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 ABSTRACT  We have mapped a global network of virus–host protein interactions by purifi cation 
of the complete set of human papillomavirus (HPV) proteins in multiple cell lines 

followed by mass spectrometry analysis. Integration of this map with tumor genome atlases shows that 
the virus targets human proteins frequently mutated in HPV −  but not HPV +  cancers, providing a unique 
opportunity to identify novel oncogenic events phenocopied by HPV infection. For example, we fi nd that 
the NRF2 transcriptional pathway, which protects against oxidative stress, is activated by interaction 
of the NRF2 regulator KEAP1 with the viral protein E1. We also demonstrate that the L2 HPV protein 
physically interacts with the RNF20/40 histone ubiquitination complex and promotes tumor cell inva-
sion in an RNF20/40-dependent manner. This combined proteomic and genetic approach provides a 
systematic means to study the cellular mechanisms hijacked by virally induced cancers. 

  SIGNIFICANCE : In this study, we created a protein–protein interaction network between HPV and 
human proteins. An integrative analysis of this network and 800 tumor mutation profi les identifi es 
multiple oncogenesis pathways promoted by HPV interactions that phenocopy recurrent mutations in 
cancer, yielding an expanded defi nition of HPV oncogenic roles.  Cancer Discov; 8(11); 1474–89. ©2018 
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INTRODUCTION

Infection with human papillomavirus (HPV) is associated 
with a variety of cancers, including nearly all cases of cervical 
squamous cell carcinoma (CESC) and the majority of oro-
pharyngeal cancers, a subset of head and neck squamous cell 
carcinomas (HNSCC; ref. 1). CESC is among the most com-
mon cancers in the developing world, accounting for 7.5% of 
all female cancer deaths, and HPV+ HNSCC is projected to 
outnumber cases of CESC by the year 2020 (2). Although vac-
cines that protect against HPV infection are becoming avail-
able (3), these measures are not yet widespread, especially in 
men, and they do not address the large number of currently 
infected patients with cancer. To treat these patients as well as 
HPV− versions of similar cancers, a thorough understanding 
of the molecular events underlying HPV infection and tumor 
initiation is needed.

The HPV proteins E6 and E7 have long been appreciated as 
drivers of tumorigenesis in HPV-related cancers, with potential 
roles for E5 also proposed (4). Both E6 and E7 exert oncogenic 
activity through protein–protein interactions (PPI) with tumor 

suppressor proteins. For example, E6 binds to and promotes 
ubiquitination of p53, leading to its subsequent degrada-
tion (5). Similarly, E7 binds to and promotes the inactiva-
tion of RB1, thus leading to cell-cycle progression through 
activation of E2F-driven transcription (6). Beyond p53 and 
RB1, a number of other tumor suppressors and proto-onco-
proteins have been established as viral targets, suggesting 
that establishment of infection and tumorigenesis share a 
set of common pathways (7–9). Focusing on these known 
oncogenic viral proteins, previous studies have used affinity 
purification–mass spectrometry (AP-MS) or yeast two-hybrid 
methods to construct catalogs of HPV–human PPI networks 
(9–12). However, a complete interactome between all HPV 
and human proteins is still lacking, and the functions of 
most HPV–human PPIs with respect to their oncogenic roles 
are still unknown.

Another major source of information about virally induced 
tumors comes from DNA sequence. Comprehensive tumor 
genome analysis has revealed that HPV+ and HPV− cancers 
from the same tissue can have markedly different incidences 
of mutation in particular genes (13). For example, the gene 
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encoding p53, TP53, is mutated in 82% of smoking-related 
HPV− HNSCC cases but only 3% of HPV+ cases (13). The 
tumor suppressor gene CDKN2A and several members of 
the oxidative stress pathway, including CUL3, KEAP1, and 
NFE2L2, also show significantly increased mutation rates in 
HPV− tumors (13). However, with the exception of TP53, the 
mechanistic basis for these discrepancies is not clear.

Here, we develop an integrated strategy based on protein 
network mapping and tumor genome analysis to define the 
set of oncogenic interactions between virus and host. First, we 
apply AP-MS (14–20) to map the HPV–human PPI network 
in multiple cell lines. These data are then combined with 
the somatic mutation profiles of HPV+ and HPV− tumors 
using the technique of network propagation, leading to the 
identification of previously unappreciated oncogenic path-
ways promoted by HPV–human PPIs. This overall approach, 
whereby viral proteins are initially used as proteomic probes, 
followed by comparing the resulting data to cancer genomic 
data sets through network propagation, has the potential 
to uncover the biology underlying other virally induced  
cancers.

RESULTS
Systematic Mapping of HPV–Human PPIs

To systematically map the physical interactions between 
HPV and human proteins, we individually cloned codon-
optimized versions of all 9 viral genes into expression vectors 
containing a 2x Strep-tag (Fig. 1A). We chose the well-
established model of HPV-31 as a high-risk HPV strain with 
all constructs overexpressed individually (Supplementary 
Notes), initially in the cervical cell line C33A (21), a widely 
used model system to study HPV infection (Supplementary 
Notes; Supplementary Fig. S1). Streptavidin-coated beads 
were used for AP to enrich for human proteins associated 
with viral proteins, and MS was used to detect interact-
ing proteins (Fig. 1B). Our MiST software (MS interaction 
STatistics; refs. 15, 22) was used to assign a quantitative 
confidence score to each putative PPI, a system that takes 
into account the abundance, reproducibility, and specificity 
of the copurifying proteins. To select a cutoff that would 
provide a set of high-confidence interactions, we bench-
marked our data against 27 well-characterized HPV–human 
PPIs (Supplementary Table S1; Methods). At a MiST cutoff 
of 0.75, we detected 18 of these PPIs (Fig. 1C), including the 
well-characterized oncogenic interactions between E6 and 
p53 and between E7 and RB-like proteins. Of note, we did 
not detect an interaction between E7 and RB1 (6) as C33A 
cells express a truncated and unstable RB1 protein (23, 24). 
Application of this threshold (MiST > 0.75) to the entire data 
set identified 137 high-confidence interactions across all 9 
HPV proteins (Supplementary Table S2), with E7 showing 
the highest number of interactions (Fig. 1D).

