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SUMMARY

Gene networks are rapidly growing in size and
number, raising the question of which networks are
most appropriate for particular applications. Here,
we evaluate 21 human genome-wide interaction
networks for their ability to recover 446 disease
gene sets identified through literature curation,
gene expression profiling, or genome-wide associa-
tion studies. While all networks have some ability to
recover disease genes, we observe a wide range of
performance with STRING, ConsensusPathDB, and
GIANT networks having the best performance over-
all. A general tendency is that performance scales
with network size, suggesting that new interaction
discovery currently outweighs the detrimental ef-
fects of false positives. Correcting for size, we find
that the DIP network provides the highest efficiency
(value per interaction). Based on these results, we
create a parsimonious composite network with
both high efficiency and performance. This work
provides a benchmark for selection of molecular
networks in human disease research.

INTRODUCTION

Molecular networks capture knowledge of diverse biochem-

ical, statistical, and functional interactions that occur between

genes and gene products. In a human disease setting, molec-

ular networks augment both gene association and gene

expression analysis, enabling the identification of novel genes

and pathways associated with a particular disease phenotype

(Carter et al., 2013). A common approach has been to

leverage molecular network topology to discover new genes

of interest that are functionally similar to a starting core of

known disease genes (Kim et al., 2014; Lee et al., 2011;

Leiserson et al., 2015; Paull et al., 2013; Qian et al., 2014;

Vanunu et al., 2010). In this respect, networks enable a

systematic ‘‘candidate gene approach’’ (Tabor et al., 2002)

to the study of complex traits, whereby the candidates
are identified by their proximity within molecular network

neighborhoods to known genes associated with a particular

disease. Many of these candidates might otherwise fall

beneath significance thresholds for testing individual SNPs

or genes in a genome-wide association analysis.

Using these principles, networks have identified genes func-

tioning in a spectrum of diseases, including neurodevelopmental

disorders such as autism (Willsey et al., 2013) and hereditary

spastic paraplegia (Novarino et al., 2014), coronary artery

disease (CARDIoGRAMplusC4D Consortium et al., 2013), and

hypertension (Greene et al., 2015). For example, in hereditary

spastic paraplegia three disease candidates identified by

network analysis, MAG, BICDL1, and REEP2, were validated

as having causal variants (Novarino et al., 2014). See Carter

et al. (2013) for a review of the use of networks in the analysis

of genotype-phenotype relationships.

In these types of studies, a network must first be constructed

from an existing repository of molecular interactions. However,

the number of these networks, as well as the number and types

of molecular interactions within them, is rapidly growing. The

PathGuide website at present tracks at over 700 pathway and

molecular interaction databases available to the general public

(Bader et al., 2006). More recently, Yu et al. (2013) reviewed

nine major human-relevant network resources, and the Network

Data Exchange (NDEx) (Pratt et al., 2015) has begun an

attempt to provide a common public repository for biological

network models of all types. Network databases can contain a

variety of interaction types, such as protein-protein interactions,

transcriptional regulatory interactions, genetic interactions,

co-expression correlations, and kinase/phosphatase signaling

relations. They can be populated by strategies such as system-

atic experimental screens, literature curation, and computational

inference. Even accounting for the fact that most databases are

tissue- and disease-context independent (Yeger-Lotem and

Sharan, 2015), the diversity in molecular interaction curation

and network construction methods can lead to significant

differences in database content and utility for different types of

analysis. As a consequence, from their very outset network

biology studies must face a difficult question of determining

which molecular networks are the most informative for the

particular biological study at hand.

Here, we develop benchmarks to aid in selecting the most

appropriate networks for a specific human disease or molecular
Cell Systems 6, 1–12, April 25, 2018 ª 2018 Elsevier Inc. 1
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Figure 1. Comparative Analysis of Gene Network Resources

The constructionmethods for each network aremarked, alongwith the types of interactions they contain (yellow) for eachmolecular interaction network database

evaluated. Interactions from the databases that are not used in our evaluation framework due to missing or embargoed data are marked with a gray X. The two

interaction networks generated from single, large-scale, high-throughput experiments are marked with red dots. Pairwise similarity of all evaluated networks

reveal differences in network edges (red gradient, edge-wise Jaccard index) and network propagation behavior due to varying topologies (blue gradient). Network

sizes are shown by numbers of nodes (genes, green bars) and edges (interactions, purple bars). See also Figure S1 and Table S1.
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pathway of interest. Using this framework, we score 21 popular

human gene interaction networks by their ability to recover gene

sets that characterize a wide variety of diseases. We find that

empirical evaluation of networks not only informs current

genomic analyses, but can also inform the creation of future net-

works as the importance of various sources of network informa-

tion becomes clear.

RESULTS

Human Gene Networks Are Numerous and Capture a
Diversity of Data Types and Sources
We obtained the complete contents of 21 popular human gene-

gene interaction network databases, each of which is available

for public use and described in previous publications (Table S1).

We noted high diversity among these resources in types of inter-

actions and curation methods (Figure 1). Networks such as the

Database for Interacting Proteins (DIP) (Xenarios et al., 2000)

and the Human Protein Reference Database (HPRD) (Peri et al.,

2003) focus wholly on physical protein-protein interactions.

Networks such as ConsensusPathDB (Kamburov et al., 2009)

and MultiNet (Khurana et al., 2013) concatenate protein interac-

tions from multiple molecular networks with many additional

interaction types, such as genetic interactions. Meanwhile, net-

works such as HumanNet (Lee et al., 2011) and Search Tool for
2 Cell Systems 6, 1–12, April 25, 2018
Recurring Instances of Neighboring Genes (STRING) (Snel et al.,

2000; Szklarczyk et al., 2017) quantitatively integrate different

studies and interaction types into a single integrated score for

each gene pair based on the total weight of evidence. We also

examined two molecular networks each generated from a large-

scale, high-throughput protein interaction screen (Huttlin et al.,

2015; Rolland et al., 2014). Specific interaction content varied

widely, even among repositories that appeared superficially

similar (Figures 1 and S1). For example, HumanNet and STRING

have less direct overlap in gene-gene interactions than might be

expected given that they use similar data types and data integra-

tion methodologies. These differences in both interaction type

and coverage can give rise to large differences in network size

and topological structure (Figures 1 and S1).

A Benchmark for Evaluating Networks Based on
Gene Sets
To benchmark these networks, we developed an approach to

score how well each network is able to recover a diverse collec-

tion of disease-associated gene sets (Figures 2A–2C and STAR

Methods). Each gene set was randomly split into two subsets.

We then calculated the ability of one subset to recover the other

within the network, using the technique of network propagation

under the random walk with restart model (Köhler et al., 2008).

Models were constructed to select optimal parameter values
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Figure 2. Set-Based Network Evaluation

(A) A gene set of interest is sub-sampled (with proportion p) on the molecular network. Each sub-sample of genes is then propagated over the network of interest

(with network propagation coefficient a) to recover the remaining genes in the gene set.

(B) The area under the precision-recall curve (AUPRC) is calculated to measure the performance of this recovery task.

(C) For each network, a set of null models is created by shuffling network edges (while preserving node degree) and repeating steps (A) and (B). The final network

performance metric on this gene set is the improvement over the distribution of the null models’ AUPRCs.

(D) The sub-sampling rate p of each gene set was set by a function of the number of genes from the gene set also found in the network. We determined this

relationship by fitting the log10-adjusted gene set coverage in the network versus the optimal sampling rate for recovering the MSigDB gene sets (Liberzon et al.,

2011). The error bars are 95%confidence intervals on the average optimal sampling rate for each task across all networks and network propagation coefficients (a).

