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SUMMARY

HIV-infected individuals are living longer on antiretro-
viral therapy, but many patients display signs that in
some ways resemble premature aging. To investigate
andquantify the impact of chronicHIV infection on ag-
ing, we report a global analysis of the whole-blood
DNA methylomes of 137 HIV+ individuals under sus-
tained therapy along with 44 matched HIV� individ-
uals. First, wedevelop and validate epigeneticmodels
of aging that are independent of blood cell composi-
tion. Using these models, we find that both chronic
and recent HIV infection lead to an average aging
advancement of 4.9 years, increasing expected mor-
tality risk by 19%. In addition, sustained infection re-
sults in global deregulation of the methylome across
>80,000CpGs and specific hypomethylation of the re-
gion encoding the human leukocyte antigen locus
(HLA).We find that decreased HLAmethylation is pre-
dictiveof lowerCD4/CD8Tcell ratio, linkingmolecular
aging, epigenetic regulation, anddiseaseprogression.

INTRODUCTION

It is an open question why some people show early or delayed

onset of aging-associated disorders (Kennedy et al., 2014).

Recent studies have found that aging is associated with epige-

netic changes (Christensen et al., 2009; Day et al., 2013; Heyn

et al., 2012; Numata et al., 2012; West et al., 2013), and based

on this work we (Hannum et al., 2012) and others (Horvath,
2013; Weidner et al., 2014) have built models capable of predict-

ing a person’s age usingDNAmethylation patterns across a large

number of CpG sites. Although these models are fairly accurate,

errors of prediction—differences between the chronological and

predicted age—serve as a quantitative readout of the relative

advancement or retardation of the ‘‘biological age’’ of an individ-

ual. Biological age advancement hasbeencorrelatedwith factors

such as gender, genetic polymorphisms, and diseases including

cancer and diabetes, and it may influence the onset of other age-

associated disorders (Day et al., 2013; Hannum et al., 2012). A

recent longitudinal study validated the clinical utility of these

models by demonstrating a link between biological age advance-

ment and increased mortality rates (Marioni et al., 2015).

Biological aging has become of particular interest in treatment

of HIV, in which the development of combination Anti-Retroviral

Therapy (cART) now enables infected individuals to live many

decades (Deeks, 2011; Deeks et al., 2013; Maartens et al.,

2014). Several studies have suggested links between chronic

HIV infection and early onset of neurodegeneration (Nightingale

et al., 2014), liver or kidney failure (Joshi et al., 2011; Kovari

et al., 2013), cancer (Dubrow et al., 2012), cardiovascular dis-

ease (Freiberg et al., 2013), and telomere shortening (Leeansyah

et al., 2013; Pathai et al., 2013), leading to the hypothesis that

HIV+ patients might experience advanced or accelerated aging

(Appay and Rowland-Jones, 2002; Guaraldi et al., 2011; Smith

et al., 2012). While these studies report rough estimates of

HIV-mediated age advancement in the range of 0–20 years, it

has been difficult to accurately quantify this number due to sam-

pling effects, co-morbidities, and relatively low incidence rates of

any single age-associated disease. To this effect, the existence,

extent, andmolecular basis of a bona-fide increase in aging have

been unclear (Althoff et al., 2014; Solomon et al., 2014), in part

due to lack of an objective biological clock or aging biomarker.
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Figure 1. Shared Epigenetic Signature of

HIV Infection and Aging

(A) Discovery and validation of CpG methylation

markers associated with age.

(B) Distribution of t-statistics measuring associa-

tion of each methylation marker with HIV status.

Colors indicate groups of markers identified in (A):

Gray, all markers; yellow, age-associated markers

from discovery phase; violet, subset of age-asso-

ciated markers confirmed in validation.

(C) Principal component (PC) analysis of the vali-

dated age-associated markers, in which the first

PC (y axis) is positively associated with both age (x

axis) and disease status (HIV+, green; HIV�, blue).

(D) Potential relationships among HIV infection,

epigenetics, disease, and aging. Black: known;

Dashed gray: potential; Green: connections

explored in this study. See also Tables S2 and S3.
In parallel with such epidemiological observations, a number of

studies reportageeffectsusingblood-basedbiomarkers.Analysis

of cell surfacemarkers in T cells has shownHIV+ subjects to show

phenotypes of older cells (Cao et al., 2009). Other studies have

observed shortened telomeres in certain cell populations (Ricka-

baugh et al., 2011) aswell aswhole blood (Zanet et al., 2014), indi-

rectly linkingHIV to aging via thewell-studiedconnection between

telomere length and age (Lindsey et al., 1991; Cawthon et al.,

2003). Furthermore, a recent analysis of untreated HIV+ individ-

uals found DNA methylation sites that are associated with both

HIV infection and age (Rickabaugh et al., 2015). Together, these

results raise the possibility that HIV infection results in an increase

in biological age.Many questions remain, however: Are the epige-

netic changes associated with HIV the same as those previously

identified (Hannum et al., 2012; Horvath, 2013) in normal individ-

uals as markers of ‘‘biological age,’’ and how complete is the cor-

respondence between these two responses? What is the quanti-

tative effect on aging in years, and is it fixed age advancement

or continuousacceleration?What is the impactonagingofchronic

HIV infection and sustained cART treatment? Are there other

impacts of HIV on the methylome that are unrelated to aging?