Initial functional analysis of the HPV–human protein inter-
action network revealed significant enrichment for human 
proteins involved in protein processing, chromatin remod-
eling, cell proliferation, and host defense (Fig. 1E–F; Sup-
plementary Table S3). For example, E5-interacting proteins 
were enriched for cellular components of the endoplasmic 
reticulum (Fig. 1E), consistent with the localization of E5 to 

the endoplasmic reticulum (25). E1-interacting proteins were 
enriched for protein deubiquitination (Fig. 1F), in line with 
the requirement of this process for HPV DNA replication 
(26). We also ran an enrichment analysis for known human 
protein complexes, in which we highlighted complexes for 
which the virus directly binds multiple subunits (Fig. 2). For 
example, E1 interacts with proteins in the USP1/UAF1 deu-
biquitinating enzyme complex (26, 27), whereas E7 interacts 
with members of the DREAM complex, including RB-like 
proteins RBL1 and RBL2 (28). E6 interacts not only with  
the tumor suppressor p53 but also with members of the 
ubiquitin–proteasomal system, including six proteasomal 
subunits and the ubiquitin ligase E6AP (encoded by UBE3A; 
refs. 5, 29). Such strong enrichment for biological functions 
and protein complexes is indicative of a high-quality protein 
interaction network.

Validation in Multiple Cell Types
We next sought to validate the network detected in C33A 

(human cervical cancer cells) by generating parallel inter-
action maps in two additional cellular contexts: HEK293 
(human embryonic kidney cells; Fig. 2, blue nodes), which 
have been used for previous studies of host–pathogen PPIs 
(30), and Het-1A (human esophageal epithelial cells; Fig. 2, 
orange nodes), a commonly used nonneoplastic model for 
normal head and neck mucosa (31). We detected 405 and 84 
high-confidence interactions in HEK293 and Het-1A cells, 
respectively. Viral protein expression levels were lower in 
Het-1A cells compared with the others, resulting in the detec-
tion of a smaller number of high-confidence interactions 
(Supplementary Fig. S1; Supplementary Table S2). Notably, 
the majority of high-confidence interactions that had been 
originally detected in C33A (80/137) could be validated in 
either one or both additional contexts (Fig. 2; Supplementary 
Fig. S2). It is worth noting that the highly pathogenic interac-
tion between E7 and RB1 was detected in both HEK293 and 
Het-1A cell lines.

HPV–Human PPIs Phenocopy Recurrent Genetic 
Alterations in Cancer

Our next goal was to determine which HPV–human 
interactions were most directly involved in cancer. For this 
purpose, we adopted an integrative strategy combining the 
complete HPV–human interactome with the genomic muta-
tional landscape of tumors. Genomic data were obtained 
from 177 cervical squamous cell carcinomas and endocervical 
adenocarcinomas (CESC) and 505 HNSCC from The Cancer 
Genome Atlas (TCGA; refs. 13, 32) along with 118 HNSCC 
samples from the University of Chicago (33), yielding a 
combined cohort of 295 HPV+ and 505 HPV− tumor samples  
(Fig. 3A). The genes affected by either single-nucleotide alter-
ations or copy-number alterations (CNA) in each sample were 
determined based on subtractive analysis of paired tumor 
and normal whole-exome sequences or single-nucleotide pol-
ymorphism (SNP) arrays, respectively.

From these mutation calls, we used logistic regression to 
identify genes for which genetic alteration is strongly depend-
ent on tumor HPV status. In particular, we identified eight 
genes that are altered frequently in HPV− tumors but rarely 
in HPV+ tumors: TP53, CDKN2A, CDKN2B, C9orf53, CCND1, 

Cancer Research. 
on December 7, 2018. © 2018 American Association forcancerdiscovery.aacrjournals.org Downloaded from 

Published OnlineFirst September 12, 2018; DOI: 10.1158/2159-8290.CD-17-1018 

http://cancerdiscovery.aacrjournals.org/


HPV–Host Network Promotes Multiple Routes to Oncogenesis RESEARCH ARTICLE

	 NOVEMBER  2018 CANCER DISCOVERY | 1477 

Figure 1. Generation of an HPV–human PPI map. A, Representation of the HPV genome, as well as the individual viral proteins used in this study (to scale), 
colored according to their canonical function during the viral replication cycle. B, Summary of the workflow used to construct the PPI network. C, Receiver 
operating characteristic curve illustrating MiST prediction accuracy of a set of 27 gold-standard interactions (see Supplementary Table S1) with the curve 
inflection point marked with a red “×.” The threshold of MiST 0.75 recalled 18 gold-standard interactions and a total of 137 high-confidence interactions (see 
also Supplementary Table S2). D, Number of human proteins interacting with each individual viral protein. E and F, Heat maps representing manually curated 
enriched cellular components (E) and biological pathways and processes (F) of human proteins interacting with individual HPV bait proteins (see also Sup-
plementary Table S3). Colors represent statistical significance as indicated by the respective color scale.
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FAT1, NOTCH2, and EGFR (Fig. 3A; FDR < 10%; Supplemen-
tary Table S4). The frequent genetic alterations in these genes 
suggest their functions are under selection as cancer drivers 
(34), whereas the mutual exclusivity (35, 36) of these altera-
tions with HPV, a type of epistatic genetic interaction, sug-
gests the virus is able to hijack the same or related pathways. 
Providing immediate support for this idea, we found that two 

of the eight genes, TP53 and CDKN2A, encoded tumor sup-
pressors that were also bound physically by HPV proteins in 
our interaction data. That is, these two genes were involved in 
both genetic and physical interactions directly with the virus. 
One of these, TP53, recovered a well-known route of viral 
infection and tumor development (5). The other tumor sup-
pressor gene, CDKN2A, had not been previously reported to 
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Figure 2.  HPV–human protein network map. Network representation of the HPV–human interaction map in C33A cells (http://doi.org/10.18119/
N9JS3T; see also Supplementary Table S2). Diamond-shaped nodes represent the 9 individually expressed HPV-31 proteins, and circles represent the 137 
high-confidence interactors. HPV–human interactions are depicted in solid black lines, and manually curated human–human interactions are shown with 
broken gray lines. Select human complexes are highlighted by gray shadows and annotation. Interactors are colored based on detection in HEK293 (blue), 
Het-1A (orange), or both (see also Supplementary Table S2; Supplementary Figs. S1 and S2). Green rings around interactors indicate previously described 
HPV–human PPIs (see also Supplementary Table S1). Cancer genes are highlighted by a broken red ring around the respective human prey node.
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interact with HPV proteins. The observed interaction between 
HPV E5 and a protein product of CDKN2A, p16–INK4a, may 
affect its tumor-suppressive role in the cell cycle (37), phe-
nocopying the recurrent inactivating mutations seen in this 
gene in HPV− cancers.