(E) Similarly, the optimal amount of network propagation (a) was fit by a linear model on the log10-adjusted number of edges in the network. The error bars are

95% confidence intervals on the optimal a for each network across all tasks.

For additional details see STAR Methods.
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used in the sub-sampling and network propagation steps (Fig-

ures 2D and 2E; STAR Methods). The random walk with restart

model is a common technique used for network propagation.

While other variations of network propagation, such as heat

diffusion, could be used to evaluate networks, previous studies

have found that there is no appreciable difference between these

variations for most tasks (Köhler et al., 2008; Lee et al., 2011;

Paull et al., 2013; Vanunu et al., 2010). After network propaga-

tion, recovery was scored using the area under precision-recall

curve (AUPRC). The average AUPRC over repeated trials was
calibrated against a null distribution of AUPRC scores from

networks in which individual edges had been shuffled, preser-

ving node degrees. Comparison with this null distribution al-

lowed the AUPRC to be expressed as a Z score (Rousseeuw

and Croux, 1993), henceforth called the network’s ‘‘performance

score.’’

This framework was applied to evaluate the 21 networks

for recovery of 446 disease-associated gene sets from the

DisGeNET database (Piñero et al., 2015, 2016), which is based

on text mining of MEDLINE abstracts (Figure 3A, henceforth
Cell Systems 6, 1–12, April 25, 2018 3
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Figure 3. Molecular Network Recovery Performance of Literature Gene Sets

(A) The network performance score (purple) on 50 selected literature gene sets.

(B) The proportion of all 446 literature gene sets versus the number of networks that performed significantly better than their null networks via the network

performance score (Bonferroni corrected p value <0.05).

(C) Network performance gain for 50 literature gene sets as shown in (A). This value represents the effect size of the improvement in gene set recovery

performance due to using real networks over scrambled null networks.

(D) The log10-adjusted network performance score of molecular networks compared with the log10-adjusted network performance score gain by the molecular

networks over their respective null molecular networks recovering the literature gene sets.

(E) Network size-adjusted performance scores for 50 literature gene sets as shown in (A). The columns (networks) in heatmaps (A), (C), and (E) are sorted by

the average rank of the metric being measured (green rows).

(F) The average ranked performance of each molecular network on the recovery of the literature gene sets compared with the log10-adjusted number of

interactions in the molecular networks. The error bars are 1 SD of the ranked network performances across the tasks.

The methods used to calculate the described metrics (network performance score, network performance gain, network size-adjusted performance score, and

average ranked performance) are described in the STAR Methods. See also Figures S3 and S4; Data S1.
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called ‘‘literature gene sets,’’ Data S1A). We observed that all

networks significantly outperformed their corresponding null

models on at least 220 of the literature gene sets (49%), while

118 gene sets (26%) were recovered (at Bonferroni corrected

p value of <0.05) by all 21 networks (Figure 3B). For recovery

of these literature gene sets, we found that STRING had the

best overall performance (Figure 3A).

We also wanted to confirm that our network evaluation

method was not simply scoring a network’s ability to separate

disease genes from non-disease genes, but rather its ability

to recover specific gene sets. Therefore, we also measured

network recovery of the literature gene sets when using a back-

ground of only disease genes. We found that these results using

a different background were very similar to those obtained when

using all genes (Figures S2 andS3).Wewere also concerned that

the null models might have low variance, in which case a net-

work’s performance (Z score) could be highwithout a large effect

size. Therefore, we also calculated an effect size metric, called

the ‘‘performance gain,’’ to address this concern (Figure 3C

and STAR Methods). This metric was highly correlated with the

performance score (Pearson’s r = 0.88, p < 1.0 3 10�16) with

58% of the tasks having performance gains of over 50%, con-

firming that many networks have large effect sizes on the gene

recovery tasks (Figure 3D).

Larger Networks Have Improved Performance
In these results, we noticed that many of the larger networks

appeared to be the best performing. We thus examined how

performance rankings change when correcting each network’s

performance for the number of interactions in the network (Fig-

ure 3E and STARMethods). We found that the smallest network

(DIP) moved to the top of the network size-adjusted rankings,

suggesting that, per edge, this network is most efficient. None-

theless, the number of interactions in a network was strongly

predictive of its overall average rank in recovery of the literature

gene sets (Pearson’s r = 0.88, p = 1.7 3 10�7) (Figure 3F). The

full numeric results of network performance, performance gain,

and size-adjusted network performance are given in Data

S1B–S1D.

We also attempted to determine whether other network

properties, such as the type of molecular interaction or method

of network construction, were correlated with performance.

For this purpose we encoded network type descriptors (columns

in Figure 1) into a binary vector describing each network and per-

formed ANOVA on the size-adjusted performance. Beyond

network size, however, we did not find any additional network

properties that significantly correlated with performance in re-

covery of disease gene sets (Table S2).

Assessing the Influence of Literature Bias
Although no particular type of molecular interaction signifi-

cantly correlated with network performance, we next asked

whether networks that used co-citation information have an

unfair advantage over other networks on the literature gene

set recovery task. Specifically, some of the co-citation infor-

mation used in STRING and HumanNet had been determined

by mining a compendium of MEDLINE abstracts (Lee et al.,

2011; Szklarczyk et al., 2017), which we considered might

be similar to how the literature gene sets were mined by
DisGeNET (Piñero et al., 2015, 2016). To test the degree

to which literature curation might bias our performance

results, we removed all interactions in STRING and HumanNet

that were based solely on text mining. This filter removed

634,062 of 5,135,768 interactions (12.3%) in STRING and

4,631 of 475,959 interactions (1.0%) in HumanNet. We

found that this filtering greatly reduced the performance of

HumanNet relative to other networks (Table S3), suggesting

that co-citation of genes in MEDLINE abstracts were an

important driver of its performance. In contrast, such filtering

did not greatly affect the performance of STRING.

As additional controls, we also evaluated all networks on

two collections of gene sets that had been constructed inde-

pendently of literature mining or other information that could

influence network construction. The first of these was a collec-

tion of nine expression-based cancer gene sets. These gene

sets were derived from a single high-throughput mRNA

expression profiling study in an unsupervised manner without

any network or literature-based gene selection and were

found to correspond with well-known oncogenic pathways

(Kim et al., 2017). Furthermore, this study was published

more recently than the download dates of the networks

used, making it impossible for any of the networks to use infor-

mation from these gene sets. While STRING had the best over-

all performance for recovering the literature gene sets, we

found that GeneMANIA and GIANT (Genome-scale Integrated

Analysis of gene Networks in Tissues) were the best perform-

ing networks on these expression gene sets, with STRING

ranking third. In general, however, we found that the overall

rankings of networks on the literature recovery tasks versus

on the expression recovery tasks were correlated (Pearson’s

r = 0.60, p = 3.7 3 10�3) (Figure 4A). We also observed that

performance gain was correlated with performance score (Fig-

ure S4A, Pearson’s r = 0.89, p < 1.0 3 10�16) while network

performance was correlated with network size (Figure S4B,

Pearson’s r = 0.62, p < 2.8 3 10�3).

