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ABSTRACT

In the post-genomic era, the first step in any study of protem function is a ‘homology
search agamst the complete genome sequence of the organism of interest. By analogy, if
we also wish to elucidate the cadre of signaling and regulatory pathways in the cell, an
extremely powerful first step is to construct a complete network of protem-protem ‘and
transcnpuonal interactions and then search through this network  to identify critical
pathways in a top-down fashion. Like genomic sequence, the ‘molecular interaction
network provides a broad foundation for more directed studies to follow. We illustrate
this strategy using a large network of 12,232 interactions in yeast. A variety of
applications are discussed, _including screening the network to 1dent1fy pathways
responsible for gene expression changes observed in galactose-induced cells, and
identifying groups of interacting proteins that are essentla] (by phenotypic assay) for the
cellular response to DNA damage.

3.1. INTRODUCTION

'In today’s post—genomlc era, it practically goes without saying that’ any study of
protein function depends on first having a relatively complete genome sequence map, of
the spec1es of interest. By analogy, if we are interested not just in protein function, but
also in how proteins are mterconnected within a complex web of signaling and regulatory
pathways in the cell, knowing the genome is not quite enough. In addition to the genome,
we should also have as our base a comprehensive “interactome”—that is, the nétwork of
all  protein-protein,  protein-DNA,  protein-small ~ molecule, and  other
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interactions that drive cell function. Then, just as we might use BLAST to search the
genome for particular proteins of interest, novel computational tools will allow us to filter
through the interaction network to extract relevant signaling or regulatory pathways of
interest.

There are two fundamental approaches for studying this interaction network:
(1) directly observing the molecular interactions themselves; and (2) observing the
molecular and cellular states induced by the interaction wiring. In terms of the first
approach, recent systematic two-hybrid (Ito et al., 2001) and co-immunoprecipitation
(Mann, Hendrickson, and Pandey, 2001) studies have resulted in a combined database of
15,000-20,000 protein-protein interactions in yeast. Similarly, a new technology known
as ChIP-to-chip analysis allows us to measure protein-DNA interactions at large scale. In
this analysis, the first “ChIP” stage uses Chromatin ImmunoPrecipitation to pull down
transcription factors of interest and all of the promoters they bind, whereas the second
stage identifies promoters bound by each transcription factor by labeling and
hybridization against a microarray “chip.” Lee et al. (2002) have now performed this
procedure systematically for approximately 100 transcription factors in yeast, resulting in
about 6000 known protein-DNA interactions. Of course, interactions between proteins or
between proteins and DNA are not the only types of interactions mediating signaling and
regulatory pathways. Other important interactions occur between proteins and hormones,
proteins and drugs, or proteins and metabolites, but cannot yet be measured at large scale.

And as for the second fundamental approach, observing the molecular states induced
by the interactions? Certainly, DNA microarrays are now widespread in molecular
biology for measuring gene expression changes at large scales. In addition, mass-
spectrometry-based approaches are now making it possible to interrogate the abundances
and phosphorylation states of many proteins simultaneously. Other molecular states, such
as abundance levels for the thousands of intracellular metabolites, cannot yet be
measured systematically, although mass spectrometry and NMR promise to revolutionize
this area as well. ’ '

3.2. INTEGRATING INTERACTIONS AND MOLECULAR STATES

Given databases of interactions and states, there is now a tremendous need for
computational models and tools able to integrate these large-scale data within a common
modeling framework. One goal of this integration is to search the interaction network to
identify particular pathways of interactions that correlate with or explain changes in the
molecular state. ‘

For instance, consider the integrated network shown in Figure 1, representing a
region of the known interaction network surrounding the process of galactose utilization
(GAL) in yeast. A node in this network represents a gene and its protein, whereas a link
between nodes (i.e., an edge) represents either a protein-DNA (yellow arrow) or protein-
protein (blue line) interaction that has been previously determined by some experimental
method. The protein-protein interactions shown here are from the BIND (Bader et al.,
2001) or DIP (Xenarios and Eisenberg, 2001) databases, while the protein-DNA
interactions are drawn from either TRANSFAC (Wingender et al., 2001) or taken from a
recent publication by Lee et al. (2002). ‘
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Figure 1. Integrated network representing a region of the known interaction network. Reprinted with

permission from Ideker et al. Science 292, 929-934 (2001), American Association for the Advancement of
Science.
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Figure 1. Integrated network representing a region of the known interaction network. Reprinted with
permission from Ideker et al. Science 292, 929-934 (2001). American Association for the Advancement of
Science.