To alleviate concerns of some viral genes being expressed 
at a lower level in HPV+ cancers, we examined HPV mRNA 
expression in TCGA patient samples. Based on RNA-
sequencing (RNA-seq) data, the majority of HPV genes are 
expressed in most of the patients with HPV+ CESC (Supple-
mentary Fig. S3a). Of note, E1 is expressed at comparable 
levels to the oncogene E6 (median RPKM = 240.7 vs. 241.8, 
respectively).

Common Pathways Affected by Tumor Mutation 
and Viral Interaction

Motivated by these observations, we reasoned that tumors 
and viruses might alter the same pathways even in cases 
where the implicated genes were different. To more broadly 
understand these common pathways, we downloaded the 

Reactome functional interaction (ReactomeFI) reference 
network (38), a public catalog of 229,300 known pathway 
relationships among human proteins, including PPIs, protein– 
gene transcriptional regulatory interactions, and metabolic 
reactions. We then used the framework of network propaga-
tion (39) to score proteins based on their proximity within 
the ReactomeFI map to HPV-interacting proteins or proteins 
preferentially mutated in HPV− tumors (Fig. 3B; Methods). In 
particular, the MiST scores without threshold, characterizing 
the confidence of HPV protein binding, and the deviances, 
characterizing the significance of preferential HPV− muta-
tions, were propagated separately across the network. In 
each case, the effect of network propagation was to spread 
the starting data type across the ReactomeFI network neigh-
borhood (Methods). Next, the two propagated scores were 
integrated as a single value for each protein, representing 
its network proximity to both lines of evidence. This com-
bined score was then compared with what was expected by 
chance, based on 20,000 permutations in which the scores 
of proteins were randomly interchanged while retaining the  
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Figure 3.  HPV-binding and recurrent genetic alterations complement each other in carcinogenesis. A, Genes with significantly increased mutation 
rates in HPV− tumors are shown with types of mutations present shown for each tumor (see also Supplementary Table S4). Columns are ordered based 
on HPV status, cancer type, and cohort. B, Network propagation is used to identify the network neighborhoods that are enriched in both HPV interactors 
and an increased mutation rate in HPV− tumors. The original and network propagated scores for each gene are indicated by color intensity, with green 
representing HPV interaction scores (MiST), blue representing differential mutation scores (D, deviance) and orange representing combined significance 
(P value). C, Scatterplot depicting the empirical P values of MiST scores and differential mutation scores after network propagation. Empirical P values 
were derived from 20,000 permutations of the HPV interaction scores and the differential mutation scores. Orange (labeled) nodes are genes whose 
neighborhoods are enriched in both events (n = 51; combined significance with empirical FDR < 25%; see Methods and Supplementary Table S5). D, 
Network regions extracted from ReactomeFI by network propagation, containing genes with combined significance (FDR < 25%) together with relevant 
HPV–human interactions (MiST > 0.68; see also Supplementary Tables S2 and S5). Graphic keys including node and edge colors, node size, and node 
border color are indicated in the graphical figure legend. Figures 4A and 5A are similarly annotated.
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network structure (Methods). This analysis identified 51 
human proteins with significant pathway proximity to both 
proteins with preferential HPV− mutations and those with 
strong physical binding to HPV proteins (Fig. 3B and C; Sup-
plementary Table S5, FDR < 25%).

The ReactomeFI interactions among these 51 proteins, 
together with relevant HPV–host interactions from our PPI 
data, define an integrated pathway map (Fig. 3D). This map 
depicts how each of the proteins emerges as a top hit: For 
instance, not only does cyclin D1 (encoded by CCND1) have 
a high differential mutation rate, it is near other proteins 
encoded by genes with high differential mutation rates (TP53, 
CDKN2A, and EGFR) and also near proteins with direct physi-
cal interactions with HPV (E6–p53, E5–p16, E2–β-catenin). As 
another example, β-catenin (encoded by CTNNB1) not only is 
an interesting target of HPV E2, but it also lies in common 
pathways with several differentially mutated genes (TP53, 
CCND1, and EGFR).

E1–KEAP1 Interaction Phenocopies Inactivating 
Mutations in the KEAP1–NRF2 Pathway

The above analyses identified several pathways that contain 
both physical and genetic interactions with HPV but were 
not previously implicated in viral oncogenesis. These find-
ings led us to focus on two pathways in particular. First, we 
investigated KEAP1–NRF2 signaling, which governs a major 
cytoprotective response to stress that can also be activated 
by somatic mutation during tumorigenesis (40–43). Under 
basal conditions, KEAP1 binds to NRF2 and acts as a sub-
strate receptor for the CUL3 ubiquitin ligase complex, lead-
ing to subsequent degradation of NRF2 by the proteasome. 
In response to oxidative stress, KEAP1 loses its inhibitory 
function on NRF2, which is thus able to translocate to the 
nucleus and transcriptionally activate gene promoters con-
taining antioxidant response elements (ARE; refs. 44, 45).

In our pathway analysis, KEAP1 was assigned a high com-
bined significance score due to strong physical interaction 
with the HPV E1 protein (C33A MiST 0.81) and preferential 
mutation in HPV− cancers in multiple genes in its pathway 
neighborhood (P = 2 × 10–4, Fig. 3B). These genes were 
NFE2L2 (encoding NRF2) and CUL3, for which the odds of 
mutation were 2.6-to-1 and 3.3-to-1 in HPV− and HPV+ can-
cers, respectively, as well as KEAP1 itself with 7.4-to-1 odds 
(Fig. 4A). Surprisingly, none of these three genes had met 
the significance cutoff for increased mutation frequency 
when analyzed individually (Fig. 3A), due to the strong FDR 
correction required for multiple hypothesis testing of all 
genes.