As a second control against literature curation bias, we

evaluated each molecular network against 11 gene sets

derived from the genome-wide association study (GWAS)

catalog (MacArthur et al., 2017). We constructed these gene

sets from experimental GWAS of a common disease or trait:

nine gene sets were associated with a disease (e.g., Crohn’s

disease or type 2 diabetes) and two gene sets were associated

with a complex trait (height or body mass index). The genetic

loci discovered in these studies had been associated with dis-

ease phenotype without any prior expectation from the litera-

ture (although one cannot entirely rule out the possibility that

literature may have been used to distinguish among multiple

candidate genes at a locus). Nonetheless, we found that the

performance of the 21 networks on the GWAS gene sets was

highly correlated with performance on the literature gene sets

(Pearson’s r = 0.89, p = 5.7 3 10�8) (Figure 4B). Performance

on the GWAS gene sets also correlated with the performance

gain metric (Figure S4C: Pearson’s r = 0.94, p < 1.0 3

10�16), as well as the network size (Figure S4D: Pearson’s

r = 0.74, p = 1.0 3 10�4). The gene sets and full numeric results

of network performance, performance gain, and size-adjusted

network performance for the expression and GWAS gene sets

are given in Data S1E–S1L.
Cell Systems 6, 1–12, April 25, 2018 5



DIP

HumanInteractome

PID

BioPlex

HPRD
IntAct

BIND

HINT

BioGRID

Mentha

MultiNet

IRefIndex

PathwayCommons

ReactomeFI
Reactome

InBioMap

HumanNet

ConsensusPathDB

GIANTGeneMANIA

STRING

DIP

HumanInteractome

PID

BioPlex

HPRD

IntAct

BIND

HINTBioGRID
Mentha MultiNet

IRefIndex

PathwayCommons

ReactomeFI

Reactome

InBioMap
HumanNet

ConsensusPathDB

GIANT

GeneMANIA

STRING
A B

Figure 4. Literature-Independent Gene Set Recovery Correlates with Literature Gene Set Recovery

The average ranked performance of molecular networks recovering literature gene sets is correlated with their average ranked performance on the recovery of

expression gene sets (red) (A) as well as their average ranked performance on the recovery of GWAS gene sets (green) (B). The calculation to determine the

average ranked performance of a molecular network on a collection of gene sets is described in STAR Methods.

See also Figure S4 and Data S1.
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Integrating Networks Improves Gene Set Recovery
Given the good performance ofmolecular networks that are large

and inclusive, we considered that these separate resources

might be further improved by combining them to form a single

composite network. We explored several approaches for

creating this composite, as follows. First, we created a series of

composite networks of increasing size, by progressively aggre-

gating individual networks in order of their performance scores

in literature gene set recovery (STAR Methods and Table S4).

However, such composite networks did not increase perfor-

mance, regardless of how many individual networks were added

together (Figure 5A and Data S1M). Next, we created a series of

composite networks of decreasing size, by requiring interactions

to be present in ever greater numbers of individual networks

(Table S5). By requiring a minimum of two networks supporting

each interaction, the performance was significantly improved

over the best individual network (STRING) despite having a

much smaller network size (Figures 5B and 5C). This configura-

tion was optimal, since further increasing the minimum number

of supporting networks beyond two resulted in a degradation

of performance (Figure 5B and Data S1M). We call this optimal

configuration the ‘‘Parsimonious Composite Network’’ (PCNet).

Many of the interactions from the larger networks were not

contained within PCNet, implying that these larger networks

contain interactions not reproduced elsewhere (Figures 5D and

5E). On the other hand, several of the smaller networks had

almost all of their interactions covered by PCNet (Figure 5F).

Thus, while large networks generally associate with high perfor-

mance in gene set recovery, carefully designed small networks

can efficiently achieve equal or better performance.

A simple explanation for how a smaller network (e.g., PCNet)

can lead to increased performance is that it concentrates

interactions among genes of the same disease and, conversely,
6 Cell Systems 6, 1–12, April 25, 2018
depletes interactions among unrelated genes. To test this

hypothesis, we performed a case study of four different

networks: a protein-protein interaction network derived from a

single experimental study (BioPlex, Figure 6A), a much larger

network integrating many different studies (STRING, Figure 6B),

the maximal composite network containing the union of interac-

tions from all 21 individual networks (Figure 6C), and, finally, the

PCNet parsimonious composite network (Figure 6D). In each

case, we examined the relationship between a network’s inter-

action density withinmembers of a disease gene set and the per-

formance of recovering that gene set. For all four networks, we

found that interactions were greatly enriched among known dis-

ease genes, with STRING and PCNet showing by far the greatest

enrichment (Figure 6E). Moreover, this interaction enrichment

was well correlated with performance in gene set recovery (Fig-

ure 6F). Thus, density of interactions among disease genes is

indeed an important indicator of network performance.

DISCUSSION

Given that the compositions and topologies of popular molecular

networks vary greatly (Figure 1), a key question is whether these

differences affect downstream studies of disease and, if so, by

how much. Here, we have found that the choice of network can

matter greatly. A particularly revealing example is the case of

the Lymphopenia gene set, for which the performance gap was

a factor of >5,0003 between the networks with highest and

lowest performance (Data S1B). In other instances, the choice

of network appears less important, such as in the Measles gene

set where the gap in performance was <53 (Data S1B). This vari-

ation highlights not only the importance of evaluating networks

globally, but in matching the correct network to the disease of in-

terest. When studying a particular disease, one might start with
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Figure 5. Composite Networks Can Gain Performance Despite Smaller Size

(A and B) Composite network average performance gain across all 446 literature gene sets compared with STRING (blue line) and composite network size

(red line) for additive composite networks (A) and parsimonious composite networks (B). All error bars are 95% confidence intervals on the average performance

gain for a given composite network. PCNet, the parsimonious network with at least two networks supporting each edge, achieved the highest performance,

despite having fewer edges than STRING. The blue dotted line in (A) and (B) represents the performance of STRING, and the red dotted line in (A) and (B) is the

network size of STRING. See STAR Methods for additional details on how to construct the composite networks.

(C) The average performance gain of PCNet across all 446 literature gene sets compared with each of the 21 selected molecular networks. All error bars are 95%

confidence intervals on the average relative gain in performance for PCNet against a given molecular interaction network.

(D) The percentage of interactions in PCNet that are found in each of the 21 selected molecular networks.

(E) The number of interactions from each of the 21 networks that are supported by exactly one other network in PCNet. The gray dotted line represents the total

number of edges in PCNet supported by exactly two network sources (1,830,145 interactions).

(F) The percentage of interactions from each of the 21 selected molecular networks that can be found in PCNet.

See also Data S1.
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the networks that performed best on that particular gene set,

instead of or in addition to the networks that were the best per-

formers overall (Data S1B).

The result that larger networks outperform smaller ones, as

a general trend, supports the continued investment in high-

throughput discovery of biological interaction networks. At the
same time, we were able to derive a much smaller PCNet

that outperformed a network twice its size on the literature

gene set recovery tasks (Figure 5B). This observation suggests

at least one straightforward method of contracting the size of a

reference network without sacrificing performance: requiring

multiple database support for interactions. Moving forward, the
Cell Systems 6, 1–12, April 25, 2018 7
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Figure 6. Increased Interaction Density in Relevant Network Neighborhoods Improves Gene Set Recovery

(A–E) Interactions among genes associated with the same disease, Pancreatitis, as contained in (A) BioPlex, (B) STRING, (C) the union of all networks, and (D) the

Parsimonious Composite Network (PCNet). For each of these, the quantitative enrichment of interactions (E) is shown among genes associated with five

representative diseases.