Here we begin to address these questions by analyzing the

methylomes of HIV-infected, cART-treated subjects, in which

we observe a strong shared phenotype of HIV and age. To un-

derstand this signal, we develop models of biological age that

allow us to establish a clear quantitative link between HIV infec-

tion and aging as observed in the general population. We identify

both global and targeted epigenomic effects of HIV, including

specific hypomethylation of the HLA locus. Together, these re-

sults shed light on the epigenetic consequences and/or geronto-

logical aspects of chronic HIV infection.
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RESULTS

Genome-wide DNA Methylation
Profiling
To determine whether HIV is associated

with signs of aberrant biological aging,

samples of whole-blood DNA were

obtained from 137 HIV-infected, cART-
treated but otherwise healthy non-Hispanic white males (no hep-

atitis C co-infection, no diabetes, and high adherence to therapy)

and 44 healthy non-Hispanic white male controls (Table S1; Fig-

ure S1). Genome-wide methylation profiles of each sample were

determined using the Illumina Infinium HumanMethylation450

BeadChip array. Data were normalized and controlled for quality

using standard techniques, resulting in removal of two control

patients due to poor signal (Experimental Procedures).

UnsupervisedAnalysis ShowsSharedPhenotypes of HIV
and Age
As a preliminary exploration of this dataset, we ran an unsuper-

vised analysis to identify age-associated methylation sites and

their relation to HIV infection. Analysis of a previous methyl-

ome-wide screen of 538 healthy subjects (Hannum et al., 2012)

identified as many as 61,592 methylation sites associated with

age at a 1% false-discovery rate (FDR) (likelihood ratio test in

multivariate regression model with Benjamini-Hochberg correc-

tion). Validation of these sites in whole blood from a second

control cohort from the European Prospective Investigation

into Cancer and Nutrition (Riboli et al., 2002) (EPIC, N = 662)

confirmed 26,927 of these sites as strongly associated with

age (Figure 1A; Table S2).

Among these validated age-associated sites, we found a strik-

ing association with methylation in the HIV+ patients relative to

healthy controls (p < 10�100, Figure 1B). Further analysis of these

sites found a positive association of the first principal component

with both age andHIV status (Figure 1C; Table S3, association by

multivariate linear model p < 10�8). These findings support a link

between HIV infection and aging (Rickabaugh et al., 2015), as

quantitatively measured by epigenomic profiling (Figure 1D).
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Figure 2. Epigenetic Models Accurately Predict Age and Indicate Advanced Aging for HIV-Infected Individuals

(A) Scatter plot comparing the ages predicted using the Hannum et al. and Horvath models on healthy controls (n = 1,242 from HIV�, Hannum et al. and EPIC

datasets). Red points indicate patients that were discarded due to disagreement between the two aging models (n = 68).

(B and C) Accuracy of the consensus model (y axis) to predict true chronological age (x axis) in datasets from Hannum et al. (n = 497, [B]) or EPIC (n = 637, [C]).

(A–C) Patients between 25 and 68 years old.

(D) Scatter plot of predicted biological age (consensus aging model) versus chronological age for HIV� healthy controls (n = 40).

(E) Scatter plot of biological time versus chronological time since HIV onset for infected subjects (n = 134).

(F) Violin plots showing the distribution of residuals from regression of biological versus chronological age. Three groups are shown: HIV� controls, short-term

HIV+ infected individuals, and long-term HIV+ infected individuals. Note that the red circle indicates an outlier, which is not used to fit the violin profile, but is used

in all statistical assessments.

(A–E) Black dashed lines indicate diagonal (y = x). r, Pearson’s correlation coefficient. ** indicates p < 10�5. See also Table S4.
Benchmarking and Refinement of Epigenetic Aging
Models
Given the shared effects of HIV and aging, we sought to deter-

mine whether HIV causes the same biological aging signature

as previously found in cohorts of uninfected individuals (Hannum

et al., 2012; Horvath, 2013; Marioni et al., 2015). We tested aging

models from both our group (Hannum et al., 2012) and Horvath

(Horvath, 2013) in independent datasets derived from whole

blood samples (Hannum et al., 2012; Riboli et al., 2002; Table

S4). Although the Hannum and Horvath modeling efforts were

based on different methodologies and training data, we found

theymade very similar predictions (r = 0.9, Pearson’s correlation,

Figure 2A) and furthermore that a consensus of the two models

outperformed either model individually (Figures 2B and 2C;
Table S4). For this reason, we used this consensus model for

all remaining analyses.