To further explore the HPV–KEAP1 association, we first 
confirmed E1 expression in a panel of HPV+ cell lines (Sup-
plementary Fig. S3b). Next, we validated that the physical 

interaction of KEAP1 with HPV E1 could be confirmed by 
immunoprecipitation (IP)–western blotting (WB) analysis 
using both streptavidin-coated beads targeting the Strep-tag  
(Fig. 4B) or an antibody against the endogenous KEAP1 pro-
tein for IP (Fig. 4C), and confirmed that E1 from HPV-16 also 
binds to KEAP1 (Fig. 4D). Importantly, we also validated the 
E1–KEAP1 interaction in the HPV+ head and neck cancer cell  
line UD-SCC-2 (hypopharynx; Supplementary Fig. S4). Fur-
thermore, we found that KEAP1 binds at the N-terminus of  
E1 as demonstrated by decreased interaction with both 
a C-terminal fragment of E1, as well as further decreased 
binding to a mutant lacking the p80/UAF1-binding domain 
(E1Δ10-40) in C33A cells (Fig. 4E and F). To determine the 
functional consequences of the E1–KEAP1 interaction, we 
tested for NRF2 activity in the presence or absence of 
E1. Using an NRF2 reporter assay, we found that expres-
sion of HPV E1, but not an unrelated control gene (GFP), 
increased ARE-dependent transcription of luciferase (Fig. 
4G). These results suggest that HPV E1 inactivates this 
pathway through a direct PPI between E1 and KEAP1, thus 
leading to the expression of cytoprotective target genes 
(Fig. 4H).

RNF20/40 Histone Modifiers: Targets of HPV L2 
versus Mutational Inactivation

The second pathway we investigated was a chromatin 
modification pathway governed by RNF20 and RNF40, which 
form a heterodimeric ubiquitin ligase complex that mon-
oubiquitinates histone H2B at lysine 120. This “H2Bub1” 
histone mark induces an open chromatin structure that is 
accessible to transcription factors and DNA repair factors 
(46–48) and plays a role in tumor suppression (49). Accord-
ingly, decreased activity of the RNF20/40 complex is associ-
ated with increased invasiveness and tumor progression (49, 
50), presumably related to the epithelial–mesenchymal tran-
sition (EMT; ref. 51).

In our pathway analysis, both RNF20 and RNF40 were 
assigned highly significant combined P values (P = 0.0016 and 
0.0018, respectively; Fig. 3B). This significance was achieved 
because in all three cell lines tested HPV L2 was found to bind 
RNF20 and, to a more variable extent, RNF40 (Fig. 2; MiST 
scores of 0.69, 0.85, and 0.98 in C33A, Het-1A, and HEK293 
cells, respectively). Moreover, RNF20 and RNF40 together had 
increased odds of mutation in HPV− versus HPV+ cancers, 
although these odds were substantially greater for RNF40 
(6.4-to-1) than for RNF20 (3.4-to-1; Fig. 5A). The known coop-
erativity between these two proteins in ReactomeFI meant 
that the entire complex could be associated with HPV by com-
bining the physical and genetic evidence.

To investigate the impact of HPV L2 on RNF20-dependent 
gene regulation, we first confirmed L2 expression in a panel 

Figure 4.  Functional consequences of the E1–KEAP1 interaction. A, Subnetwork of interaction between HPV E1 and KEAP1. Blue arrows denote 
the main contribution of differential mutation scores to KEAP1 through network propagation. MiST score of virus–human interaction in C33A cells is 
indicated (0.81). The mechanism of interaction is represented by edge shapes, with +Ub indicating ubiquitination. B–E, Western blot analysis of the virus–
host interaction by IP using streptavidin-coated beads to bind the Strep-tag (B, D, E) or an antibody against endogenous KEAP1 (C). Proteins indicated 
on the right of each blot from IP and input samples were detected using the antibodies indicated. Bands were cropped from the same original membrane. 
Distinction between different strains of HPV is made using strain number preceding the respective viral bait (HPV-31 = 31, HPV-16 = 16; D). F, Cartoons 
depicting the truncation/deletion mutants of HPV-31 E1. Scale is provided in amino acid numbers of the full-length protein at the top. G, Luciferase 
reporter assay for the antioxidant response element (ARE). Relative luciferase light units were normalized based on transfection control. The mean ± 
standard deviation of technical triplicates are depicted. H, Model depicting how E1 influences the KEAP1–NRF2 pathway.
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of HPV+ cell lines (Supplementary Fig. S3b). Next, the 
physical interaction between RNF20 and L2 was confirmed 
in Het-1A (Fig. 5B) and C33A cells (Fig. 5C) using IP fol-
lowed by WB analysis. We demonstrated this interaction 
to be conserved with HPV-16 L2 (Fig. 5C) and mapped the 
interaction between L2 and RNF20 in 293T cells. Although 
previous reports have shown nuclear localization and teth-
ering of L2 to chromatin to be dependent on a central 
region within L2 [chromosome-binding region (CBR); ref. 
52], we show that RNF20 does not bind to this region of L2, 
but rather to the C-terminus of L2 (Fig. 5D and E). Next, we 
performed RNA-seq analysis of cells expressing L2 or GFP as 
a control. In total, 305 upregulated and 253 downregulated 
genes were found in response to L2 expression (Supple-
mentary Table S6, FDR < 5%). Focusing on the upregulated 
genes, we found that EMT and tumor invasiveness were 
among the most highly enriched pathways (FDR < 10−3; 
Fig. 5F; Supplementary Table S6). Key genes in these path-
ways included extracellular matrix components (collagens: 
COL16A1, COL7A1, COL1A1, and COL5A2; integrin: ITGB5), 
regulators such as IGFBP2, and genes regulating TGFβ sig
naling (PMEPA1 and FMOD; Fig. 5F). These findings suggest 
a link between HPV L2 and RNF20/40-mediated induction 
of EMT and tumor invasion.

We next sought to examine in more detail the functional 
relationship between L2 expression in human cells and inva-
sive cell migration. Overexpression of HPV-31 L2 in the 
human esophagus cell line Het-1A led to a statistically signifi-
cantly higher percentage of cells invading through a Matrigel 
matrix in a Transwell invasion assay (Fig. 5G and H; P ≤ 1.0 × 
10−6, two-tailed t test). Additionally, HPV+ UD-SCC2 cells with 
CRISPR-mediated polyclonal disruptions of RNF20 showed a 
decrease in invasion (Fig. 5I and J). These results suggest that 
HPV L2 expression allows cells to more efficiently invade the 
local microenvironment through its interaction with RNF20. 
Finally, consistent with these data, we also showed a decrease 
in the invasive phenotype of HPV+ HNSCC cells when HPV-
16 L2 was targeted by a CRISPR guide RNA (Supplementary 
Notes and Supplementary Fig. S5).

DISCUSSION
This work describes the first systematic HPV–human inter-

actome combined with an integrative genomics approach 
to recognize interactions that drive viral oncogenesis. As 

the majority of this interactome has not been previously 
described, this data set creates a powerful resource of HPV–
human connections for future study and hypothesis building. 
It is also, to our knowledge, the first HPV–human interaction 
map generated across multiple human cellular contexts, ena-
bling the further study of how pathway architecture is modu-
lated by cell type while providing strong validation for the 
majority of interactions that persist despite these contextual 
changes.

