.g005

Figure 4. Classification performance and validation of markers of breast cancer metastasis. (A) Average area under the ROC curve for
NGF, RF, NGF applied to permuted networks (NGF**), and Naı̈ve Bayes, compared to reported scores for representative previous methods (error bars
denote standard deviation estimated over 100 runs). (B) General cancer and breast cancer associated genes identified among the 100 top-scoring
genes or 100 most abundant genes in the forest created using RF or NGF. using the real network or networks with permuted edges (average over 100
permutations is shown). (C) Genes ranked by their importance for classification in two independent breast cancer patient cohorts (y vs. x axis).
Network-Guided Forest, blue points; regular Random Forest, green points.
doi:10.1371/journal.pcbi.1002180.g004
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Materials and Methods

Datasets
Detailed information on gene expression and protein-protein

interaction datasets is provided in Table S1. Phenotypes

associated with genetic perturbations in mouse (Figure 3B) were

downloaded from the MGI database [55]. Cancer-associated

genes (including breast and brain cancer genes) were from the

Genetic Association Database [56] and were downloaded from

DAVID [57]. Lists of tumor suppressors and oncogenes were

downloaded from the Cancer Genes database [58].

Network-Guided Forests
NGF is a network-based supervised learning algorithm that

constructs an ensemble of decision trees which vote to determine

the class of a sample. As in the standard Random Forests

algorithm, each tree is constructed based on a bootstrap subset of

samples drawn with replacement from the original training set.

The individual trees are built using the recursive partitioning

algorithm CART (Classification And Regression Trees) [59].

CART uses a measure of impurity called the Gini index to

determine how well a gene and a corresponding expression

threshold can differentiate samples with respect to their pheno-

typic class. The best such gene establishes the first split in the tree.

Samples for which the expression value for the selected gene is

lower than the threshold are assigned to the left child node in the

tree and those with values higher than or equal to the threshold

are put in the right child node. This process is iterated for each

child node until the improvement in class separation (as measured

by the Gini index) is lower than e (here we use e = 0.02 or e = 0.01

for the global and transcription factor-specific network, respec-

tively). In NGF, as in Random Forests, the search process applied

by CART is randomized to allow for multiple concurrent trees to

be built. First, each tree root is selected as the best gene among a

random subset of size !N, where N is the number of all considered

genes. Then, at each subsequent node in the tree, the best splitting

gene is selected among a random candidate set. NGF selects the

candidate set among network neighbors of genes already present

in the tree. To promote the identification of dense subnetworks,

the roots are required to have at least k network neighbors (here

k = 5) and the candidate set of subsequent nodes is expanded

iteratively, where each time the probability of selecting a given

gene for the candidate set is proportional to the number of

interactions it shares with genes already in the tree. NGF also

requires that each gene appears at most once on each path from

the root to the leaf of the tree. After the trees are constructed, the

entire forest is used to determine the class of a new sample. For

each tree, the sample is propagated down from the root of the tree

and assigned to one of the leaves according to the series of splitting

conditions along the path leading from root to leaf. The

probability of a given class is determined based on the proportion

of training samples that were initially assigned to this leaf. The

average probability across all trees is computed and the value of

this score is used to determine sample class. Different score

thresholds can be used to trade-off specificity and sensitivity.

Identifying network decision modules
Following [31], we use samples that were not selected to

construct a given tree (so called ‘‘out-of-bag’’ samples) to estimate

the misclassification error of the tree and determine feature

importance. Specifically, we use each tree to classify the

corresponding out-of-bag samples and report the percentage of

samples misclassified. Next, for each gene in the tree, we measure

the increase in the misclassification error resulting from permuting

the expression measurements for this gene in the out-of-bag

samples. The mean increase of this error over all trees determines

the importance score of each gene (trees in which a gene was not

used are counted and contribute 0 to the mean). An analogous

approach is used to determine the importance scores for pairs of

genes. For this we calculate the mean increase in tree

misclassification error caused by permuting expression values of

any two genes which are used by a particular tree (see [35,36,60]

for related techniques applied for standard decision tree

ensembles). To construct network decision modules, NGF outputs

the top scoring genes and gene pairs which have a False Discovery

Rate (FDR) , 0.05, where the null distribution is estimated by

executing NGF 100 times on data with permuted class labels. The

stability of this procedure increases with the number of trees in the

forest. For datasets used here, we found that the method produces

robust results provided that the forest contains . 20,000 trees. For

gene pairs, we additionally check that the mean increase in the

misclassification error for the pair is significantly greater than for

any single gene in that pair in trees where both genes are present

(FDR,0.05). Genes with significant importance scores either

independently or in combination with other genes are clustered

based on how often they co-appear in the same decision trees. To

this end we apply the affinity propagation algorithm [61] which is

implemented as a plugin for Cytoscape [62,63].

Functional enrichment analysis
Gene Ontology enrichment analysis was performed using

DAVID [57]. MGI phenotype enrichment and enrichment for

cancer genes was calculated using Fisher’s Exact Test implement-

ed in R (http://www.R-project.org). All enrichments were

calculated with respect to the background of all genes present in

the input protein-protein interaction network used in each study.