A potential issue with these models arises in the fact that

methylation profiles from whole blood are influenced by cell

composition, and different cell types have different methylation

states (Jaffe and Irizarry, 2014). These differences might be

particularly pronounced in HIV-infected patients, some of

whom have lowCD4+ T cell counts (Trono et al., 2010). To under-

stand the sensitivity of epigenetic aging models to cell type

composition, we downloaded two datasets profiling sorted cells

across shared sets of individuals (Absher et al., 2013, GEO:

GSE59250; Reynolds et al., 2014, GEO: GSE56046). Among

these sorted cell datasets, we saw good concordance of epige-

netic age predictions with chronological age (Figures S2A–S2F).
Molecular Cell 62, 157–168, April 21, 2016 159



Table 1. Multivariate Linear Models of Biological Age Based on

Chronological Age, HIV, and Cellular Composition

Independent Variable Effect StdErr t P

Model 1. Dependent variable: Biological age

– HIV 3.76 1.14 3.3 0.003

– Chronological

age

�0.12 0.04 �3.0 0.001

Cell composition (%) NK cell 0.21 0.08 2.6 0.011

Cell composition (%) CD4 T cell �0.07 0.07 �1.1 0.293

Cell composition (%) CD8 T cell 0.13 0.06 0.2 0.812

Cell composition (%) B cell �0.17 0.13 �1.4 0.174

Cell composition (%) Monocyte �0.09 0.14 �0.6 0.521

Model 2. Dependent variable: Biological age

– Chronological

age

�0.22 0.07 �3.1 0.002

Cell composition (%) NK cell 0.15 0.07 2.1 0.041

Cell composition (%) CD4 T cell �0.23 0.08 �2.9 0.004

Cell composition (%) CD8 T cell 0.15 0.08 1.8 0.076

Cell composition (%) B cell �0.10 0.07 �1.3 0.190

Cell composition (%) Monocyte �0.05 0.07 �0.7 0.492

Model 3. Dependent variable: Model 2 residuals

– HIV 0.18 0.08 2.4 0.019

In Model 3, residuals from model 2 are carried over to a second regres-

sion against HIV status.
Epigenetic age was reproducible across different cell types pro-

filed from the same patients, with high agreement of age esti-

mates (r >0.77–0.88) and moderate but very significant agree-

ment of age advancement (Pearson’s r > 0.45–0.68; p < 0.0001

for all associations, Figures S2G–S2J).

While we therefore expect the contribution of cell composition

to beminimal, we nonetheless developed an algorithm to individ-

ually normalize each methylation profile using methylation-

derived cell type information. In brief, we used a previously re-

ported method (Jaffe and Irizarry, 2014) to reliably predict blood

composition (Figure S3) and adjust out the expected contribu-

tion of cell-type-specific effects. This procedure greatly limited

the effects of age- and HIV-induced blood composition changes

in downstream analyses (Experimental Procedures; Figure S4).

HIV+ Individuals Have Advanced DNA Methylation Age
We next used this consensus aging model to calculate the ‘‘bio-

logical age’’ of each individual in our cohort (Table S4). For unin-

fected controls, the calculated biological age had a very high

concordance with chronological age (Figure 2D, Pearson’s

r = 0.94). In contrast, the HIV+ patients had a biological age

advancement of 4.9 years on average (p < 10�8 by Student’s t

test, 95% confidence interval 3.4–7.1 years, Figures 2E and

2F). These results were consistent with our previous unsuper-

vised analysis (Figures 1B and 1C) in suggesting that HIV infec-

tion leads to advanced aging. Furthermore, we found that the

age advancement of HIV+ individuals was negatively correlated

with the ratio of CD4+ / CD8+ T lymphocytes (Spearman’s rho =

�0.2, p < 0.02). CD4+ T cells are a major indicator of immune
160 Molecular Cell 62, 157–168, April 21, 2016
integrity (Leung et al., 2013; Serrano-Villar et al., 2014) and are

inversely associated with morbidity and mortality, including

from non-AIDS defining diseases (El-Sadr et al., 2006); similarly,

the CD4/CD8 ratio predicts non-AIDS morbidity (Leung et al.,

2013; Serrano-Villar et al., 2014). This finding links biological ag-

ing of HIV-infected individuals to a clinical measure of disease

progression, and it raises the possibility that patients with stable

immune responses may be less affected by the advanced aging

phenotype. Taking into account a recently estimated 4.2% in-

crease in mortality risk per year of biological age advancement

using the Hannum model (Marioni et al., 2015), the changes

observed in HIV+ patients result in an expected total mortality

risk increase of 19%.

Age Advancement Is Independent of HIV Duration
Notably, patients more recently infected with HIV (<5 years) had

no significant difference in age advancement from those patients

with chronic (>12 years) infection (p > 0.5, Mann-Whitney U Test;

Figure 2F). Similar findings emerged froma regression analysis of

the chronological versus biological time since infection: the slope

did not differ from one (0.98 ± 0.06, SE) whereas the y-intersect

was significantly positive (5.2 ± 0.9; Figures 2E and 2F). These

findings lend support to the theory that age advancement occurs

early in the courseof disease as a consequenceof acute infection

or reaction to drug treatment (Guaraldi et al., 2011; Smith et al.,

2012). The lack of an increase of age advancement with disease

duration seems to contradict alternative views thatHIV-mediated

aging occurs through cumulative effects of latent virus (Appay

and Rowland-Jones, 2002) or chronic therapeutic intervention

(Torres and Lewis, 2014). We did however observe less variation

in age advancement within the chronically infected HIV+ individ-

uals (Figure 2F, p < 0.002, Bartlett’s test relative to recently in-

fected group), perhaps reflecting the comparative stability of

infection and immune response on long-term cART therapy

(Luz et al., 2014; Rosenblatt et al., 2005).

