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Abstract

Precision cancer medicine promises to tailor clinical decisions to patients using genomic information. Indeed,
successes of drugs targeting genetic alterations in tumors, such as imatinib that targets BCR–ABL in chronic
myelogenous leukemia, have demonstrated the power of this approach. However, biological systems are
complex, and patients may differ not only by the specific genetic alterations in their tumor, but also by more
subtle interactions among such alterations. Systems biology and more specifically, network analysis, provides
a framework for advancing precision medicine beyond clinical actionability of individual mutations. Here we
discuss applications of network analysis to study tumor biology, early methods for N-of-1 tumor genome
analysis, and the path for such tools to the clinic.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Efforts to catalog the somatic mutations in
thousands of tumor genomes have uncovered
substantial genetic heterogeneity in cancer. Despite
their phenotypic similarities (cancer cells display
certain hallmark behaviors [1]), individual tumors
rarely share the same mutations. This heterogeneity
presents a significant challenge for finding any one
treatment that will benefit all patients, necessitating
precision approaches that tailor clinical management
toward individual patients, or small groups with
similar disease.
Studies of tumor genomes have determined that

the majority of detected mutations are passengers
that do not contribute to the oncogenic process
[2–4]. The small number of causal driver mutations in
a tumor presents the optimal targets for therapy, as
they are specific to tumor cells and interfering with
their activity should impair tumor growth. Among
thors. Published by Elsevier Ltd. This is
g/licenses/by-nc-nd/4.0/).
some of the most successful targeted therapies to
date are imatinib, which targets the BCR–ABL
fusion; gefitinib, which binds and inhibits EGFR;
and trastuzumab, which inhibits HER2.
Although targeted therapies have the potential to

generate large responses, response rates are often
modest. For example, complete responses have
been observed in advanced melanomas treated with
immune checkpoint inhibitors; however, across
tumor types, response rates have yet to exceed
~40% of patients [5–7]. Various factors may
contribute to which patients are sensitive to a
therapy, including secondary mutations or subclonal
heterogeneity. For some therapies, tumor-type
specific differences in the underlying molecular
networks appear to account for differences in
response rate. Targeted inhibition of BRAF V600E
is highly effective in melanoma, but not in colorectal
cancer where it was found that inhibition caused
feedback activation of EGFR which maintained cell
an open access article under the CC BY-NC-ND license
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proliferation in the presence of the inhibitor [8]. Thus,
the state of individual cancer genes alone may not
be enough to inform response. Interactions between
multiple alterations in the tumor may need to be
taken into consideration.
Furthermore, many tumors do not have a driver

mutation that clearly indicates a specific targeted
therapy [2,9,10]. Because genes affected by driver
mutations (cancer genes) tend to participate in
common biological activities such as genome
maintenance, cell differentiation or growth signaling
[2,11–13], targeting the biological pathways rather
than specific cancer genes or driver mutations may
provide a strategy that will be effective for a larger
number of patients [14,15]. Thus, improvement of
precision therapy is likely to require approaches
capable of modeling interactions between somatic
alterations in tumors and capturing information about
the underlying molecular state of the pathways
driving tumorigenesis.
Systems biology provides a toolkit for modeling

complex biological systems and their constituent
interactions. Increasingly, techniques from systems
biology such as network analysis are being applied to
analyze genomic data in order to better understand
disease [16]. Several tasks in precision cancer
medicine stand to benefit from network-based ap-
proaches including identification of driver mutations,
genes and pathways; patient stratification into groups
with similar characteristics; identifying therapeutic
opportunities; and assessment of cancer risk. Here
we review the applications of networks toward these
tasks at the cohort and individual patient scale and
consider future work needed to bring network analysis
of tumor genomes to the clinic.
Network analysis across tumor cohorts