(F) Scatterplot of gene set recovery performance versus the within-disease enrichment for interactions.
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principle of network expansion by introduction of new data, fol-

lowed by network contraction by independent verification, may

provide general guidance for network construction. This princi-

ple also highlights the importance of cooperation between mul-

tiple approaches to network creation and the continued need for

community development of human molecular interaction maps.

While systematic, we acknowledge that the evaluation frame-

work used here is but one of several that might have been em-

ployed. Random walk with restart, although common, is not

the only network distance metric appropriate for molecular net-

works. Alternative possibilities include diffusion state distance

(Cao et al., 2014; Vandin et al., 2011), among others. More

broadly, one might employ completely different network analyt-

ical engines, such as using networks as priors or regularization

constraints for machine learning approaches (Hill et al., 2016;

Sokolov et al., 2016) or as the underlying structure for probabi-

listic graphical models (Vaske et al., 2010). Establishing the gen-

erality of our results across a broader selection of network anal-

ysis approaches remains for future work.

As ever greater numbers of protein interactions are mapped

and verified across a range of biological contexts, database

curators will continue making decisions on how and which

molecular interactions should be incorporated. This work

provides a proof-of-principle for how any network database, or

interaction subset, may be evaluated and compared. We hope

that the systems biology community will continue to develop

other complementary, and especially data-driven, methods of

network evaluation to accompany the present approach.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Network Evaluation Tools This Paper The software developed for this paper can be found at: https://github.com/

idekerlab/Network_Evaluation_Tools

BIND This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 04471cb3-86d3-11e7-a10d-0ac135e8bacf

BioGRID This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: becec556-86d4-11e7-a10d-0ac135e8bacf

BioPLEX This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: c060aff9-86d4-11e7-a10d-0ac135e8bacf

ConsensusPathDB This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 1a9d6d0f-86d5-11e7-a10d-0ac135e8bacf

DIP This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 1c363581-86d5-11e7-a10d-0ac135e8bacf

GeneMANIA This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: a5d6eb0e-86d9-11e7-a10d-0ac135e8bacf

GIANT This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 08ba2a31-86da-11e7-a10d-0ac135e8bacf

HINT This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 0f92ca13-86da-11e7-a10d-0ac135e8bacf

HPRD This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 1093e665-86da-11e7-a10d-0ac135e8bacf

HumanInteractome This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 110ce6f7-86da-11e7-a10d-0ac135e8bacf

HumanNet This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 18dc9109-86da-11e7-a10d-0ac135e8bacf

InBioMap This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 266efe30-86da-11e7-a10d-0ac135e8bacf

IntAct This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 295ef233-86da-11e7-a10d-0ac135e8bacf

iRefIndex This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 2ca3bcf6-86da-11e7-a10d-0ac135e8bacf

Mentha This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 326806a9-86da-11e7-a10d-0ac135e8bacf

MultiNet This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 359bba6c-86da-11e7-a10d-0ac135e8bacf

PathwayCommons This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 46b63cdf-86da-11e7-a10d-0ac135e8bacf

PID This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 47eb8891-86da-11e7-a10d-0ac135e8bacf

Reactome This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 4bc71515-86da-11e7-a10d-0ac135e8bacf

ReactomeFI This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 50cddb28-86da-11e7-a10d-0ac135e8bacf

STRING This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: cfcd4cdb-86da-11e7-a10d-0ac135e8bacf

HumanNet (Interactions

from only text-mined

sources removed)

This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 1c363581-86d5-11e7-a10d-0ac135e8bacf
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STRING (Interactions from

only text-mined sources

removed)

This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: 959fe798-86d5-11e7-a10d-0ac135e8bacf

Parsimonious Composite

Network (PCNet)

This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: f93f402c-86d4-11e7-a10d-0ac135e8bacf

Full Composite Network

(All molecular interactions)

This Paper This network was converted to HUGO Symbols and deposited on NDEx

with the following UUID: edaec0cb-86d8-11e7-a10d-0ac135e8bacf

Software and Algorithms

Network Propagation (Leiserson et al., 2015) Our implementation of the network propagation method is available here:

https://github.com/idekerlab/Network_Evaluation_Tools/blob/master/

network_evaluation_tools/network_propagation.py

statsmodels (Seabold and Perktold, 2010) http://www.statsmodels.org/stable/index.html

Other

DisGeNET(BeFree

gene-disease associations)

(Piñero et al., 2016) http://www.disgenet.org/web/DisGeNET/menu/downloads#gdasbefree;

RRID:SCR_006178

GWAS Catalog (MacArthur et al., 2017) https://www.ebi.ac.uk/gwas/; RRID:SCR_012745

Oncogenic Signatures (Kim et al., 2017) https://github.com/idekerlab/Network_Evaluation_Tools/blob/master/

Data/Oncogenic_Components_genesets.txt

Biomolecular Interaction

Network Database (BIND)

(Alfarano et al., 2005) http://www.pathwaycommons.org/archives/PC2/v8/PathwayCommons.

8.bind.BINARY_SIF.hgnc.txt.sif.gz; RRID:SCR_003576

Biological General

Repository for Interaction

Data Sets (BioGRID)

(Chatr-Aryamontri et al., 2015) http://thebiogrid.org/downloads/archives/Release%20Archive/BIOGRID-

3.4.149/BIOGRID-ORGANISM-3.4.149.tab2.zip; RRID:SCR_007393

Biophysical Interactions

of Orfeome-based

comPLEXes (BioPLEX)

(Huttlin et al., 2017) http://bioplex.hms.harvard.edu/data/BioPlex_interactionList_v4a.tsv

ConsensusPathDB (Herwig et al., 2016) http://cpdb.molgen.mpg.de/download/ConsensusPathDB_human_PPI.gz;

RRID:SCR_002231

Database of Interacting

Proteins (DIP)

(Salwinski et al., 2004) http://dip.doe-mbi.ucla.edu/dip/File.cgi?FN=2016/tab25/Hsapi20170205.

txt; RRID:SCR_003167

GeneMANIA (Zuberi et al., 2013) http://genemania.org/data/archive/2014-10-15/Homo_sapiens.

COMBINED/COMBINED.DEFAULT_NETWORKS.BP_COMBINING.txt;

RRID:SCR_005709

Genome-scale Integrated

Analysis of gene Networks

in Tissues (GIANT)

(Greene et al., 2015) http://giant.princeton.edu/static//networks/all_tissues_top.gz

High-quality INTeractomes

(HINT)

(Das and Yu, 2012) http://hint.yulab.org/download/HomoSapiens/binary/hq/, http://hint.yulab.

org/download/HomoSapiens/cocomp/hq/; RRID:SCR_002762

Human Protein Reference

Database (HPRD)

(Prasad et al., 2009) http://www.hprd.org/download; RRID:SCR_007027

Human Interactome Project

(HumanInteractome)

(Rolland et al., 2014) http://interactome.dfci.harvard.edu/H_sapiens/download/HI-II-14.tsv;

RRID:SCR_015670

HumanNet (Lee et al., 2011) http://www.functionalnet.org/humannet/HumanNet.v1.benchmark.txt

InBio Map (Li et al., 2017) https://www.intomics.com/inbio/map/api/get_data?file=InBio_Map_core_

2016_09_12.tar.gz

IntAct (Orchard et al., 2014) ftp://ftp.ebi.ac.uk/pub/databases/intact/2017-06-03/psimitab/intact.txt;

RRID:SCR_006944

iRefIndex (Turner et al., 2010) http://irefindex.org/download/irefindex/data/archive/release_14.0/

psi_mitab/MITAB2.6/9606.mitab.07042015.txt.zip; RRID:SCR_002085

Mentha (Calderone et al., 2013) http://mentha.uniroma2.it/doDownload.php?file=2017-06-12_MITAB-

2.5.zip

MultiNet (Khurana et al., 2013) http://homes.gersteinlab.org/Khurana-PLoSCompBio-2013/Multinet.

interactions.txt
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PathwayCommons (Cerami et al., 2011) http://www.pathwaycommons.org/archives/PC2/v9/PathwayCommons9.