Age Advancement Is Independent of Cellular
Composition
While the direct effects of cell type composition on the whole-

blood methylome were corrected by the adjustment described

above (also see Experimental Procedures), we considered that

it was still possible that changes in cell type composition could

lead to downstream, indirect changes in the epigenomes of all

blood cells. If this were the case, cell-type-associated changes

could be responsible for the observed increase in biological

age in the HIV+ cases. To assess this possibility, we constructed

a multivariate linear model in which cell type composition vari-

ables and HIV status were used to predict biological age as

measured by the methylome (Table 1). In this model, the pres-

ence of HIV was associated with an age advancement of 3.8 ±

1.1 years, while the presence of natural killer cells accounted

for additional increases in biological age. In an even more con-

servative test, we modeled age advancement with cell type

composition variables alone and found that the unexplained vari-

ation in this model still had a significant association with HIV

infection (p = 0.02, Likelihood Ratio Test, Table 1). Thus, even

in a very conservative analysis, HIV infection has association

with advanced aging that is independent of cell composition.



20 30 40 50 60 70
Chronological age (years)

0

Fi
rs

t P
C

 o
f a

ge
 a

ss
oc

ia
te

d
m

ar
ke

rs
 in

 n
eu

tro
ph

ils

HIV+
HIV−

A

20 30 40 50 60 70
Chronological age (years)

0

Fi
rs

t P
C

 o
f a

ge
 a

ss
oc

ia
te

d
m

ar
ke

rs
 in

 C
D

4+
 T

-c
el

ls

B

20 30 40 50 60 70
Chronological age (years)

20

30

40

50

60

70

H
an

nu
m

 m
od

el
 in

 n
eu

tro
ph

ils

r=0.96

C

20 30 40 50 60 70
Chronological age (years)

20

30

40

50

60

70

C
on

se
ns

us
 m

od
el

in
 C

D
4+

 T
-c

el
ls

r=0.96

D

20 30 40 50 60 70
Chronological age (years)

20

30

40

50

60

70

H
an

nu
m

 m
od

el
 in

 n
eu

tro
ph

ils

r=0.94
y=0.97x +3.98

E

20 30 40 50 60 70
Chronological age (years)

20

30

40

50

60

70

C
on

se
ns

us
 m

od
el

in
 C

D
4+

 T
-c

el
ls

r=0.97
y=0.99x +6.17

F

HIV- HIV+
−10

−5

0

5

10

15

20

A
ge

 a
dv

an
ce

m
nt

 
in

 n
eu

tro
ph

ils

G

HIV- HIV+
−10

−5

0

5

10

15

A
ge

 a
dv

an
ce

m
nt

in
 C

D
4+

 T
-c

el
ls

H

HIV+
HIV−

Figure 3. Age Advancement in Validation

Cohorts of Purified Cells

(A and B) Unsupervised principal component (PC)

analysis of methylation patterns in purified blood

cell types, in which the first PC is positively asso-

ciated with both age (x axis) and disease status

(HIV+, green; HIV�, blue).

(A) New CD4+ T cell cohort across 5,999 markers

that are age-associated in CD4+ T cells (GEO:

GSE59250).

(B) New neutrophil cohort across markers probes

that are age-associated in neutrophils (GEO:

GSE65097).

(C–F) Control ([C] and [D]) and HIV+ ([E] and

[F]) subjects for sorted cell validation datasets

comparing chronological age to the Hannum et al.

epigenetic aging model in neutrophils ([C] and [E])

and consensus aging model in CD4+ T cells ([D]

and [F]).

(G and H) Violin plots showing age advancement

in the two sorted cell datasets. For (B), in initial

analysis the first PC heavily reflected an outlier

point, which was removed after which the PC was

recalculated. See also Figure S2.
We also sought to experimentally assess if the observed age

advancement due to HIV infection was observed in purified cell

populations. Using standard calculations of statistical power,

we estimated that a sample of 48 patients, balanced approxi-

mately between cases and controls, would have 81% power to

detect the same aging advancement effect as our primary screen

at p < 0.01. Accordingly, this number of subjects was prospec-

tively recruited from the University of Nebraska Medical Center

under an approved IRB protocol (501-15-EP), and blood ob-

tained following informed consent (Experimental Procedures;