The colors of the nodes represent the states being measured. Figure la shows
changes in mRNA expression measured in response to a deletion of GAL4, whereas the
intensities of the other nodes indicate their resulting change in mRNA concentration
(Ideker et al., 2001). Background gray represents no change in expression; increasing
shades of gray represent increasing levels of mRNA expression; and decreasing shades of
gray represent decreasing levels of expression. When GALA is deleted, we see strong
decreases in expression of GALI, 7, and 10. Importantly, we can begin to explain why we
see these changes using interactions present in the underlying network. In this case, the
explanation is quite simple: GAL4 connects directly to GAL1, 7, and 10 through protein-
DNA interactions, and it is reasonable to suppose that this is the path by which a GAL4
deletion evokes these downstream changes.

When we examine different cellular perturbations or biological conditions, the node
colors change to reflect these new states. For instance, if we now knock out the GAL80
gene instead of GAL4, the colors reveal a marked increase in GALI, 7, and I 0
(Figure 1b). In this case, a path of length 2 connects GALS80 to these downstream
expression changes: GAL80 connects to GAL4 through a protein-protein interaction,
while GALA4 connects to GALI, 7, and 10 through a series of protein-DNA interactions. In
fact, this interaction path turns out to be biologically correct: (Lohr et al., 1995) GAL80
encodes a repressor protein, which binds to GAL4 through a protein-protein interaction
and keeps it from activating GALI, 7, and /0. When GALSO is knocked out, this protein-
protein interaction ho longer occurs, and GALA is free to transcribe the GAL genes at a
high level.

3.3. AUTOMATICALLY EXTRACTING INTERACTION PATHWAYS FROM
THE NETWORK

The galactose-related genes and interactions account for just a small piece of the full
yeast molecular interaction network. The full network is actually quite large: recall that
the public databases currently contain approximately 20,000 protein-protein and
protein-DNA interactions for yeast. In such a large network, we can no longer use a quick
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visual assessment to pull out putative pathways to explain superimposed gene expression
changes. However, the basic ideas illustrated in the context of the GAL system extend to
the general case.

In general, when some gene is deleted or otherwise perturbed, the resulting
significant expression changes will be distributed about the molecular interaction
network. Some of these expression changes may in fact be transmitted from the initial
perturbation through a pathway or subnetwork of interactions contained within the
network. At a high level, we would like to “connect the dots” by identifying paths
connecting perturbed to affected genes. Because of the large number of false positives
and negatives in both the interaction and expression data sets, we do not expect these
paths to be present or relevant for all gene expression changes. However, for the
interactions that are present and transmitting a signal, we should be able to find them.
Once identified, we define these interaction pathways as “active”; that is, transmitting
expressjon changes from one gene to another in a particular perturbation or condition. Of
course, these “active pathway" hypotheses are only predictions—they must be verified or
rejected by directed biochemical assays—but they can be generated automatically.

To search for these pathways and pull them out systematically, we first need a
mathematical definition of what it means for a pathway to be active [details of this
approach have been previously reported elsewhere (Ideker et al., 2002)]. Consider a
network consisting of four proteins A, B, C, and D, as shown in Figure 2. Proteins A and
B connect to each other through a protein-protein interaction; proteins B and D regulate C
through protein-DNA interactions. Now assume that we have observed gene expression
changes over four conditions (rows in Figure 2). We are interested not in the ratio of gene
expression, but in the significance of gene expression change. Whether the expression
ratio goes up or down is irrelevant for the purposes of finding pathways—we are simply
looking for regions of change.