All.hgnc.txt.gz; RRID:SCR_002103

PID (Schaefer et al., 2009) http://www.pathwaycommons.org/archives/PC2/v9/PathwayCommons9.

pid.hgnc.sif.gz; RRID:SCR_006866

Reactome (Croft et al., 2014) https://reactome.org/download/current/interactors/reactome.homo_

sapiens.interactions.psi-mitab.txt; RRID:SCR_003485

ReactomeFI (Wu et al., 2010) http://reactomews.oicr.on.ca:8080/caBigR3WebApp2016/FIsInGene_

022717_with_annotations.txt.zip

STRING (Szklarczyk et al., 2015) http://string-db.org/download/protein.links.v10.5.txt.gz; RRID:SCR_005223
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METHOD DETAILS

Raw Network Data Processing
To normalize all networks for comparison, we filtered out all interactors that were not human protein coding genes. Then, the

interactors were all mapped to HUGO Gene Symbols using MyGene.info (Wu et al., 2013; Xin et al., 2016). We kept only interactions

where both interactors were mapped to a HUGO Gene Symbol. Many orthologous protein interactions and interactions between

human proteins and small molecules/non-human proteins were also removed from analysis. We then removed redundant- and

self-interactions in each of the 21 molecular networks. No other filters were applied to the networks except for the GIANT network.

For GIANT, we downloaded the file of the top functional interactions across all tissues and filtered the network for only the top 10%of

interactions by functional interaction score to extract a network that was comparable in size to the other networks.

Network Propagation
Network propagation requires a network and some nodes from that network as input. In this case those nodes represent a sub-

sample of genes from a gene set of interest. These nodes were given some initial value (1 in this case), then a smoothing propagation

process was applied to those initial values, passing some of the value to neighboring nodes. In this paper, the nodes are genes, and

the edges represent various types of functional relationships between genes. These interactions include, for instance, protein binding

interactions, transcriptional regulation and signaling by phosphorylation.

We employed a random-walk with restart model as our network propagation method. We used a closed-form version of the

method as described by the HotNet2 paper (Leiserson et al., 2015):

F = ð1� aÞF0$ðI� aAnormÞ�1 (Equation 1)

In this formulation, a is the propagation constant, or randomwalk probability, Anorm is the degree-normalized adjacencymatrix, and

F0 is the initial binary vector over all genes indicating which genes in the network are in the initial subset of a gene set (Leiserson et al.,

2015). Finally, F is a real-valued vector describing the network-smoothed values over all of the nodes in the network (called the

‘‘propagation score’’). For the purpose of this paper, all networks were treated as undirected simple graphs. If there are multiple

connected components in the network being smoothed, each connected component was propagated independently and the results

of each connected component concatenated.

Gene Set Selection for Network Evaluation
Three collections of gene sets were downloaded as standards to evaluate networks against. The first collection of gene sets was

downloaded from the DisGeNET website (http://www.disgenet.org). We used the ‘‘BeFree gene-disease associations,’’ which is a

collection of text-mined disease-associated gene sets mined from a collection of MEDLINE abstracts (Piñero et al., 2015, 2016).

These gene sets were chosen to remove as much human curation bias as possible from the gene sets. The gene sets were then

filtered to only the gene sets that contained less than 300 genes and contained at least 20 genes in each network studied. This yielded

a collection of 446 gene sets from DisGeNET referred to as ‘‘literature gene sets’’.

We also evaluated the networks on two additional collections of gene sets that were constructed independently from the literature

gene sets and molecular networks. The first literature-independent collection of gene sets were acquired from a recent Cell Systems

paper that determined the pathways involved in treatment response in RAS-induced cancer cell lines (Kim et al., 2017). The authors in

this paper defined 9 oncogenic transcriptional components ranging in size from 50-122 genes, each centered on different common

cancer pathways. We refer to these sets as ‘‘expression gene sets’’.
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The second literature-independent collection of gene sets was derived from the GWAS Catalog (MacArthur et al., 2017).

The GWAS Catalog is a large database of significant SNP-trait associations. We defined each gene set as the genes mapped to

significantly disease associated SNPs, with one gene set per trait. We kept only the gene sets that had between 20 and 500 genes

present in all 21 networks. Of these, we eliminated gene sets that were unlikely to be generalized outside of the particular study

context (e.g. blood cell count, resting heart rate), and kept the 9 gene sets associated with disease and 2 gene sets associated

with easily observable quantitative traits: height and body mass index.

Network Evaluation Method
The set-based network evaluation method for a molecular network’s ability to recover disease-associated gene sets was performed

with the following steps:

1. Identify a gene set of interest on the molecular interaction network.

2. Sub-sample a proportion (�30-60%, see ‘‘Propagation and sub-sampling parameters’’) of the gene set of interest (Figure 2D).

3. Propagate this sub-sample of genes from (2) using the random walk model across the molecular interaction network (Hofree

et al., 2013; Leiserson et al., 2015; Vanunu et al., 2010) (Figure 2E).

4. Sort all genes in the network by propagation score and then sweep this list to calculate a precision-recall curve of the list for

recovering genes from (1) not contained in (2).

5. Calculate the area under the precision-recall curve (AUPRC) from (4).

6. Repeat (2-5) for 50 different sub-samples of the gene set of interest and average these values. This averaged AUPRC is the raw

measure of performance for a given molecular network on clustering a gene set of interest.

7. Repeat steps 1-6 for 50 degree-preserved shuffles of the network on the same gene set of interest to construct a null distri-

bution of average AUPRC values.

8. Calculate the robust Z-statistic (Rousseeuw and Croux, 1993) using the null distribution of average AUPRC values from (7) of

the actual network’s performance on the gene set of interest. This is the performance score of a network for a particular

gene set.
Accounting for Literature Mined Interactions
Recognizing the possible effect of co-citation information in both STRING (https://string-db.org/) and HumanNet (http://www.

functionalnet.org/humannet/about.html), we removed all interactions in these networks that were supported exclusively from text-

mined sources in human studies in these networks. However, we did keep edgeswith evidence from exclusively text-mined evidence

in non-human studies since this evidencewas not used for the literature gene sets. These filtered networks were then evaluated using

our set-based evaluation method and re-ranked in the context of the performance of the other unmodified networks (Table S3). It is

also important to note that the remaining network containing co-citation information, ReactomeFI, does not directly contain informa-

tion mined from MEDLINE abstracts, nor does its publicly available database indicate which interactions are exclusively determined

with literature text mining (Wu et al., 2010). Therefore, we did not perform any interaction filtering and re-evaluation on ReactomeFI.

Composite Network Analysis
We constructed two sequences of composite networks to study the effect of combining networks on performance. The first

sequence of composite networks increases in size starting with the best performing network across the literature gene sets, STRING.