Table S5). Whole blood was separated immunomagnetically to

isolate pure populations of neutrophils and CD4+ T cells.
Mole
As in whole blood, unsupervised anal-

ysis showed a clear effect of HIV in age-

associated methylation markers (Figures

3A and 3B). Application of epigenetic

models of aging in these pure-cell data-

sets showed good concordance of pre-

dicted age with chronological age in

both cell types (Figures 3C–3F). In neutro-

phils, the Hannum model predicted a

2.5 year increase in age due to HIV infec-

tion (p < 0.03, 95% CI 0.6–5.0 years,

Figure 3E) whereas the Horvath model

showed a smaller effect of 0.4 year

(p > 0.05). In contrast, CD4+ T cells had

a much stronger and more consistent

HIV response in both models, with the

consensus aging model showing an in-

crease of 5.7 years in the HIV+ subjects

(p < 10�5, 95% CI 3.4–7.9 years, Fig-

ure 3F). These data indicate that the ef-

fect of epigenetic age advancement is
not merely an artifact of changing blood composition, but likely

reflects true aging signals. The stronger effect size within CD4+

T cells (Figures 3G and 3H) suggests that these cells may be

exposed to more age-like stress than neutrophils, although

further work is needed to understand how disease may affect

aging rates across different cell types and tissues.

HIV and Aging Have Shared and Distinct Methylation
Patterns
Having identified a large effect of HIV infection on age associated

methylation signals, we then sought to better understand the

wider changes instigated by HIV. We identified 81,361 CpG
cular Cell 62, 157–168, April 21, 2016 161



0.25 0.5 1 2 4 8 16
Odds ratio

Promoter

Gene body

TSS

Enhancer

CpG island

PRC2

DHS

0 20 40 60 80 100
Methylation state (%)

D
en

si
ty

 o
f C

pG
 m

ar
ke

rs

down neutral up
Validated age markers

do
w

n
ne

ut
ra

l
up

H
IV

-a
ss

oc
ia

te
d 

m
ar

ke
rs

1769 44039 412

11190 370387 10106

881 31691 2569

1/3

1/2

1

2

3

O
dds ratio

A

C

B

HIV only
HIV + Age
Age only

HIV only
HIV + Age
Age only
All markers

Figure 4. HIV and Aging Have Shared and Distinct Methylation

Patterns.

(A) Overlap table comparing the set of CpG markers associated with HIV and

the set of validated age-associated markers (see Figure 1A). Numbers indicate

probe counts in each overlap, colors correspond to odds ratio of overlap

compared to background.

(B) Odds ratios of enrichment for a panel of genomic features, evaluated in sets

of markers associated with age, HIV, or both. PRC2, polycomb repressive
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markers associated with HIV infection (Benjamini-Hochberg cor-

rected p < 0.01; likelihood ratio test using a multivariate linear

model, Table S2). Of these, 2,569 upregulated markers and

1,769 downregulated markers were also associated with aging,

a 3.2 and 1.4-fold enrichment over random expectation, respec-

tively (Figure 4A, Fisher’s Exact Test p < 10�30, Table S6). We

found that markers associated with both HIV and aging were

enriched in DNase hypersensitivity sites and CpG islands, sug-

gesting methylation changes in DNA regions under active regu-

lation. These CpGmarkers were also enriched in binding sites for

polycomb repressive complex (PRC2) (Figure 4B), a switch that

tightly regulates genes required for differentiation and renewal,

and in Drosophilia is linked to longevity (Siebold et al., 2010).

These findings reinforce previous reports that PRC2 targets

are irreversibly repressed by methylation during the aging pro-

cess (Beerman et al., 2013; Deaton and Bird, 2011; Teschendorff

et al., 2010). Interestingly, markers associated with HIV but

not aging had a very different functional enrichment profile (Fig-

ure 4B), indicating an additional mechanism(s) for epigenetic

alteration associated with HIV.

We have previously reported that age-associated markers in

older subjects tend away from a fully methylated or unmethy-

lated state and insteadmove toward disorder (with amethylation

fraction of 50% representing complete disorder) (Hannum et al.,

2012). We found that HIV-infected patients displayed a similar

trait: among markers associated with HIV, 66% tended toward

disorder, compared with 70% of age-associated markers

(Experimental Procedures, Figure S5). Furthermore, whereas

age-associated markers tended to have a low methylation

fraction that increased with age, HIV-associated markers were

more equally balanced between low and high methylation states

(Figure 4C).

HIV Is Associated with Hypomethylation of the HLA
Locus, Independent of Aging
Thus far, we had observed multiple effects of HIV on the methyl-

ome, including changes in cellular composition, age advance-

ment, and a general increase in methylome disorder. We next

sought to determine whether there are specific genomic regions

for which themethylation state is particularly associated with HIV

infection, independent of aging or other factors (Experimental

Procedures). Toward this aim, we conducted an analysis of

HIV-associated CpG markers independent of disorder or age,

controlling for the effects of cellular composition. Analysis of

the whole-blood data identified a single genomic region that

was enriched in CpG markers associated with HIV; this region,

consisting of 10 Mb on chromosome 6 including histone gene

cluster 1 and the entire HLA locus, had particularly reduced

methylation levels in HIV+ cases as compared to HIV� controls

(p < 10�10, Figure 5A; Experimental Procedures). HLA genes

encode the Major Histocompatibility Complexes (MHCs), the

key antigen-presenting molecules that govern the acquired im-

mune response and impact innate immunity (Figure 5B) (Goulder
complex 2 binding sites; DHS, DNase hypersensitivity sites; TSS, transcription

start sites.