Our HPV–human interactome recovered the expected inter-
actions linking HPV to cancer, including RB–E7 and p53–E6, 
as well as previously unrecognized connections such as interac-
tions between E7 and YAP1 (Supplementary Notes), as well as 
E2 and proteins of the WNT/β-catenin signaling pathway (Fig. 
2). Dysregulation of WNT signaling is a hallmark of cancer (53, 
54) and has been recently shown to play a role in the mainte-
nance of cancer stem cells (55). Although previous reports link 
the classic HPV oncogenes E6 and E7 to dysregulation of WNT 
signaling (56), a role for E2 has not been well appreciated, 
although it is corroborated by the observation that E2 expres-
sion levels affect this pathway (57). Interestingly, the E2 gene 
is often lost upon HPV genome integration (58, 59) but can be 
maintained episomally in cancer cells (60).

We have shown that integrating this HPV–human inter-
actome with tumor genome data, focusing on the genes 
that are recurrently mutated in HPV− but not HPV+ tumors, 
constitutes a powerful approach to identifying proteins that 
serve as both viral targets and drivers of cancer. Moreover, we 
also observed that this integrated proteome/genome analy-
sis can be expanded from the level of proteins to pathways. 
An interesting example highlighted by this type of analysis 
relates to interactions between proteins of HPV and the 
host CDKN2A–TP53–CCND1 pathway. The tumor suppressor 
gene CDKN2A encodes multiple proteins through alternative 
splicing, including p16–INK4a and p14ARF. p16 inhibits 
G1–S cyclin-dependent kinase (CDK) complexes containing 
cyclin D1 (encoded by CCND1; ref. 37), whereas p14 activates 
p53 through the inhibition of MDM2 (61). This pathway is 
further regulated through the p53-mediated transcription 
of p21, which again inhibits the activity of cyclin D1–CDK 
complexes (37). In HPV− patients, the inactivation of tumor 
suppressors CDKN2A and p53 thus releases two key inhibi-
tions on the activity of cyclin D1. In HPV+ patients, the virus 
achieves similar effects, in which the well-established E6–p53 
interaction leads to proteasomal degradation of p53, and 

Figure 5.  Functional consequences of the L2–RNF20 interaction. A, Subnetwork of HPV L2 interacting with RNF20 and RNF40. Green/blue arrows 
represent the main contribution of MiST/differential mutation scores through network propagation, respectively. MiST scores of virus–human interaction 
in C33A cells is indicated (0.82, 0.69). B, C, E, Western blot analysis of virus–host interaction by IP using streptavidin-coated beads to bind the Strep-tag. 
Proteins indicated on the right of each blot from IP and input samples were detected using the antibodies indicated. Bands were cropped from the same 
original membrane. Distinction between different strains of HPV is made using strain number preceding the respective viral bait (HPV-31 = 31, HPV-16 = 
16; C). D, Cartoons depicting the truncation/deletion mutants of HPV-31 L2. Scale is provided in amino acid numbers of the full-length protein at the top. 
F, Expression level of upregulated EMT genes in response to L2 overexpression (see also Supplementary Table S6). The z-score normalized expression 
of each gene is indicated by color intensity according to the color scale. G, Transwell invasion assay of Het-1A human esophagus cells overexpressing 
HPV-31 L2 or GFP. Representative images of the bottom side of the Transwell after invasion of Het-1A cells overexpressing HPV-31 L2 (top) and GFP 
(bottom). H and I, Quantification of Transwell invasion assays. Individual dots with centerline (mean) and error bar (standard deviation) show the number 
of invaded cells per image (P value from two-tailed t test) of Het-1A cells overexpressing HPV-31 L2 and GFP (H) and control UD-SCC2 hypopharyngeal 
cancer cells compared with polyclonal disruptions of RNF20 (I). J, Western blot analysis of UD-SCC2 hypopharyngeal cancer cells subjected to CRISPR/
Cas9 gene editing using the indicated guide RNAs. Proteins indicated on the right of each blot were detected using the antibodies indicated. Bands were 
cropped from the same original membrane.
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the newly identified E5–p16 interaction likely phenocopies 
CDKN2A loss of function in this same pathway.

Our integrated approach also led to the discovery of pre-
viously unknown viral–human interactions involving E1–
KEAP1 and L2–RNF20/40. The KEAP1–NRF2 pathway has 
been implicated in oncogenesis and chemoresistance of 
several tumor types, including lung adenocarcinoma, lung 
squamous cell carcinoma, papillary renal cell carcinoma, 
and esophageal cancers (62, 63). Individual genes of this 
pathway have also been shown to be mutated in CESC as well 
as HNSCC (13, 32). Epigenetic inactivation of this pathway 
has been reported for HNSCC and linked to decreased sur-
vival for affected patients (64). Although analysis of HNSCC 
tumor genomes has previously indicated an increased muta-
tion rate in the HPV− population of patients (13), we extended 
this analysis by identifying that the HPV E1 protein directly 
interacts with KEAP1, thus phenocopying the frequent inac-
tivating mutations in the CUL3–KEAP1–NFE2L2 pathway.

RNF20, which was found to interact with HPV L2, forms a 
functional histone ubiquitin ligase complex with RNF40 and 
monoubiquitinates histone H2B K120. Notably, RNF20/40 
loss of function has previously been linked to tumor pro-
gression and invasiveness in breast cancer cells (49, 50). 
We observed large-scale expression changes in response to 
the overexpression of L2. EMT and cell invasion are the 
most prominently upregulated functions, reflecting a similar 
oncogenic phenotype as observed in previous RNF20 loss-of- 
function experiments. Interestingly, the upregulated genes in 
L2 overexpression are also significantly enriched for a previ-
ously reported gene cluster associated with cell motility in 
HNSCC, characterizing poorly differentiated tumors (65). 
These findings suggest that L2 binding can phenocopy the 
highly invasive phenotype promoted by inactivating muta-
tions in RNF20/40, highlighted by our finding of increased 
invasiveness in an in vitro invasion assay upon overexpression 
of HPV L2. We further showed a decrease in the invasive phe-
notype of HPV+ HNSCC cells when RNF20 was ablated using 
CRISPR, suggesting a link between the virus–host PPI and an 
invasive phenotype. These data are consistent with our find-
ing that CRISPR-mediated removal of L2 in an HPV+ cancer 
cell line reduced the invasive phenotype.