Networks have been employed in the study of
tumor cohorts in order to gain insights into tumor
biology, to identify putative biomarkers and relevant
disease subtypes, and to find possible targets for
therapy. In these scenarios, networks are often used
to control heterogeneity and to increase statistical
power through aggregation (Fig. 1). The structures of
the networks can be defined from known molecular
interactions (e.g., protein–protein interactions), such
that the network itself is a model of the biological
system. This confers meaning to interactions within
the network such that connected nodes are expect-
ed to be more functionally related than distant nodes
and traversal of adjacent edges in the network can
be loosely interpreted as biological information flow.
Networks can also be used to integrate different data
types, for example, by defining the state of a node by
combining different measurements (mutation, ex-
pression, copy number, methylation, etc.), or by
mapping events in one data layer to another.
The predominant application of networks to tumor
genomic data has been with the intent to define
tumor biology by uncovering the driver pathways,
genes, and mutations that contribute to tumorigen-
esis (Fig. 2, Table 1). This task is confounded by
mutational heterogeneity; somatic alterations broad-
ly affect a variety of genes, and driver mutations are
difficult to distinguish from the more prevalent
passengers. Alteration frequency alone is of limited
value, leading to a number of methods that attempt
to model positive selection of mutations across
tumors at the single gene scale [3,17–20]. It is now
well established that somatic alterations in tumors
aggregate not at the gene level but at the pathway
level [1,2], supporting the use of networks to better
identify patterns of selection indicating driver events.

Driver pathways

The term pathway is often used to describe a set of
molecular interactions that collectively mediate a
specific biological activity within a cell [21]. In the
context of a molecular network, various biological
pathways will be embedded as smaller highly
connected subnetworks. Since cancer driving muta-
tions are thought to target genes in a relatively small
number of signaling and regulatory pathways
[1,2,22,23], biological networks can provide a frame-
work to study the convergence of mutations within
connected subnetworks, such that identification of
driver pathways can be formulated as a module
detection problem (Fig. 2). This is equivalent to a
search for positive selection of mutations across
groups of functionally related genes. Consequently,
module detection approaches are able to implicate
infrequently mutated driver genes that would be
overlooked based on frequency-based approaches,
but fall into frequently altered network neighborhoods
[24–27].
Diffusion algorithms have become a popular

strategy for identifying cancer network modules
(Fig. 3). The first application of network diffusion to
identify disease-associated genes was described by
Köhler et al. [28]. HotNet [24] adapted this method
for driver pathways by developing a robust statistical
framework for network propagation. HotNet uses
mutations as a ”heat source” on the network, where
heat is allowed to diffuse across network edges,
spreading the influence of mutations across the
network dependent on the topology. After diffusion,
the network can be partitioned to identify ”hot”
regions that are likely driver pathways enriched for
the influence of mutations. The advantage of the
diffusion approach is that it naturally penalizes highly
connected regions of the network (heat has to be
divided across large numbers of edges) where
mutation influence will appear more concentrated
at random. HotNet2 [25] proposed “insulated” heat
diffusion (mathematically equivalent to PageRank
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Fig. 1. Overview of network applications in cancer.
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[29]) to incorporate edge direction which allows
the algorithm to capture a sense of effects being
upstream or downstream of causal mutations, and a
damping factor that can be tuned to emphasize local
topology over distant network regions.
A B

Fig. 2. Schematic diagramof three concepts used for identifica
represent interactions between proteins. (A) Identification of d
belong to the pathway. (B) Identification of driver genes, where re
within the pathway (outlined). (C) Identification of driver mutation
frequency. Pie charts on the nodes display the percentage of dr
Babaei et al. [26] argued that different cancer
relevant-pathways may have different sizes, and
thus, it may be necessary to diffuse at different scales
to detect different pathways. They developed ReMIC
[26], which diffuses mutation scores on a hybrid
Driver

Passenger
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tion of cancer drivers.Nodes represent proteinswhile edges
river pathways, where the nodes within the shaded region
d nodes correspond to the proteins encoded by driver genes
s targeting the driver genes. Node size represents mutation
iver (red) and passenger (pink) mutations.
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interaction network across a range of parameters and
implicates genes that are significantly mutated at any
network scale relative to a permuted gene-mutation
pairs. Many of the genes identified by this approach
were part of the same connected components within
the network, and thus considered to participate in the
same pathways. VarWalker [27] additionally priori-
tizes edges where both nodes are recurrently
implicated across patients by collapsing patient-
specific networks into a single consensus mutation
subnetwork that can then be divided into subgraphs to
identify pathways. Patient-specific significantlymutated
genes are determined using generalized additive
models and used as starting nodes for a patient-
specific Random Walk with Restart (RWR) on a PPI
network. Patient-specific subnetworks are constructed
from significant nodes and edges after comparing
against a random model. This approach was able to
detect both frequently and infrequently mutated cancer
genes [27].
NetBox [30] also seeks to identify network modules