(C) Distribution of methylation states for the CpG marker sets defined in (A).

See also Tables S2 and S6.



Figure 5. Methylome Remodeling under Sustained HIV Infection Targets HLA

(A) Epigenome-wide association of CpG methylation (mCpG) with HIV status (presence or absence). Each point represents the P-value of enrichment for

differentially methylated CpG within a bin of ± 100 consecutive markers along the genome.

(B and C) p values of genome-wide association of SNPs with host control of HIV, reproduced from Fellay et al. (2007).

(D) Epigenome-wide association of mCpG with HIV status (presence or absence), zoomed in to target histone/HLA locus.

(E and F) Validation screen of HIV-downregulated markers in purified populations of neutrophils (E) and CD4+ T cells (F). See also Table S2 and Figure S6.
and Walker, 2012). We found that the differentially methylated

markers surround the rs2395029 variant, for which common ge-

netic variation has been repeatedly implicated in HIV host control

(Figures 5C and 5D) (Fellay et al., 2007; International HIV Control-
lers Study et al., 2010). Examination of this locus in the validation

samples of purified neutrophils and CD4+ T cells identified the

HCP5 gene body as particularly differentially methylated in neu-

trophils (Figures 5E, 5F, and S6). As further evidence that the
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observed changes are functional, we found that the amount of

methylation at this gene was correlated with a patient’s CD4+/

CD8+ T cell ratio (Figure S6). Taken together, these results indi-

cate that the HLA locus is likely differentially methylated across

blood cell types and also changes within individual cell types in

response to HIV. An intriguing interpretation of our results is

that some of the previously reported changes in HLA expression

and corresponding HIV control (Apps et al., 2013) are attributable

to methylation dynamics.

DISCUSSION

We have shown that methylome-wide changes previously

ascribed to aging are also induced by HIV (Figures 1 and 3). By

using highly accurate, externally trained and validated models

of biological aging, our study provides a robust estimate of a

5-year age advancement in HIV/cART individuals (Figure 2).

These results, in combination with the link between molecular

age advancement and increased mortality risk (Marioni et al.,

2015), support the idea that chronic HIV infection is accompa-

nied by a tangible gerontological phenotype. In addition to an

aggregate estimate of HIV age advancement, the methylation

aging model allows for patient-by-patient estimates. Patients

deemed more likely to suffer from HIV-mediated aging effects

might be placed on alterative schedules for preventative care,

including early screening and further testing if warranted.

While epidemiological studies have attempted tomeasure age

acceleration and increased mortality rates in HIV+ individuals

(Appay and Rowland-Jones, 2002; Guaraldi et al., 2011; Smith

et al., 2012), such measurements are made difficult by the

myriad co-factors associated with HIV infection. For instance,

metabolic disorders such as diabetes, HCV infection, and medi-

cation adherence are important factors of HIV infection that are

also suspected to significantly affect mortality rates. Most previ-

ous studies have not attempted to control for these factors; in

contrast, our study has focused specifically on well-character-

ized subjects. Nonetheless, our estimate of HIV age advance-

ment of 4.9 years, calculated from a quantitative analysis of

the methylome, falls within the range of the previous epidemio-

logical studies. Further work will be needed to understand if

the observed epigenetic age advancement is generalizable to

broader slices of the HIV+ population (i.e., patients with complex

co-morbidities such as drug use or additional viral infections).

This study is based on the same epigenetic model of biological

aging asmany others, including recent reports associating epige-

netic aging with Down’s Syndrome (Horvath et al., 2015), trau-

matic stress (Boks et al., 2015), andeven all-causemortality (Mar-

ioni et al., 2015). Here, we implement key data processing and

analysis steps to improve the application of these models, which

should aid in future applications. By minimizing the effects of cell

type composition, we find better calibration of our control sam-

ples (Figures 2B–2D; Table S2), and the model is less affected

by confounding associations such as the changing blood compo-

sition that occurs in HIV+ individuals (Figure S4). Furthermore,

integration of both the Hannum et al. (2012) and Horvath models

of epigenetic aging serves to limit biases in model training and al-

lowsus tofilter samples that areof lowqualityor ill-suited foruse in

aging studies (Experimental Procedures; Table S4).
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Our finding of a 5-year age advancement in cART-treated sub-

jects (Figure 2E) is similar to one recent report (Horvath and Lev-

ine, 2015) but contrasts with another study in untreated patients,

in which shared effects of age and HIV on the methylome were

used to report an age advancement of 14 years (Rickabaugh

et al., 2015). Although this discrepancy could be due to a bene-

ficial effect of cART, we believe it is more likely due to differing

statistical approaches. The previous number is based on com-

parison of the effects of HIV and age in a single cohort, rather

than an epigenetic model of aging built for normal individuals,

as performed here. Moreover, the authors derive their estimate

from the ratio of linear coefficients for HIV and age, which are

themselves highly correlated; such co-linearity is a well-known

cause of instability in such estimates (Farrar and Glauber, 1967).