Each subsequent composite network was made by adding all unique edges from the next best performing network on the literature

gene sets (Figure 5A and Table S4). Thenwe created a sequence of parsimonious composite networks of decreasing size by requiring

increased support of each edge, starting with the additive composite network containing the union of all edges from the 21 networks

(Figure 5B and Table S5). The performance of both sequences of composite networks were then evaluated on the same literature

gene sets. We found that the network constructed out of edges with at least 2 network sources outperformed STRING on the

literature gene sets, and we refer to this network as PCNet.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculating Network Topology Similarity
Wecompared the 21molecular networks to each other with two similaritymetrics, one based on the number of shared network edges

and one based on the network topology by propagation (Figure 1). To determine the network similarity by shared network edges, we

first took the intersection of nodes between the two networks being compared. Then all edges between this set of nodes in both

networks were taken to create a subgraph of both networks. The Jaccard index of the number of shared edges between these

two subgraphswas then taken as a the network edge similarity. In order tomeasure the similarity of network topology by propagation,

we again took the intersection of nodes between the two networks. Then, each one of these nodes was propagated (Equation 1)

across the entire network and we measured the similarity between the propagation scores across all shared nodes by Spearman

correlation. The average similarity across all shared nodes between any two networkswas the final network topology-by-propagation

similarity measure.
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Propagation and Sub-sampling Parameters
In order to calibrate the network propagation method, we constructed a model to estimate the optimal propagation constant

(a, Equation 1) as well as a reasonable sub-sampling proportion to use to optimize cohort recovery. In order to establish these

parameters, we tested the performance of the 21 networks on recovering the 50 Hallmark MSigDB pathways (Liberzon et al.,

2011) so as not to contaminate the parameter selection with the literature gene sets that were used in the actual benchmark.

We examined a range of sub-sampling proportions and propagation constants to identify which values for these parameters yields

the best results (Figures 2D and 2E). First, we averaged the resulting network performance scores for each propagation

constant a (from 0.05 to 0.95 in increments of 0.05) and fit a log-linear model to determine the best sub-sample proportion p

for each gene set based on the coverage of that gene set in the network (Figure 2D). Then, using our model for determining p,

we fit a second model to determine the optimal a such that the networks had the best performance on recovering the MSigDB

Hallmark gene sets. These a constants for each network were then compared against various network properties. We found

that a the optimal a constant for each network was predicted by a linear model against the log10-adjusted number of interactions

in the network (Figure 2E). These two models are then used to set the a constant and sub-sample proportion for all subsequent

network evaluation tasks. Note that the determination of these parameters was based on gene sets that were not used in any other

evaluation, so overtraining of these parameters is not an issue in our evaluation framework.

Network Performance Ranks
Three network performance metrics are used here (Figure 3). In order to derive each of these metrics, we compared against a back-

ground of degreematched null networks that were created by shuffling the network edges while preserving node degree. We defined

the performance score as the robust z-score of the true AUPRC of the gene set recovery task as compared to the background of

AUPRCs from the degree matched null networks (Figure 3A). To determine the network rankings by an effect size metric, we defined

the performance gain as the difference between the AUPRC of a given network and themedian AUPRC of its null networks divided by

the median AUPRC of its null networks (Figure 3C). In order to calculate the size-adjusted performance, a linear model was fit to the

performance scores of each task against the log10-adjusted network interaction count. The residual values for each performance

score were calculated against their respective size-adjusted performance models (Figure 3E).

All networks were ranked on each of these metrics individually for each task in each collection. The overall rankings were

determined by the average rank of each network across all tasks in each collection. This value is described as the average ranked

performance of a network. The average ranked performance gain as well as the average ranked network size-adjusted performance

are calculated in the same manner as the average ranked performance using their respective metric.

Network Size-Adjusted Performance ANOVA Model
In order to determine if any specific network properties were correlated with network performance, we constructed an ANOVAmodel

using the statsmodel package in Python (Seabold and Perktold, 2010). The construction method for each network, along with the

types of interactions they contain were considered as independent categorical variables (columns marked with yellow in Figure 1,

with the exception of column titled ‘‘Physical’’). Each columnwhere a network has a yellow indicator without a grey ‘‘X’’ in it was given

1 for that variable and given 0 otherwise. We then used all 14 of these variables to construct a model for predicting the averaged

ranked network size-adjusted performance of each network. The formulation of the ANOVA model is as follows:

Size Adjusted Residuals � Low-Throughput + High-Throughput + Scored + Co-Citation + Co-Complex + Co-Expression +

Genetic + Metabolic + Non-Protein + Orthologous + Pathway + Regulation + Shared Domain + Signalling.

The resulting ANOVA summary table then gave the significance of the explanation of the network size-adjusted performance by

any of the network properties we examined (Table S2).

DATA AND SOFTWARE AVAILABILITY

Many of the functions written to perform the network evaluation are contained within an installable Python 2.7 package at https://

github.com/idekerlab/Network_Evaluation_Tools. Documentation and examples of how to evaluate a molecular network for a given

collection of gene sets are provided as both a Jupyter Notebook and as an executable command line script. All of the website links to

the network source data and the Jupyter Notebooks used to process the network source data are also available in the aforemen-

tioned GitHub repository. The links to the network source data are also described in the Key Resources Table with the network

version and reference information described in Table S1. The 21 molecular networks, the 2 filtered networks as well as PCNet

and the union of all 21 molecular networks are available in a network set on the Network Data Exchange (NDEx) (Pillich et al.,

2017; Pratt et al., 2015) at https://goo.gl/WVDznR.
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Supplementary Data 

Data S1. Gene Set Lists and Network Evaluation Performance Results. Related to Figure             

3, Figure 4, Figure 5 and Figure S4. The tabs in this file are a collection of spreadsheets                  

presenting the gene sets in each of the three collections of gene sets (literature, expression and                

GWAS) as well as full numeric values of molecular network performance score, performance             

gain and size-adjusted performance across all gene sets (as presented in STAR Methods) for              

each collection of gene set recovery tasks. Composite network performance scores on the             

literature gene sets are also presented here.  

Data S1A: Literature gene sets 

Data S1B: Molecular network literature gene set performance scores 

Data S1C: Molecular network literature gene set AUPRC performance gains 

Data S1D: Molecular network literature gene set network size-adjusted performance scores 

Data S1E: Expression gene sets 

Data S1F: Molecular network expression gene set performance scores 

Data S1G: Molecular network expression gene set AUPRC performance gains 

Data S1H: Molecular network expression gene set network size-adjusted performance scores 

Data S1I: GWAS gene sets 

Data S1J: Molecular network GWAS gene set performance scores 

Data S1K: Molecular network GWAS gene set AUPRC performance gains 

Data S1L: Molecular network GWAS gene set network size-adjusted performance scores 

Data S1M: Composite network literature gene set performance scores 
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Figure S1. Molecular Interaction Network Underlying Database Sources. Related to          

Figure 1 and Table S1. The underlying molecular interaction databases (rows) for each            

molecular network evaluated (columns) is marked with various colors depending on how the             

data from the underlying database was used in the evaluated network. Networks developed             

from only manual literature curation or only high-throughput experiments have empty columns            

as they are not determined to have interactions mapped directly from other database sources.              

The underlying interaction databases for networks that are compilations of other databases are             

marked in blue. The underlying interaction databases for functional interaction networks that            

derive their interactions from the information of multiple interaction databases are marked in             

green. Databases used as validation for evaluated networks are marked in orange, and             

interactions from networks that are not included in publicly available version of the evaluated              

networks are marked in red. The determinations of source databases was manually curated             

from websites and references of the evaluated networks in Table S1. 

 

  



Figure S2.



