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Systems biology guided by XCMS Online 
metabolomics
To the Editor: An aim of systems biology is to understand complex 
interactions between genes, proteins and metabolites by integrating 
and modeling multiple data sources. We report an ‘integrated-omics’ 
approach within XCMS Online1 that automatically superimposes 
raw metabolomic data onto metabolic pathways and integrates it with 
transcriptomic and proteomic data (http://XCMSOnline.scripps.
edu/).

Mapping downstream metabolite changes onto metabolic path-
ways and biological networks can provide considerable mechanis-
tic insight that can be confirmed by association to multi-omic data. 
However, pathway analysis using untargeted metabolomics requires 
intense data curation, including feature filtering, statistical analysis 
and metabolite identification. Subjectively defined values such as fold 
change, P value and signal intensity cut-off are needed to identify 
significantly dysregulated metabolite features within enormous data 
sets. Confirming metabolite identities for pathway analysis typically 
requires performing additional tandem mass spectrometry (MS/MS) 
experiments and matching the spectra to standards or MS/MS spec-
tral databases. The magnitude of these data sets makes it impractical 
to manually interpret, and therefore the use of bioinformatic tools at 
each step is essential. Multiple analysis platforms are often needed to 
complete the entire workflow, which can take several weeks, depend-
ing on the size of the sample cohort and the experience of the analyst.

XCMS was originally developed as a metabolomics data process-
ing algorithm to extract metabolic features from raw MS data and 
perform statistical analysis. The evolution of XCMS from a com-
mand line tool2 to an intuitive cloud-based online platform1 facili-
tated its use by a broader community. However, the community is 
still in need of user-friendly tools to take metabolomic output and 
associate it with metabolic pathways to identify aberrant biological 
processes. To address this demand, we implemented automated pre-
dictive pathway analysis3, operating directly on the entire metabolic 
feature table, into the XCMS Online workflow (Fig. 1), removing 
the need to transfer data to another application and enabling quick 
and efficient pathway analysis. This process involves uploading raw 
MS data to XCMS Online, where the statistically significant features 
are identified; then, using Fisher’s exact test, dysregulated metabolic 
pathways are identified from the processed accurate mass data3. If 
gene and protein data are available, they are uploaded and overlaid 
with the results of the metabolomic analysis. Currently there are over 
7,600 metabolic models available for pathway analysis from BioCyc4 
v19.5–20.0, with contents being updated regularly. Further confir-
mation of dysregulated pathways can be performed by comparing 
metabolite spectra, obtained via targeted or autonomous MS/MS, 
with standard fragmentation spectra from METLIN, which con-
tains MS/MS data on over 14,000 molecules5. To address instances 
in which a standard spectrum is not available, we have also recently 
added machine learning in silico fragmentation data to METLIN, 
generating MS/MS spectra on over 220,000 more molecules. Our 
workflow enables (i) evaluation of biochemical relevance by mapping 
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Figure 1 | Workflow for metabolomic data and pathway analysis using XCMS Online. A metabolite feature table of statistically significant features is generated 
from standard XCMS processing; these features automatically undergo predictive pathway mapping using a specified biological model. The pathway cloud 
plot shows dysregulated pathways (blue circles) with increasing statistical significance on the y axis, metabolite overlap on the x axis and total number of 
metabolites in the pathway represented by the circle radius. The multiscale pathway coverage table presents enriched metabolic pathways with overlapped 
and total metabolites, genes and proteins. MS/MS data confirm dysregulated pathways by matching metabolite MS/MS spectra with the METLIN database.
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high resolution MS data directly onto pathways, (ii) cross-integration 
of genomic and proteomic data and (iii) metabolite identity verifica-
tion via data-dependent MS/MS analysis, either separately or as part 
of the autonomous workflow5.

Our multi-omic analysis tool uses embedded BioCyc4 and 
Uniprot6 databases to map user-uploaded gene and protein data onto 
the predicted metabolic pathways (Supplementary Fig. 1). Results 
can be viewed in table form or using the interactive Pathway Cloud 
plot (Fig. 1). Dysregulated pathways with greater percent overlap and 
statistical significance appear in the upper right of the cloud plot. 
Graph features can be clicked to view more information on overlap-
ping gene, protein and metabolite data, with links to BioCyc, KEGG 
and METLIN. Important features can be readily identified, help-
ing to decipher underlying biological mechanisms. Details on the 
pathway analysis and integrated omics workflow can be found in the 
Supplementary Methods. Data sharing is possible between collabo-
rators and the public, and we encourage users to share their data in 
the XCMS Online community.

To demonstrate metabolic pathway analysis and multi-
omic integration, we describe representative sample sets in the 
Supplementary Note, including metabolic pathway analysis using 
progenitor cell proliferation data and a bacterially induced corro-
sion study (Supplementary Fig. 2); proteomic integration with an 
aging study (Supplementary Fig. 3); transcriptomic and proteomic 
integration using a human colon cancer study (Supplementary 
Fig. 4 and Supplementary Table 1); a nitrate stress response study 
in sulfate-reducing bacteria (Supplementary Fig. 5) and a media 
stress response study in Escherichia coli (Supplementary Fig. 6 and 
Supplementary Table 2); and a cohort of 1,600 diabetes plasma sam-
ples (Supplementary Fig. 7), which helps illustrate the scalability of 
the cloud-based XCMS Online.

Other notable tools providing pathway analysis and multi-omic 
integration include Galaxy-M7, Open MS from KNIME8 and 
MetaboAnalyst9. However, many of these tools still require separate 
preprocessing of tandem liquid chromatography—mass spectrom-
etry data and are not fully integrated into a single program. Our 
workflow automatically maps metabolomic data directly onto path-
ways and integrates transcriptomics and proteomics for systems-wide 
interpretation in one cohesive platform. Additionally, metabolic net-
work mapping is available based on the predictive activity network 
algorithm3 for analysis of metabolomic data only, with multi-omics 
networking in development. In the future, we will incorporate unique 
metabolic pathways and networks from other sources to provide 
more comprehensive biological resources.

Data availability. To assist users with the workflow, we have pro-
vided a sample data set entitled “Ecoli_glucose-vs-adenosine” (Job 
ID #1133019) that can be found on XCMS Online under XCMS 
Public (https://xcmsonline.scripps.edu/landing_page.php?pgcont
ent=listPublicShares), as well as two instructional videos available 
on the XCMS Institute website (https://xcmsonline.scripps.edu/
landing_page.php?pgcontent=institute) under the Omics tab and 
by clicking Integrated Omics or Pathway Cloud Plot.
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Addressing reproducibility in single-
laboratory phenotyping experiments
To the Editor: Phenotyping genetically engineered mouse lines has 
become a central strategy for discovering mammalian gene function. 
The International Mouse Phenotyping Consortium (IMPC) coor-
dinates a large-scale community effort for phenotyping thousands 
of mutant lines1, making data accessible in public databases2 and 
distributing novel mutant lines as animal models of human diseases. 
The utility of any findings, however, critically depends on whether 
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