The discovery of HLA hypomethylation as a targeted conse-

quence of HIV infection (Figure 5) has compelling synergy with

the earlier discoveries of HLA genotype and expression level

as major determinants of HIV control. Common genetic variation

in HLA has been identified as the major contributing factor to

host control of HIV infection (Fellay et al., 2007; International

HIV Controllers Study et al., 2010), and HLA has been reported

as a hotspot for integration of HIV provirus (Ambrosi et al.,

2011). HIV infection has also been associated with decreased

expression of some HLA genes but not others (Bonaparte and

Barker, 2004; Cohen et al., 1999), and higher HLA-C expression

is associated with HIV control (Apps et al., 2013; Kulkarni et al.,

2011; Thomas et al., 2009). Our result suggests an epigenetic

component to the regulation of HLA expression in this region.

It also raises the possibility that the ability to control HIV infection

could be acquired through epigenetic modification, as well as

inherited through genotype.

In summary, we have shown that an extrinsic perturbation to a

human population, driven by HIV infection and cART, is capable

of inducing changes in the epigenomic state of affected individ-

uals. This perturbation may influence regulation of HLA gene

expression and also encompasses signatures of aging. Our find-

ings help address a long-standing debate regarding the effects

of HIV infection on biological aging in cART-treated individuals,

in a manner that can be assessed numerically using an epige-

nome-based readout. Taken together, our findings show that

the epigenome adds a quantitative means of assessing the inter-

action of HIV with normal and pathogenic processes associated

with aging, and they shed light on the underlying mechanisms by

which acute and chronic viral infection impact the host.

EXPERIMENTAL PROCEDURES

Reproduction of Computation Procedures

All data retrieval and processing steps are documented in a series of Jupyter

notebooks at https://www.github.com/theandygross/HIV_Methylation.

Selection Criteria and Subject Recruitment

HIV+ subject samples were obtained from CHARTER as a Resource (http://

www.charterresource.ucsd.edu). The CHARTER study was comprised of

HIV-infected participants at varying stages of disease and with differing his-

tories of antiretroviral treatment, with a focus on neuromedical and neurobeha-

vioral assessments (Heaton et al., 2010). We requested information on sub-

jects for which DNA had been obtained. Demographic and clinical data were

filtered for non-Hispanic white males (to match the control group) who were

free of Hepatitis C virus, not diabetic, on cART, and adherent to therapy.

https://www.github.com/theandygross/HIV_Methylation
http://www.charterresource.ucsd.edu
http://www.charterresource.ucsd.edu


Two groups were selected for study, those more recently infected by HIV (but

after the acute infection stage, 0.8–5.0 years of infection) and those chronically

infected (>12.0 years). As a control, 44 non-Hispanic white males without HIV

were recruited from the San Diego area.

For validation samples, 35 HIV+ subjects along with 25 healthy controls

were recruited prospectively for the purpose of this study tomatch the charac-

teristics of the primary cohort. Cells were purified using immunomagnetic

separation, and DNA was extracted from purified cell populations. While

most subjects used had both neutrophils and CD4+ T cells profiled, differing

DNA yield for some subjects prohibited profiling of both cell types for some

patients.

Clinical and demographic data are presented in Tables S1 and S5.

Sample Collection and Methylation Analysis

DNA was purified from whole-blood samples using PaxGene collection tubes

(QIAGENe) and FlexiGene DNA extraction kits (QIAGEN). Methylation analysis

was performed using Infinium HumanMethylation450 BeadChip Kits (Illumina).

500 ng of DNA was bisulfite converted using EZ DNA Methylation Kits (Zymo

Research) and subsequently processed for HumanMethylation450 BeadChips

following manufacturer’s instructions. Following hybridization, BeadChips

were scanned using the Illumina HiScan System.

Data Pre-Processing

All methylation data for HIV+ and HIV� subjects were deposited in the Gene

Expression Omnibus (GEO) under GEO: GSE67705. For the Hannum et al.

(2012) and EPIC (Riboli et al., 2002) studies, raw data were obtained from

GEO: GSE40279 and GSE51032. All data were processed through the Minfi

R processing pipeline (Aryee et al., 2014). Cell counts were estimated by the

estimateCellCounts function in Minfi using flow sorted cell populations made

available by Houseman et al. (2012). To limit variability in methylation levels

due to differing cell type composition in the whole-blood samples, methylation

levels were adjusted for each CpG marker as follows:

d Average methylation levels for each cell type were obtained from the

Houseman et al. (2012) flow sorted blood dataset.

d A theoretical methylation level was assessed for each patient by

assuming their blood to be a mixture of these pure cell populations at

the estimated cell type proportions.

d The difference of each patient’s methylation level from the average was

assessed.

d This difference was subtracted from the original raw dataset.