Supporting Information

Figure S1 Modules, decision trees and logic functions.
The logic functions behind key modules for breast cancer

metastasis (A) or brain tumors (B) are represented using decision

trees and truth tables. In each case the gene is interpreted as being

up-regulated if its expression is above the threshold. Otherwise the

gene is down-regulated. Each path from root to leaf in the tree

maps to a different row in the truth table. Decision trees are

typically not grown to the full extent and thus not all genes must be

tested along each path if a subset of the genes is sufficient to

determine the output.

(TIF)

Figure S2 Gene Ontology enrichment analysis. Genes in

the network identified by NGF (Figure 3A) are enriched for

important developmental processes catalogued in the Gene

Ontology. FDR is indicated above each bar.

(TIF)

Figure S3 Robustness of NGF results in cross validation
runs. The average percentage of the top 50 proteins and top 50

protein pairs identified for the developmental case study (A), the

breast cancer metastasis case study (B) or the brain tumor case

study (C) that were reproduced on datasets with 10% of the data

held-out. Error bars indicate standard deviations estimated over

100 runs.

(TIF)

Figure S4 Overlap between NGF results based on
Ravasi and Muller datasets. (A) Network modules identified

using NGF based on the Ravasi dataset were limited to genes

available also in the Muller dataset. Large modules (3 or more
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proteins) are encircled. (B) Overlapping genes and interactions

identified based on the Muller dataset. Conserved large modules

for which at least one interaction is retained in the result based on

the Muller dataset are encircled.

(TIF)

Figure S5 ROC analysis. Representative ROC curves for

NGF, RF and NGF applied to networks with permuted edges

(NGF**) for classification of breast cancer metastasis (A) and brain

tumors (B). The average probability of a class computed across all

trees in the forest is used as a parameter to trade off sensitivity and

specificity.

(TIF)

Figure S6 Classification performance and validation of
network markers of mesenchymal transformation. (A)
Average area under the ROC curve for NGF, RF, NGF applied to

networks with permuted edges (NGF**), and Naı̈ve Bayes (error

bars denote standard deviation estimated over 100 runs). (B)
Cancer and brain cancer associated genes identified among 100

top-scoring genes or 100 most abundant genes in the forest created

using RF or NGF using the real network or networks with

permuted edges (NGF**, average over 100 permutations is

shown).

(TIF)

Figure S7 Network functions underlying development
and cancer progression. For each study, the percentage of

gene pairs assigned to each of the three functional categories is

shown as a function of the score threshold used for selecting gene

pairs. Accuracy is calculated as the average Laplace score over all

trees in the forest (Text S1).

(TIF)

Table S1 Protein-protein interaction networks and transcrip-

tional profiles used in this study.

(DOC)

Table S2 Predictive interactions between known oncogenes and

tumor suppressors identified among top-scoring gene pairs from

the NGF analysis.

(XLS)

Text S1 Supplementary methods.

(DOC)
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60. Dramiński M, Kierczak M, Koronacki J, Komorowski J (2010) Monte Carlo

Feature Selection and Interdependency Discovery in Supervised Classification.

Advances in Machine Learning II: Springer Berlin/Heidelberg. pp 371–385.

61. Frey BJ, Dueck D (2007) Clustering by passing messages between data points.

Science 315: 972–976.

62. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. (2007)

Integration of biological networks and gene expression data using Cytoscape.

Nat Protoc 2: 2366–2382.

63. Wozniak M, Tiuryn J, Dutkowski J (2010) MODEVO: exploring modularity and

evolution of protein interaction networks. Bioinformatics 26: 1790–1791.

64. Ono Y, Fukuhara N, Yoshie O (1998) TAL1 and LIM-only proteins

synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute

lymphoblastic leukemia by acting as cofactors for GATA3. Mol Cell Biol 18:

6939–6950.

65. Stasinopoulos IA, Mironchik Y, Raman A, Wildes F, Winnard P, Jr., et al.

(2005) HOXA5-twist interaction alters p53 homeostasis in breast cancer cells.

J Biol Chem 280: 2294–2299.

66. Bei L, Lu Y, Eklund EA (2005) HOXA9 activates transcription of the gene

encoding gp91Phox during myeloid differentiation. J Biol Chem 280:

12359–12370.

67. Hassan MQ, Tare R, Lee SH, Mandeville M, Weiner B, et al. (2007) HOXA10

controls osteoblastogenesis by directly activating bone regulatory and phenotypic

genes. Mol Cell Biol 27: 3337–3352.

68. Chariot A, Princen F, Gielen J, Merville MP, Franzoso G, et al. (1999) IkappaB-

alpha enhances transactivation by the HOXB7 homeodomain-containing

protein. J Biol Chem 274: 5318–5325.

69. Kang M, Bok J, Deocaris CC, Park HW, Kim MH (2010) Hoxc8 represses

BMP-induced expression of Smad6. Mol Cells 29: 29–33.

70. Lang D, Epstein JA (2003) Sox10 and Pax3 physically interact to mediate

activation of a conserved c-RET enhancer. Hum Mol Genet 12: 937–945.

Protein Networks as Logic Functions

PLoS Computational Biology | www.ploscompbiol.org 11 September 2011 | Volume 7 | Issue 9 | e1002180