To indicate significance of expression, we use an error model and an associated
statistical test that assigns z-scores to each expression change in each condition (Ideker
et al., 2000). Briefly, this method works as follows: if there is no significant expression
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Figure 2. Example interaction path with expression data over four conditions.
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change for a gene in a condition, then the z-score follows a standard normal distribution
(with mean O and standard deviation 1). If there is significant expression change for a
gene in a condition, its z-score should be significantly higher than expected by this
standard normal distribution. The higher the z-score, the more surprising the gene
expression change, whether the gene is induced or repressed. For example, out of all four
genes shown in Figure 2, we are most confident that gene B has changed in expression in
condition 1. We are somewhat less confident that the levels for A or D have changed in
this condition, and we are fairly sure that the level of C has not changed.

Once we have computed z-scores using the error model, it is straightforward to score
pathway activity by adding together the z-scores of all nodes in the pathway. If no genes
are differentially expressed, this sum will itself follow a standard normal. Otherwise, the
sum is significantly higher. For example, to score the pathway ABCD in condition 1, we
compute the sum 142-2+1 = 2 and then divide by the square root of the number of nodes
(to normalize the z-score back down to standard deviation 1), resulting in an aggregate
“pathway activity" score of 2/N4 = 1. Scoring a pathway over multiple conditions is more
complex and is explained in full in Ideker et al. (2002).

Scoring a pathway is only half the problem. Given this scoring system, how do we
find the absolute highest scoring pathways in the entire network of 20,000 protein-protein
and protein-DNA interactions? This problem can be shown to be NP complete, which
means that an exact solution is not obtainable in polynomial time. Instead of solving it
exactly, we use an approximation algorithm based on simulated annealing. This
algorithm finds, if not the single highest-scoring pathway, a collection of several
relatively high-scoring “active” pathways. To search for active pathways using simulated
annealing, we take the full molecular interaction network (of ~25,000 interactions among
6000 nodes in the case of yeast) and randomly choose several pathways as initial seeds.
Then, over a number of iterations, we add/subtract nodes to each pathway in an attempt
to improve its score. If the score increases, we keep the change, whereas if the score
decreases, we discard the change with a certain probability dictated by annealing
temperature. Given enough iterations, the score starts out low and gradually improves
until it stabilizes. In this way, the annealing algorithm is guaranteed to produce pathways
that have at least a local optimum in score.

3.4. SCREENING FOR ACTIVE PATHWAYS RESPONDING TO GALACTOSE-
GENE PERTURBATIONS

Now let’s use this automated pathway search procedure to investigate a specific
biological problem of interest. In a proof-of-principle application, we recently screened
the yeast interaction network to find pathways active under different perturbations to the
galactose utilization network in yeast (Ideker et al., 2002). Seven perturbations were
performed, by first generating gene knock-outs of GALI, 2, 5,6, 7, 10, and 80 in separate
strains, . then measuring the corresponding cellular responses with a whole genome
mRNA expression profile.

We ran the automated pathway search procedure to identify which pathways from

the yeast interaction network were most activated by these perturbations. Five high-
scoring pathways were identified and are shown in Figure 3a. As in Figure 1, a line
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Figure 3, High-scoring pathways. Reprinted with permission from Ideker et al. (2001).
represents a protein-protein interaction and an arrow represents a protein-DNA

interaction: all of these interactions are derived and filtered from the whole molecular
interaction network.

Figure 3b indicates the particular conditions (columns) activating each of the five
pathways (rows). For instance, pathway 1a is active under the GAL1, 8, 7, 10, and 2
perturbation experiments, but not under the GAL7 or 5 perturbation experiments.
Likewise, pathway 1b is activated by a GAL80 perturbation only. Using Figure 3b, we
can compare different pathways on the basis of the expression experiments which
activate them. For instance, note that pathway la and lc have an identical perturbation
profile, which is very different from that of pathway 1b,

The five active pathways represent a combination of known and unknown regulatory
processes in yeast. As a “positive control,” pathway 1b contains much of the GAL
module shown in Figure 1, including the GAL4 central transcriptional activator and the
GALSO transcriptional repressor. Given that we are directly perturbing many of the genes
in this pathway, we expect it to be active,

Other active pathways represent new discoveries. These provide testable hypotheses
for the underlying regulatory and signaling interactions responsible for the observed
expression changes. It was not known, for instance, that MCM1 and its downstream
regulated genes were involved in the galactose response.