Figure S2. Comparison of Network AUPRCs on Disease Gene Set Recovery With Varied             

Background Genes. Related to STAR Methods. Scatter plots comparing the Area Under the             

Precision-Recall Curve (AUPRC) values (STAR Methods) for each network on recovering           

literature gene sets when using the entire set of network genes or using only genes contained in                 

the literature gene sets as the background of genes for recovery. 
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Figure S3. Disease Gene Set Recovery Performance With Varied Background Genes.           

Related to Figure 3 and STAR Methods. The average ranked performance (as calculated in              

the STAR Methods) of networks on recovering the literature gene sets when using a              

background of all network genes compared to using a background of only genes contained in               

the literature gene sets. The average ranked performance of networks on recovering literature             

gene sets is robust to changing the background of genes used in the performance calculation               

(STAR Methods). 
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Figure S4. Additional Literature-Independent Gene Set Recovery Network Performance         

Correlations. Related to Figure 3, Figure 4 and Data S1. (A) The log10-adjusted network              

performance score of molecular networks compared to the log10-adjusted network performance           

score gain by the molecular networks over their respective null molecular networks recovering             

the expression gene sets (B) The average ranked performance of each molecular network on              

the recovery of the expression gene sets compared to the log10-adjusted number of interactions              

in the molecular networks. (C, D) The same plots as as Figure S4A and Figure S4B,                

respectively, but instead evaluating networks on their recovery of the GWAS gene sets. The              

calculation to determine the average ranked performance of a molecular network on a collection              

of gene sets is described in the STAR Methods. Error bars in Figure S4B and Figure S4D are                  

one standard deviation of the average ranked network performances across each collection of             

recovery tasks.  

  



Table S1. Evaluated Network Version and Citation Information. Related to Figure 1. 
 

Network Name Version Name Approx. Version 
Date Database Citations 

BIND Pathway Commons v9 December 15, 2010 
(Alfarano et al. 2005; Bader et al. 
2003; Bader et al. 2001; Gilbert 

2005) 

BioGRID 3.4.149 June 1, 2017 

(Chatr-Aryamontri et al. 2015; 
Stark et al. 2006; Chatr-Aryamontri 
et al. 2013; Breitkreutz et al. 2008; 
Stark et al. 2011; Breitkreutz et al. 

2003) 

BioPlex --- Jun 15, 2015 (Huttlin et al. 2015; Huttlin et al. 
2017) 

ConsensusPathDB Release 32 January 11, 2017 
(Herwig et al. 2016; Kamburov et 
al. 2009; Kamburov et al. 2013; 

Kamburov et al. 2011) 

DIP Hsapi20170205 February 05, 2017 
(Xenarios et al. 2000; Salwinski et 

al. 2004; Xenarios et al. 2001; 
Xenarios et al. 2002) 

GeneMANIA --- October 15, 2014 (Mostafavi et al. 2008; Zuberi et al. 
2013; Warde-Farley et al. 2010) 

GIANT --- Spring 2015 (Greene et al. 2015) 

HINT Version 4 Early 2017 (Das & Yu 2012) 

HPRD Release 9 June 29, 2010 
(Peri et al. 2003; Prasad et al. 

2009; Mishra et al. 2006; Peri et al. 
2004) 

HumanInteractome HI-II-14 2014 (Rolland et al. 2014) 

HumanNet v.1 --- (Lee et al. 2011) 

InBioMap 2016_09_12 Sep 12, 2016 (Li et al. 2017) 

IntAct Release 207 September 12, 2016 

(Hermjakob et al. 2004; Orchard et 
al. 2014; Kerrien et al. 2007; 

Aranda et al. 2010; Kerrien et al. 
2012) 

iRefIndex Version 14.0 September 14, 2016 (Razick et al. 2008; Turner et al. 
2010) 

Mentha 06-12-2017 June 12, 2017 (Calderone et al. 2013) 

https://paperpile.com/c/GYguBU/O3Pt+jJ3m+IvE0+XSyt
https://paperpile.com/c/GYguBU/O3Pt+jJ3m+IvE0+XSyt
https://paperpile.com/c/GYguBU/O3Pt+jJ3m+IvE0+XSyt
https://paperpile.com/c/GYguBU/yxoC+Gb3P+V4Ks+dubI+foWG+vXN6
https://paperpile.com/c/GYguBU/yxoC+Gb3P+V4Ks+dubI+foWG+vXN6
https://paperpile.com/c/GYguBU/yxoC+Gb3P+V4Ks+dubI+foWG+vXN6
https://paperpile.com/c/GYguBU/yxoC+Gb3P+V4Ks+dubI+foWG+vXN6
https://paperpile.com/c/GYguBU/yxoC+Gb3P+V4Ks+dubI+foWG+vXN6
https://paperpile.com/c/GYguBU/l1PN+G71Q
https://paperpile.com/c/GYguBU/l1PN+G71Q
https://paperpile.com/c/GYguBU/zgWC+wgB0+2Pcz+w2Vc
https://paperpile.com/c/GYguBU/zgWC+wgB0+2Pcz+w2Vc
https://paperpile.com/c/GYguBU/zgWC+wgB0+2Pcz+w2Vc
https://paperpile.com/c/GYguBU/z3LI+osBn+gT7d+iqhk
https://paperpile.com/c/GYguBU/z3LI+osBn+gT7d+iqhk
https://paperpile.com/c/GYguBU/z3LI+osBn+gT7d+iqhk
https://paperpile.com/c/GYguBU/ehKD+IdoX+VGzs
https://paperpile.com/c/GYguBU/ehKD+IdoX+VGzs
https://paperpile.com/c/GYguBU/vuDy
https://paperpile.com/c/GYguBU/4qU8
https://paperpile.com/c/GYguBU/r9Ns+eBjl+qP1c+KMrI
https://paperpile.com/c/GYguBU/r9Ns+eBjl+qP1c+KMrI
https://paperpile.com/c/GYguBU/r9Ns+eBjl+qP1c+KMrI
https://paperpile.com/c/GYguBU/o3id
https://paperpile.com/c/GYguBU/Dq9y
https://paperpile.com/c/GYguBU/3Ivh
https://paperpile.com/c/GYguBU/CjkU+a0dO+rBNH+WxEl+jcgc
https://paperpile.com/c/GYguBU/CjkU+a0dO+rBNH+WxEl+jcgc
https://paperpile.com/c/GYguBU/CjkU+a0dO+rBNH+WxEl+jcgc
https://paperpile.com/c/GYguBU/CjkU+a0dO+rBNH+WxEl+jcgc
https://paperpile.com/c/GYguBU/b91V+feb2
https://paperpile.com/c/GYguBU/b91V+feb2
https://paperpile.com/c/GYguBU/ykSX


MultiNet --- Mar 17, 2013 (Khurana et al. 2013) 

PathwayCommons Pathway Commons v9 July 21, 2017 (Cerami et al. 2011) 

PID Pathway Commons v9 Jul 27, 2015 (Schaefer et al. 2009) 

Reactome v60 April 20, 2017 

(Fabregat et al. 2016; Joshi-Tope 
et al. 2005; Croft et al. 2014; 
Vastrik et al. 2007; Croft et al. 
2011; Matthews et al. 2009) 

ReactomeFI Version 2017 February 27, 2017 (Wu et al. 2010) 

STRING v10.5 May 14, 2017 

(Szklarczyk et al. 2017; 
Franceschini et al. 2013; Von 

Mering et al. 2005; Von Mering et 
al. 2003; Von Mering et al. 2007; 
Jensen et al. 2009; Szklarczyk et 
al. 2011; Szklarczyk et al. 2015; 

Snel et al. 2000) 

 
 

 
 