We followed the protocol established to be optimal by Marabita et al. (2013)

first quantile normalizing the data and then performing beta-mixture quantile

(BMIQ) normalization (Teschendorff et al., 2013). To limit batch effects, all ar-

rays across the three studies were normalized together. For use in the Horvath

methylation agemodel, raw data were normalized to a gold standard reference

distribution following the protocol provided in the manuscript (Horvath, 2013).

The sole deviation from the Horvath protocol was an additional cell composi-

tion adjustment performed in a similar manner as described above, after BMIQ

normalization. While the cell composition adjustment was not part of either the

Horvath or Hannum et al. (2012) processing pipeline, recent work (Jaffe and Iri-

zarry, 2014) has shown cell type composition to be a key confounding factor in

methylation analysis.

Benchmarking the Aging Models

Aging models were assessed using the Hannum et al. (2012) and EPIC (Riboli

et al., 2002) datasets. While the Hannum et al. dataset was used to train both

epigenetic aging models, the EPIC data were made available after the time of

construction of both models and thus provide an independent assessment of

performance. We limited analysis to patients between the ages of 25 and 68

years of age for better comparison to the HIV cohort. Among the HIV and

EPIC cohorts, we saw slightly better performance of the Hannummodel (which

was trained using only whole blood data) than the Horvath model (trained in a

variety of tissues), but when a simple average of these two models was taken

(the ‘‘consensus model’’), we found better performance than either separately

(Table S2).
Epigenetic Model Concordance Filter

One key drawback of current models of molecular age is the lack of a confi-

dence measure in model prediction for any particular individual. To address,

this we utilized the concordance between the twomodels as an additional filter

of data quality. Despite general agreement between themodels, in a number of

subjects biological age predictions varied by more than 20%. This analysis re-

sulted in the filtering of three HIV+ cases and two HIV� controls in our primary

cohort (Table S1).

Linear Scaling of Epigenetic Age

For both models and across all datasets a linear scaling factor existed when

comparing chronological verses biological age. In order to properly compare

the performance of the models and to best calibrate them to our dataset, we

performed a linear adjustment to all model fits for the control data to a unit

slope with a zero intercept. Note that this affected the model error when

compared in an absolute sense but did not affect the correlation between bio-

logical and chronological age. In HIV+ patients, we adjusted this particular

cohort to the regression fit of the matched controls.

Screening for Differentially Methylated Markers in Response to HIV

Infection

For the results described in Figures 4 and 5, we ran a multivariate linear model

to test for differentially methylated markers in response to HIV infection. This

model used predicted cell type composition and age as covariates. Signifi-

cance was assessed via a likelihood-ratio test for the improvement of a model

fit with HIV as the variable of interest.

Disorder of Methylation in Response to HIV and Aging

We observed increasing disorder of the methylome by both aging and HIV

infection. To assess the possibility that the increasing age advancement might

be explained by increasing disorder, we conducted a principal component

analysis on 7,967 age-associated markers that trended away from <50% of

sites methylated with age (Figure S5A). This analysis produced a similar result

to that shown in Figure 1C, in which the first principal component of the cohort

was still associated with both with age and HIV infection. Furthermore, we

observed that only 231 of 436 (53%) markers used in the two aging models

tended toward methylation values of 50% of sites methylated (i.e., disorder,

binomial p = 0.2) and found that while there is a general entropy increase in

HIV+ patients across the entire methylome (Figure S5B), there is no such effect

in the markers used in the biological age models (Figure S5C).

Identification of Differentially Methylated Regions

We identified 25,491 markers that were associated with HIV, trended away

from disorder, and were not associated with age. For the discovery and visu-

alization of differentially methylated regions (Figure 5A), we calculated a rolling

statistic on the density of ‘‘hits’’ in 200 marker windows. From this analysis it

was clear that a genomic region encompassing the HLA and histone gene

clusters was enriched for markers in our query set, and post hoc analysis

confirmed a strong enrichment in the genomic interval traditionally assigned

to the HLA region (�29 MB–33 MB on chromosome 6, odds ratio = 1.3,

p < 10�10). For further refinement and visualization of this signal, we conducted

a similar scan statistic on a section of chromosome 6 in Figure 5D. In this

targeted analysis, we relaxed our criteria and looked for regions of consistent

increases or decreases in methylation in HIV+ verses HIV� subjects. This

analysis showed a number of ‘‘peaks’’ of hypomethylation both in the histone

gene region as well as near the HLA genes.

Accounting for the Probe Density of the HLA Region

One potential confounding factor of this analysis is the high density of markers

in the HLA region due to the design of the Illumina chip. Taking the non-unin-

form density of the chip into account, the scan statistic searched for regions

across a fixed number of markers as opposed to a fixed-width genomic inter-

val. Despite this, it is possible that the tight clustering of markers in this region

gave usmore power to detect short differentially methylated regions within this

genetic locus. The presence of two peaks in the histone cluster region directly

upstream the HLA locus gives strong support to this being a specific effect.

The density of probes in the histone region was typical compared to the rest
Molecular Cell 62, 157–168, April 21, 2016 165



of the genome, and the coincidence of these two signals being close to each

other solely by chance is minimal.
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