Altogether, these results show that viral phenocopying of 
recurrent tumor mutations is not a rare evolutionary event 
restricted to a few classic interactions, but a common sce-
nario. Many HPV proteins, including the previously unappre-
ciated E1 and L2, can play key roles in carcinogenesis. Finally, 
methodologically, the combination of PPI mapping and 
tumor genome analysis defines a pipeline that will enable the 
study of many other virally induced cancers, including those 
linked to hepatitis, Epstein–Barr virus, and adenoviruses.

METHODS
Plasmids and Cell Lines

Codon-optimized versions of HPV-31 gene sequences were provided 
by Jacques Archambault (McGill University, Canada). Codon-opti-
mized versions of HPV-16 genes were gifts from Alison McBride (E1, 
NIAID, NIH), Richard Schlegel (E5, Georgetown University), and John 
Schiller (p16sheLL, containing L1 and L2 sequences, Addgene plas-
mid # 37320; ref. 66). PCR-amplified inserts modified using SLIC (67)  

to contain a C-terminal 2× Strep-tag were cloned into pcDNA4/TO 
(Invitrogen) or the lentiviral vector system pLVX-TetOne-Puro (Clon-
tech) and verified by sequencing. pMD2.G and pdR8.91 were gifts 
from Didier Trono (Addgene plasmid # 12259), FLAG-KEAP1 was a 
gift from Qing Zhong (Addgene plasmid # 28023; ref. 68), and NC16 
pCDNA3.1 FLAG NRF2 was a gift from Randall Moon (Addgene 
plasmid # 36971; ref. 69). Plasmids encoding truncation mutants of 
HPV-31 E1 and L2 were created using PCR-based amplification of 
the truncated sequences using primers introducing restriction sites 
to allow subcloning into the original pcDNA4/TO plasmid contain-
ing a C-terminal 2× Strep-tag. Deletion mutants were created using 
PCR-based amplification of the complete backbone of the full-length 
construct using outward-facing primers flanking the desired dele-
tion. All constructs were verified by sequencing. Primer and plasmid 
sequences will be shared upon request.

The human cervical carcinoma cell line C33A (21), obtained in 
2004, as well as the human embryonic kidney cell lines 293 (HEK293; 
ref. 30) and 293T (70), obtained before 2010, were maintained in high-
glucose DMEM supplemented with 10% FBS (Invitrogen), 1 mmol/L 
sodium pyruvate, and 100 U/mL penicillin/streptomycin (Invitrogen). 
The human esophagus cell line Het-1A (31), obtained in 2015, was 
maintained in BEGM (Lonza), consisting of Broncho Epithelial Basal 
medium with the additives of the Bullet kit except GA-1000 (gentamy-
cin–amphotericin B mix) and supplemented with 100 U/mL penicillin/
streptomycin. The HPV+ cell line UD-SCC-2 (SCC2; hypopharynx) was a 
gift from Silvio Gutkind, obtained in 2015. These cells were maintained 
in high-glucose DMEM supplemented with 10% FBS (Invitrogen), 1× 
nonessential amino acids (UCSF Cell Culture Facility), and 100 U/mL 
penicillin/streptomycin (Invitrogen). All cell lines were last validated in 
2017 by STR analysis using the GenePrint 10 assay (Promega) at the 
University of California, Berkeley Cell Culture Facility.

AP, WB, and Silver Stain
APs were performed as previously described (15). Briefly, C33A, 

HEK293, and 293T cells were transfected using PolyJet transfection 
reagent (SignaGen Laboratories), and cell pellets were harvested 
40 hours after transfection. Het-1A cells were transduced with Tet-
One inducible lentiviral particles. These were produced from 293T 
cells transfected with plasmids pdR8.91, pCMV-VSVg (pMD2.G), 
and pLVX-TetOne-Puro versions encoding the respective viral pro-
teins using PolyJet, supernatants harvested 2 days after transfection, 
cleared by passing through 0.22-μm filters, concentrated with 8.5% of 
PEG-6000 and 0.3 mol/L of NaCl and resuspended in PBS. Polyclonal 
population of stable Het-1A cells were selected using 2 μg/mL puro-
mycin (Calbiochem) 24 hours after transduction and maintained in 
2 μg/mL puromycin. Expression of HPV-31 genes was induced by 
treatment with 1,000 μg/mL doxycycline for 16 hours before harvest. 
Clarified cell lysates were incubated with prewashed Strep-Tactin 
beads (IBA Life Sciences) and allowed to bind for 2 hours. Following 
purification, complexes bound to beads were washed and then eluted 
with desthiobiotin (IBA Life Sciences).

Proteins from cell lysates and AP eluates were separated by SDS-
PAGE and either directly stained using the Pierce Silver Stain Kit 
(Thermo Fisher Scientific) or transferred to a PVDF membrane. 
Membranes were probed with the indicated primary antisera and 
bound antibodies were detected using Pierce ECL Western Blot-
ting Substrate (Thermo Fisher Scientific). Proteins were detected 
using the following antibodies: Strep-tag (#34850, Qiagen), KEAP1 
(#10503-2-AP, Proteintech), and RNF20 (#A300-714, Bethyl Labora-
tories and clone D6E10, #11974, Cell Signaling Technology).

Mass Spectrometry
AP eluates were trypsin digested, desalted, and concentrated as 

previously described (14). Digested peptide mixtures were analyzed 
by LC/MS-MS on a Thermo Scientific Velos Pro Linear Ion Trap MS 
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system or a Thermo Scientific Q Exactive Hybrid Quadrupole Orbit-
rap MS system equipped with a Proxeon EASY nLC II high-pressure 
liquid chromatography and autosampler system.

Network Scoring and Benchmarking
MS raw data were searched against a database containing SwissProt 

human protein sequences and the individual viral bait sequences using 
the Protein Prospector algorithm. Interactions were scored with the 
MiST (15, 22) algorithm using the standard weights (0.309 for repro-
ducibility, 0.685 for specificity, and 0.006 for abundance). Previously 
reported interactions supported by evidence from at least two publica-
tions were included in a list of “gold standards” (Supplementary Table 
S1). PPIs that were not detected in our data set at all (4) were excluded 
from this analysis, but are listed in the Supplementary Table. A ROC 
curve was plotted using the R package “pROC” and shows the perfor-
mance of the MiST score for the 27 gold standards. At a cutoff of MiST 
> 0.75, we found 137 high-confidence interactions, including 18 gold 
standards, of a total of 4,055 PPIs detected (Supplementary Table S2). 
Cytoscape (71) was used for visualization of the PPI network (Fig. 2), 
as well as all other network representations of data (Figs. 3D, 4A, 5A). 
An interactive version of Fig. 2 is available on the public NDEx server 
(ref. 72; http://doi.org/10.18119/N9JS3T).

