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Abstract 
Summary: We present pyNBS: a modularized Python 2.7 implementation of the network-based stratification (NBS) 

algorithm for stratifying tumor somatic mutation profiles into molecularly and clinically relevant subtypes. In addition to 

release of the software, we benchmark its key parameters and provide a compact cancer reference network that 

increases the significance of tumor stratification using the NBS algorithm. The structure of the code exposes key steps 

of the algorithm to foster further collaborative development. 

Availability and Implementation: The package, along with examples and data, can be downloaded and installed 

from the URL http://www.github.com/huangger/pyNBS/. 

Contact: jkh013@ucsd.edu 

 

1. Introduction  

The biomedical community increasingly relies on genomic 

information to diagnose and treat many different complex diseases, 

including cancer (Frampton 2013; Johnson 2014). In parallel, 

developments in molecular interaction mapping technologies and 

network analysis algorithms have enabled the systematic elucidation of 

pathways involved in cancer and other complex diseases (Schaefer 

2008). These two technologies - genomics and network analysis - have 

been recently combined to contextualize somatic mutations in tumors 

against the knowledge contained in molecular interaction networks and 

disease pathway maps. For example, numerous algorithms now use 

molecular network information to discover significantly mutated 

pathways in particular cohorts of patients (Vaske 2010; Ciriello 2012; 

Vandin 2011; Vandin 2011; Leiserson 2013; Paull 2013; Leiserson 2014; 

Drake 2016).  

Recently, we introduced an algorithm that uses molecular network 

information to guide the stratification of tumor somatic mutation profiles 

into clinically relevant subtypes (Hofree 2013). Such mutation profiles 

have been notoriously difficult to stratify (i.e. cluster) due to their 

extreme heterogeneity from patient to patient. Our algorithm, called 

Network-Based Stratification (NBS), relies upon aggregating these 

mutations in molecular network neighborhoods to gain power in 

separating patients. The underlying assumption is that cancer arises due 

to disruptions in specific molecular pathways, not only disruptions in 

isolated genes. It is commonly observed that similar cancer types arise 

from mutations that affect different genes that are participants in 

common pathways.  However, traditional gene-wise clustering methods 

fail to capture similarities that are observed only on the pathway level 

since mutations do not necessarily fall on the same genes and therefore 

do not contribute to any measure of similarity between patients despite 

affecting the same pathway. The information of each somatic mutation is 

smoothed across its network neighborhood, spreading the signal to other 

functionally related genes in network space. It is then possible to obtain 

robust clusters of patients based on the similarity of these network-

smoothed mutation profiles.  

In the original publication of NBS, the code used to develop the 

project was provided in Matlab, a proprietary programming language, 

making open access to this software difficult. Additionally, the code 

lacked modularization, making individual steps of the algorithm difficult 

to control, analyze and test. In what follows, we implement and organize 

the NBS algorithm as an installable Python package, which we call 

pyNBS. This package modularizes and exposes the major steps in the 

algorithm to better control, analyze, and improve the approach in future 

studies. 

 

2. Methods 
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Figure 1. Overview and stepwise factorization of the NBS algorithm. 

© The Author(s) (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com 

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty186/4956012
by University of California, San Diego user
on 06 April 2018



J. Huang et al. 

 

The NBS algorithm requires two inputs: a matrix of binary values 

describing all somatic tumor mutations found within a cohort of cancer 

patients (patients x genes) and a second file describing the gene-gene 

interactions defining a reference molecular network. Given these inputs, 

the NBS algorithm clusters the tumor mutation profiles into molecular 

subtypes as seen in Figure 1. Additional details of the algorithm are 

described in the original NBS manuscript (Hofree 2013). 

3. Results 

3.1   pyNBS Usage and Validation 

The NBS algorithm can be executed using the pyNBS package in two 

modes: using a wrapper script via the command line, or by running the 

provided Jupyter Notebooks. Documentation for both code execution 

modes are provided within a GitHub repository, which can be found at: 

http://www.github.com/huangger/pyNBS/. 

It should be noted that each full run of pyNBS does not necessarily 

produce the exact same cluster assignments on the same cohort. This 

variation is due to the stochastic nature of the sub-sampling step as well 

as the non-unique nature of matrix factorization (Cai 2013). However, 

this variance is largely controlled by the final consensus clustering step.  