  

https://paperpile.com/c/GYguBU/xKPl
https://paperpile.com/c/GYguBU/XaFS
https://paperpile.com/c/GYguBU/uDT6
https://paperpile.com/c/GYguBU/T1yc+DCXt+4eJw+vPqb+QQ1x+vmJN
https://paperpile.com/c/GYguBU/T1yc+DCXt+4eJw+vPqb+QQ1x+vmJN
https://paperpile.com/c/GYguBU/T1yc+DCXt+4eJw+vPqb+QQ1x+vmJN
https://paperpile.com/c/GYguBU/T1yc+DCXt+4eJw+vPqb+QQ1x+vmJN
https://paperpile.com/c/GYguBU/cJE2
https://paperpile.com/c/GYguBU/afto+YAnH+Q37P+Qhhw+vTMN+Uait+PQQr+PilH+P8p3
https://paperpile.com/c/GYguBU/afto+YAnH+Q37P+Qhhw+vTMN+Uait+PQQr+PilH+P8p3
https://paperpile.com/c/GYguBU/afto+YAnH+Q37P+Qhhw+vTMN+Uait+PQQr+PilH+P8p3
https://paperpile.com/c/GYguBU/afto+YAnH+Q37P+Qhhw+vTMN+Uait+PQQr+PilH+P8p3
https://paperpile.com/c/GYguBU/afto+YAnH+Q37P+Qhhw+vTMN+Uait+PQQr+PilH+P8p3
https://paperpile.com/c/GYguBU/afto+YAnH+Q37P+Qhhw+vTMN+Uait+PQQr+PilH+P8p3
https://paperpile.com/c/GYguBU/afto+YAnH+Q37P+Qhhw+vTMN+Uait+PQQr+PilH+P8p3


Table S2. P-Values of Molecular Network Interaction Property Association with          
Network-Size Adjusted Performance for Each Collection of Gene Sets via ANOVA.           
Related to Figure 3.  

    
Interaction Property Disease Gene Sets 

Low-Throughput 0.32 

High-Throughput 0.15 

Scored 0.09 

Co-Citation 0.54 

Co-Complex 0.68 

Co-Expression 0.09 

Genetic 0.21 

Metabolic 0.80 

Non-Protein 0.10 

Orthologous 0.23 

Pathway 0.06 

Regulation 0.14 

Shared Domain 0.22 

Signaling 0.72 

  



Table S3. Average Ranked Performance on DisGeNET Gene Sets With and Without            
Filtering Human-Only Co-Citation Exclusive Interactions From STRING and HumanNet.         
Related to Figure 3.  
 

Network Name Filtered Networks Full Networks 

STRING 2.168 2.397 

ConsensusPathDB 3.052 3.148 

GIANT 5.132 5.296 

HumanNet 7.760 5.439 

GeneMANIA 5.213 5.442 

InBioMap 6.300 6.561 

ReactomeFI 7.031 7.249 

Reactome 7.570 7.753 

PathwayCommons 9.711 9.890 

IRefIndex 11.052 11.202 

MultiNet 11.969 12.058 

HINT 13.090 13.164 

BIND 13.271 13.388 

BioGRID 13.655 13.711 

Mentha 13.688 13.722 

HPRD 15.063 15.110 

IntAct 15.511 15.563 

DIP 16.982 17.022 

BioPlex 17.038 17.081 

PID 17.637 17.664 

HumanInteractome 18.108 18.141 

  



Table S4. Properties of Composite Networks Constructed By Adding Molecular          
interactions to Previous Composite Network. Related to Figure 5. 
 

Composite Network 
Name 

Network Added to 
Previous 

Composite 
Network* 

Nodes Edges Avg Node 
Degree 

Edge 
Density 

CompositeNetwork+1 ConsensusPathDB 19,119 6,437,082 673.370 0.03522 

CompositeNetwork+2 GIANT 20,175 9,437,208 935.535 0.04637 

CompositeNetwork+3 HumanNet 20,299 9,681,620 953.901 0.04699 

CompositeNetwork+4 GeneMANIA 20,557 14,577,547 1418.256 0.06899 

CompositeNetwork+5 InBioMap 20,617 14,709,141 1426.894 0.06921 

CompositeNetwork+6 ReactomeFI 20,989 14,741,927 1404.729 0.06693 

CompositeNetwork+7 Reactome 20,991 14,764,475 1406.743 0.06702 

CompositeNetwork+8 PathwayCommons 22,737 15,068,061 1325.422 0.05830 

CompositeNetwork+9 IRefIndex 22,742 15,068,259 1325.148 0.05827 

CompositeNetwork+10 MultiNet 24,566 15,114,254 1230.502 0.05009 

CompositeNetwork+11 HINT 24,568 15,114,769 1230.444 0.05009 

CompositeNetwork+12 BIND 24,571 15,154,676 1233.542 0.05021 

CompositeNetwork+13 BioGRID 24,939 15,191,458 1218.289 0.04885 

CompositeNetwork+14 Mentha 24,941 15,194,165 1218.409 0.04885 

CompositeNetwork+15 HPRD 25,089 15,195,552 1211.332 0.04828 

CompositeNetwork+16 IntAct 25,089 15,195,597 1211.335 0.04828 

CompositeNetwork+17 DIP 25,089 15,195,597 1211.335 0.04828 

CompositeNetwork+18 BioPlex 25,349 15,199,603 1199.227 0.04731 

CompositeNetwork+19 PID 25,349 15,199,603 1199.227 0.04731 

CompositeNetwork+20 HumanInteractome 25,355 15,199,639 1198.946 0.04729 

 
* Starting with STRING.  



Table S5. Properties of Parsimonious Composite Networks Constructed By Increasing          
the Threshold of Support for Each Edge. Related to Figure 5. 
 

Composite Network 
Name 

Network Support 
Count Nodes Edges Avg Node 

Degree 
Edge 

Density 

CompositeNetwork-1 1 25,355 15,199,639 1198.946 0.04729 

CompositeNetwork-2* 2 19,781 2,724,724 275.489 0.01393 

CompositeNetwork-3 3 18,278 894,579 97.886 0.00536 

CompositeNetwork-4 4 17,275 490,481 56.785 0.00329 

CompositeNetwork-5 5 16,625 359,307 43.225 0.00260 

CompositeNetwork-6 6 16,148 279,976 34.676 0.00215 

CompositeNetwork-7 7 15,221 212,513 27.924 0.00183 

CompositeNetwork-8 8 14,266 147,009 20.610 0.00144 

CompositeNetwork-9 9 12,788 98,221 15.361 0.00120 

CompositeNetwork-10 10 11,065 64,182 11.601 0.00105 

CompositeNetwork-11 11 9,487 45,351 9.561 0.00101 

CompositeNetwork-12 12 8,208 31,348 7.638 0.00093 

CompositeNetwork-13 13 6,494 17,906 5.515 0.00085 

CompositeNetwork-14 14 4,911 10,581 4.309 0.00088 

CompositeNetwork-15 15 3,533 6,145 3.479 0.00098 

CompositeNetwork-16 16 2,375 3,361 2.830 0.00119 

CompositeNetwork-17 17 1,496 1,773 2.370 0.00159 

CompositeNetwork-18 18 795 790 1.987 0.00250 

CompositeNetwork-19 19 358 277 1.547 0.00433 

CompositeNetwork-20 20 84 55 1.310 0.01578 

CompositeNetwork-21 21 7 4 1.143 0.19048 

 
*CompositeNetwork-2 is also the parsimonious composite network referred to as PCNet 
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