Functional Enrichment
Gene ontology (GO) term enrichment was performed using the 

online DAVID Functional Annotation Tool (https://david.ncifcrf.
gov; ref. 73) using only high-confidence interacting human proteins 
as input. Interactors of individual viral proteins were tested using 
the “functional annotation clustering” tool using standard settings 
for the annotation category “GOTERM_CC_ALL” (Cellular Compo-
nents) or the default settings (Processes and Pathways). Enriched GO 
terms passing a cutoff of Benjamini–Hochberg corrected FDR < 5% 
were manually curated as shown in Supplementary Table S3.

Data Processing for Tumor Samples
RNA-seq, CNA (SNP 6.0), and somatic mutations of 505 HNSCC 

samples and 177 cervical cancer samples from TCGA (13, 32) were down-
loaded from the Broad Institute’s Firehose (http://gdac.broadinstitute.
org/). Somatic mutations were identified by comparing whole-exome 
sequences of paired tumor and normal samples using the Firehose 
pipeline (http://gdac.broadinstitute.org/). RNA-seq data were used to 
exclude genes with low mRNA expression levels from further analy-
sis. First, each gene’s RNA-seq by Expectation Maximization (RSEM; 
ref. 74) value was normalized by dividing it by the 75th percentile 
of RSEM values within the tumor sample and then multiplying by 
1,000, as per TCGA practice (https://wiki.nci.nih.gov/display/TCGA/
RNAseq+Version+2). Genes were retained if the normalized RSEM 
was greater than 0.125 in over 50% of samples in either cancer type, 
resulting in 17,864 expressed genes. CNA were identified based on the 
output from GISTIC2, indicating copy-number status of the genome 
region containing each gene, normalized to the average for the chro-
mosome arm (+1 = increased relative to arm; 0 = same as arm average; 
−1 = decreased relative to arm).

Somatic mutations and CNA data of 118 HNSCC samples from a 
University of Chicago study (33) were also analyzed. In this cohort, 
617 cancer-associated genes were sequenced in matched tumor–
normal pairs. Somatic mutations were identified using MuTect as 
described previously (33). CNAs were identified from the sequencing 
data using the CONTRA algorithm (33).

HPV Status of TCGA and Chicago HNSCC Samples
For the HNSCC samples from TCGA, samples were classified 

as HPV+ if they had more than 1,000 RNA-seq reads primarily 
aligned to the HPV genes E6 and E7 (13). For the samples without 

sequencing-based HPV status, HPV status was indicated from a diag-
nostic run on the tissues after they had reached TCGA, downloaded 
on February 12, 2016, from https://tcga-data.nci.nih.gov/, and is 
now available through http://ideker.ucsd.edu/papers/eckhardt2018/
nationwidechildrens.org_auxiliary_hnsc.txt.). For the cervical cancer 
samples from TCGA, HPV status was determined using consensus 
results from MassArray and RNA-seq (32). For the University of  
Chicago HNSCC samples, their HPV status was previously deter-
mined by E6/E7-specific qRT-PCR as described (33).

Identification of Mutated Genes in Each Tumor
Genes were classified as wild-type or altered in each of the 800 

tumors with alterations defined as follows. Most oncogenes (e.g., 
EGFR) were considered altered (activated) if affected by a missense 
mutation, in-frame indel, or copy-number amplification. For the 
subset of oncogenes typically altered only by amplification (ref. 75; 
CCND1, LMO1, MDM2, MDM4, MYC, MYCL, MYCN, NCOA3, NKX2-1,  
and SKP2), only copy-number amplifications were considered as 
alterations and not SNVs or indels. All other genes including tumor 
suppressors (e.g., CDKN2A) were considered altered (inactivated) if 
there was any type of nonsilent mutation or a copy-number deletion.

Difference in Mutation Rate by HPV Status
For each gene, we fit a logistic regression model of its alteration 

state g (0 = wild-type; 1 = altered) as a function of v, the HPV status 
(1 = HPV+; 0 = HPV−), controlling for the impact of the cancer types 
t (HNSCC vs. cervical cancer) and cohorts c (TCGA vs. University of 
Chicago) as covariates:

	
p

e v t c

1
1 0 1 2 3

=
+ β β β β( )− + + + 	 (1)

where p is the probability that g = 1. The parameters β were estimated 
from data from 800 tumors with matched exome sequencing, CNA 
and HPV status data. To assess whether the HPV status is significantly 
associated with a gene’s alterations, the likelihood of the complete 
model (Eq. 1) was compared with that of a simple model under null 
hypothesis of no association (i.e., β1 = 0). The deviance D (i.e., log likeli-
hood ratio) between the two nested models was calculated as follows:
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and m represents the number of samples. For the genes with an 
increased mutation rate in HPV− tumors (i.e., β1 < 0), D was used as 
the test statistic for the following network propagation.

Network Propagation
Network propagation (39) was used to identify the clusters of genes 

within the ReactomeFI (38) that are enriched in both HPV interac-
tors and genes with an increased mutation rate in HPV− tumors. All 
human proteins that were included in the ReactomeFI reference net-
work and had mRNA expressed in either HNSCC or cervical cancer, 
as described in the Data Processing for Tumor Samples section, were 
used for network propagation (n = 10,225 proteins). MiST scores 
(without threshold), which characterize the confidence of HPV–
human PPIs, or the deviances D, which characterize the significance 
of the increased mutation rates in HPV− tumors (Eq. 2), were sepa-
rately propagated across the ReactomeFI network based on a random 
walk model (equivalent to heat diffusion) with a restart probability 
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of 0.5. After convergence, the two scores of each gene represent its 
network proximity to HPV protein binding or increased mutation  
rates in HPV−. The product of two propagated scores for each gene, 
representing its network proximity to both the above events, was 
used as the test statistic. To estimate the expected background of this 
product controlling for the network topology, 20,000 permutations 
were performed by randomly reassigning MiST scores or deviances 
D, performing the network propagation and calculating the product 
of the two propagated scores. Intuitively, the empirical probability 
derived from this analysis controls for the impact of network struc-
ture on the flow of the propagation (i.e., a protein with many neigh-
bors is likely to acquire a high propagated score regardless of the 
starting data). The goal was to produce a distribution of this product 
for each gene under the null hypothesis that the network neighbor-
hood of this gene is not significantly enriched in both HPV binding 
and increased genetic alterations in HPV−, while retaining the net-
work structure. This null distribution was indexed with the observed 
product to obtain an empirical P value characterizing the significance 
in both propagations. Using the Storey approach (76), q-values were 
then calculated and a threshold of FDR ≤25% was applied.