We tested the pyNBS package by generating patient subtypes in 

ovarian and uterine cancer using the data and corresponding networks 

released with the original Hofree et al. manuscript. PyNBS recovered the 

original Hofree patient cluster assignments for ovarian and uterine 

cancer (Χ2 p-value: 2.3×10-107 and 5.3×10-88, respectively). These two 

test examples are provided, along with the required datasets (re-

formatted for usage with pyNBS), as Jupyter Notebooks in the GitHub 

repository.  

 

3.2   A Cancer-Specific Network for pyNBS  

In addition to reconstructing the original NBS algorithm, we also 

explored alternative reference networks for their ability to separate tumor 

cohorts into clinically relevant subtypes. The outcome of this exploratory 

research was a compact cancer reference network that contained only 

high-confidence interactions specific to cancer. To construct this 

network, we began with a high-quality network assembled in a previous 

study containing 19,781 genes with each of its 2,724,724 protein 

interactions supported by multiple lines of evidence (Huang and Carlin 

in press). We filtered this network to retain only cancer genes as 

documented in at least one of four collections (Hanahan 2011; 

Vogelstein 2013; Iorio 2016; Forbes 2017). We found that this cancer 

reference network more effectively clusters tumor samples from several 

different cancer types, as measured by the clusters’ ability to predict 

patient survival, in comparison to the HumanNet network used in the 

original NBS study (Figure 2A). This cancer reference network, as well 

as directions on constructing this network and analysis on the effect of 

different network models on pyNBS are presented as supplemental 

Jupyter Notebooks located in the Github repository.  

 

3.3   Practical Benchmarking and Parameter Tuning 

The pyNBS algorithm can be expensive in both memory and in run 

time for large networks, or if many iterations of the sub-sampling and 

matrix factorization are required. However, we found that 1,000 

iterations of sub-sampling and consensus clustering, as originally 

performed by Hofree et al., could be markedly decreased with little 

reduction in performance, with only 100 iterations being sufficient for 

the consensus clustering to converge. This reduction can offer about 90% 

run time savings with no appreciable deviation in the results 

(Figure 2B). For example, to stratify the TCGA head and neck cancer 

data using the filtered HumanNet (HN90, as described by Hofree et al.), 

we reduced the runtime of pyNBS from approximately 21.5 hours to 2.2 

hours. 

In addition, using the filtered Cancer Subnetwork (see above), which 

only has 2,291 nodes compared to the 7,939 nodes in HN90, we see that 

pyNBS not only runs much faster, but by reducing the consensus 

clustering iterations, this also reduces the overall runtime of pyNBS in 

this scenario from 6.5 hours to approximately 40 minutes (Figure 2B). 

Due to the NBS algorithm requiring many matrix multiplications, we 

recommend running pyNBS on a machine with at least four threads and 

4GB of RAM per thread.  

While we only sought to recreate the original procedure and 

parameter space for running pyNBS here, we performed an additional 

exploration on the effect of varying several parameters and algorithmic 

decisions on the final consensus clustering results in pyNBS. We present 

some of these results in a supplemental Jupyter Notebook in the Github 

repository. 
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Figure 2. Benchmarking and pyNBS stratification performance.  
A. Significance of survival separation between subtypes in bladder (BLCA), Colon 

(COAD), head and neck (HNSC) and uterine (UCEC) cancer as discovered by 

pyNBS. Cohorts were stratified using the top 10% of edges in HumanNet (HN90, 

blue) (Hofree et al. 2013), our cancer subnetwork from high-confidence network 

interactions (gold) (Huang and Carlin in press), without network propagation 

(green), and with propagation over a randomized cancer subnetwork (red). 

B. Consensus clustering convergence rate and runtime performance of pyNBS on 

TCGA head and neck cancer data with HN90 (blue) and the Cancer Subnetwork 

(gold). By measuring the agreement of consensus clustering results at each step and 

the consensus clustering result using 10 less sub-sampling iterations, it is clear that 

the consensus clustering is fairly stable at just 100 sub-sampling iterations. 
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