We are currently in the process of applying this approach to a variety of other
pathways and expression data sets. One exciting implication for this technology is in the
area of drug development. Many drugs are well characterized in terms of what proteins
and pathways are being targeted, but not in terms of their possible toxicological side



A SYSTEMS APPROACH TO DISCOVERING PATHWAYS 27

effects. The problem, therefore, is not to discover new drug targets, but to reveal
additional pathways that may be affected by the drugs. Here, the limiting factor is
obtaining a molecular interaction network relevant to humans. As large interaction
networks are determined for key human cell lines—for example, hepatocytes and cancer
cells—such an analysis will become possible.

3.5. PATHWAYS RESPONDING TO DNA DAMAGE AS REVEALED BY HIGH-
THROUGHPUT PHENOTYPIC ASSAYS

Another method of filtering the molecular interaction network to identify
biologically relevant pathways is to use deletion phenotypes. In recent work performed in
collaboration with Leona Samson’s laboratory (Begley et al., 2002), such an approach
was used to map genes and pathways required for the cellular response to DNA damage.
For each gene-knockout strain in yeast (libraries of all single gene-knockout strains are
now publicly available), we tested whether the strain was able to grow in the presence of
MMS, a powerful DNA-damaging agent. Wild-type cells can, in fact, grow under a
moderate concentration of MMS, but many gene-knockout mutants either grow slowly or
not at all under these conditions.

How do these “MMS-sensitive genes” map onto the protein-protein and protein-
DNA interaction network? Figure 4 shows a sampling of interaction pathways containing
significant numbers of MMS-sensitive proteins, as determined by the automated pathway
screen described in Section 3. In the figure, a node is colored green if deletion of that
gene results in slow growth or death in the presence of MMS; red if the deletion has no
effect for growth in MMS; and gray if the node has not yet been tested by phenotypic
growth assay. Of the gene knockouts tested so far, approximately 400 of them were
MMS-sensitive. Using the automated screen for pathways, we were able to associate 100
of these with an “active pathway” having many other MMS-sensitive nodes in close
proximity (75 of these appear as green nodes in Figure 4, while the remaining 25 were
organized into several pathways not shown in the figure). One interesting observation is
that MMS-sensitive nodes may be grouped in a single connected pathway even if several
non-sensitive (or non-tested) nodes are required to do so. For instance, to include MKC7,
RRP6, GIS3, and CIN8 in the pathway shown in the upper-left-hand corner of Figure 4, it
was necessary to also include YLR453C, which was not tested by phenotypic assay but is
included because of its “MMS-sensitive” network neighborhood.

3.6. SUMMARY

A good metaphor for the pathway screening approaches discussed here is that of an
information processor, or “black box,” as shown in Figure 5. We pour into this black box,
on the one hand, all of the molecular interactions previously determined for our organism
of interest. On the other hand, we pour in molecular states measured in response to
perturbations of a cellular process or biological response of interest. Here, we have used a
network of approximately 25,000 protein-protein and protein-DNA interactions in yeast,
with state changes measured either at the level of gene expression (Section 4) or growth
phenotype (Section 5). After running the “active pathways” algorithm, the black box
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Figure 4. Interaction pathways containing significant numbers of MMS-sensitive proteins. Reprinted with
permission from Begley et al. (2002).

Figure 5. Information processor, or “black box.” Reprinted with permission from Ideker and Lauffenburger,
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Figures 1, 3, and 4 are based on screen shots taken from a software package called
Cytoscape, available as Open Source software from http:/www.cytoscape.org as a
platform-independent Java application. Cytoscape involves two main components: (1) a
core platform for visualizing and manipulating large molecular interaction networks, and
(2) an extensible plug-in architecture for writing algorithms and analyses that compute on
these networks. The core contains all the routine graphical manipulation, visualization,
and information management tasks for large networks: for instance, “How do we lay out
these networks in two and three dimensions? Can we link these networks to underlying
databases providing annotations for each gene, protein, and interaction”? Plug-ins further
extend the basic functionality provided by the core—one such example is the Active
Pathway finder discussed in Section 3. Cytoscape is a joint-development project with the
Institute for Systems Biology in Seattle.
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