Luciferase Reporter Assay
The Cignal Antioxidant Response reporter assay kit (Qiagen) was 

used to measure NRF2 activity in C33A cells according to the manu-
facturer’s instructions. Briefly, cells were seeded in 96-well plates (Cos-
tar) and transfected using PolyJet (SignaGen Laboratories) with the 
following plasmids: Cignal ARE Luciferase Reporter, Negative Control  
or Positive Control mix (25 ng), pcDNA4/TO-based pcHPV31-
E1-S, pcGFP-SF or an empty vector as control (50 ng), pCDNA3.1 
FLAG NRF2 (12.5 ng; Addgene #36971), and FLAG-KEAP1 (37.5 ng; 
Addgene #28023). The medium was replaced 6 hours after trans-
fection and cells were harvested 36 to 40 hours after transfection. 
Luciferase activity (Firefly and Renilla) was measured using the Dual- 
Glo-Luciferase kit (Promega) according to the manufacturer’s 
instructions, and NRF2 (Firefly) activity was calculated by normali-
zation to the Renilla luciferase readings.

RNA-seq Sample Preparation and Data Analysis
Het-1A cells were induced for L2 or GPF overexpression using 1,000 

μg/mL doxycycline for 72 hours before harvest. Cell pellets were flash- 
frozen and total RNA extracted using the RNeasy Mini Kit (Qiagen) 
according to the manufacturer’s instructions. RNA integrity was checked 
using the Eukaryote Total RNA Nano BioAnalyzer assay (Agilent), 
followed by RNA-seq library preparation using the RNA-seq Strand-
Specific Library Preparation Kit (NuGen). Sequencing library quality was 
checked using a BioAnalyzer High-Sensitivity DNA assay (Agilent) and 
quantified by quantitative PCR using the KAPA qPCR Library Quanti-
fication Kit (KAPA Biosystems). The experiment was performed in trip-
licates, isolating RNA in two batches and constructing the sequencing 
libraries in one batch. DNA was pooled at 10 nmol/L and run on a single 
lane of the Illumina HiSeq400 sequencer in single-end mode.

All sequencing reads were aligned to the human reference 
genome and transcriptome (GRCh37) using TopHat version 2.0.14 
(77) with default parameters. Cufflinks version 2.2.1 (78) was used 
to quantify the mRNA abundance for each gene [Fragments Per 
Kilobase of exon model per Million mapped fragments (FPKM)]. 
The following nondefault options were used with Cufflinks: frag- 
bias-correct and multiread-correct. RankProd (79) was applied to 
perform differential expression analysis between L2 overexpression 
and GFP overexpression samples.

We also performed gene set enrichment analysis (http://www.
broad.mit.edu/gsea/; refs. 80, 81) on all the genes detected by RNA-
seq, which were ranked by their log10(P values) given by the Rank-
Prod package (79). A cutoff of FDR ≤ 10% was used to define the 
enriched upregulated and downregulated functions.

In Vitro Invasion Assay
In vitro invasion assays were carried out in growth factor–reduced 

Matrigel-coated Transwell chambers (Corning Life Sciences). Briefly, 
cells were plated in the Transwell chamber in serum-reduced media 
(BEGM media minus BPE, hEGF, and GA, or full DMEM growth 
media with 2.5% BSA). Cells were incubated at 37°C with 5% CO2 
for 72 hours. Cells that invaded the Transwell chamber were fixed 
and stained using the HEMA3 staining solutions (Fisher Scientific) 
according to the manufacturer’s instructions, and 0.5% crystal violet. 
The number of cells that invaded the Matrigel was determined by 
microscopy. A fraction of cells for each condition was seeded in tripli-
cate wells of a 96-well plate in parallel and cultured for 72 hours. Cell 
viability was determined using the CellTiter-Glo2.0 assay (Promega), 
and cell counts were normalized accordingly.

Creation of CRISPR-Mediated Polyclonal Gene Disruptions
We used the Zhang lab’s GeCKO Lentiviral CRISPR Toolbox, spe-

cifically LentiCRISPR v2 (82, 83), to introduce a puromycin-selectable 
hSpCas9 and the chimeric guide RNA with a single lentiviral vec-
tor. For each guide RNA, a pair of annealed oligos designed based on 
a 20-bp target site sequence was cloned into the single-guide RNA 
scaffold following the established protocol (https://media.addgene.
org/data/plasmids/52/52961/52961-attachment_B3xTwla0bkYD.pdf). 
Lentiviral particles were produced from 293T cells transfected with plas-
mids pdR8.91, pCMV-VSVg (pMD2.G), and the LentiCRISPR v2 plasmid 
versions containing the respective guide RNA sequence using PolyJet, 
and supernatants were harvested 2 days after transfection, cleared by 
passing through 0.22-μm filters, concentrated with 8.5% of PEG-6000 
and 0.3 mol/L of NaCl, and resuspended in PBS. Polyclonal population 
of stable cells were selected using 2.5 μg/mL puromycin (Calbiochem) 48 
hours after transduction. Four days later, half the cells were harvested for 
Tracking of Indels by Decomposition (TIDE) analysis, and the remain-
der maintained at a concentration of 2 μg/mL puromycin. Guide RNA 
sequences used are listed in the Supplementary Methods.

PCR Amplification of Target Regions and TIDE Analysis
Primer design and sequences are described in detail in the Supple-

mentary Methods. For extraction of genomic DNA, cells were lysed in 
QuickExtract solution (Epicentre) according to the manufacturer’s 
protocol. PCR was performed using the high-fidelity polymerase  
Phusion (Thermo Fisher); thermocycler settings are described in the 
Supplementary Methods. PCR cleanup was either performed fol-
lowing gel purification of the fragments using NucleoSpin Gel and 
PCR Clean-Up (Macherey Nagel) or ordered through Quintarabio, 
followed by sequencing using one of the PCR primers. Sequencing 
traces were then analyzed using the TIDE webtool (https://tide.nki.
nl/; ref. 84).
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