enriched for altered genes in tumors, but rather than
using diffusion, altered networkmodules are identified
based ona higher density of interactionswithin groups
than between groups via the edge betweenness
algorithm [31]. NetBox was applied to analyze
glioblastoma tumors using a custom interaction
network that combines PPIs and signaling pathways
(e.g., kinases and phosphorylation targets), using
mutation and copy number data to implicate driver
modules. In nCOP [32], the problem is framed as
identifying small subnetworks in the larger PPI
network that cover (e.g., have one or more mutations)
in the largest number of patients.
Another class of methods uses variants on the

prize collecting Steiner tree algorithm to identify
cancer-relevant subnetworks (Fig. 3). This algorithm
attempts to find connected components of a network
that contain the most “prize” nodes with the minimal
number of edges. The prizes in the case of cancer
are genes with some evidence for association with
the disease. For instance, Sun et al. [33] used
protein–protein interaction data and known MAPK
and PI3K/Akt signaling members to reconstruct their
network neighborhoods. In work by Tuncbag et al.
[34], the prizes are taken to be genes that had
phosphorylation changes in cancer cell lines with the
goal of reconstructing glioblastoma signaling path-
ways. Steiner tree algorithms tend to return more
parsimonious solutions as compared to diffusion
algorithms and are more sensitive to the underlying
network topology, since they rely on shorter paths
through a network, rather than all possible paths.
Several approaches seek to identify driver networks

by combining information from genomic and tran-
scriptomic perturbations. TieDIE [35] infers the struc-
ture of cancer associated gene networks by using
mutated genes as source nodes on a custom directed
PPI network and activated transcription factors as
source nodes on a transcription factor-target network.
Nodes implicated by these independent diffusion
processes are integrated into a cancer subnetwork
connecting the two node sets. TieDIE was applied to
patients with luminal versus basal subtypes of breast
cancer in order to identify subnetworks distinguishing
these subtypes [35]. DNA damage repair alterations
and downstreamactivatedMYCwere characteristic of
basal tumors, whereas estrogen receptor and
PIK3CA pathway signaling dominated the luminal
tumors. iMCMC [36] is also designed based on the
idea that variation in gene sequence and expression
together might contribute to cancer. It constructs two
weighted networks, one frommutations andCNVdata
and the other from gene expression, where nodes
represent ameasureof the importanceor effect size of
a node, and edges represent ameasure of similarity or
functional relatedness. Then these two networks are
combined andmutated coremodules are detected via
an optimization model followed by statistical tests.
Mutual exclusivity is a pathway-level signature of

selection, in that once a driver mutation has
activated or inactivated a pathway, it is rare to
observe additional driver mutations in that pathway
in the same tumor. Finding cancer pathways can
then be formulated as a problem of identifying sets of
functionally related genes that demonstrate mutual
exclusivity of somatic alteration, where biological
networks can be used to approximate functionally
related genes (Fig. 3). In addition, driver pathways
should ideally explain the maximum number of
tumors. Several methods seek sets of genes with
high exclusivity that cover a high proportion of tumor
samples, de novo from somatic mutation data,
without prior interaction or pathway information,
including Miller et al. [37], Dendrix [38], and Multi-
Dendrix [39]. While Miller et al. [37] identifies driver
modules from gene networks constructed based on
pairwise exclusivity scores, Dendrix [38] assigns a
single weight score to a group of genes based on
mutual exclusivity of the group and searches for the
highest scoring group with a stochastic search
method. MDPFinder [40] and Multi-Dendrix [39]
use the same weight score. While MDPFinder
evaluates the performance of different search
techniques (an exact method and a stochastic
method that allows for integration of expression
data), Multi-Dendrix [39] focuses on identifying
multiple mutated pathways based on the observation
that simultaneous perturbation of several pathways
can be required for cancer [1]. Szczurek and
Beerenwinkel [41] developed a probabilistic, gener-
ative model to detect cancer pathways while
accounting for error rates. In contrast to these
approaches, MEMo [42] relies on prior interaction
information to identify driver oncogenic network
modules by analyzing maximal cliques that belong
to the same pathway for patterns of mutual
exclusivity across multiple patients. Other methods
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integrate mutual exclusivity with other information.
iMCMC [36] uses mutual exclusivity to assign edge
weights when building its somatic mutation/CNV
network, thereby using it as a measure of functional
similarity. In addition to being useful for driver
pathway identification, mutual exclusivity can pro-
vide independent evidence to validate pathways
predicted by alternative approaches [26].

Driver genes

While detection of driver network modules naturally
implicates the constituent genes as cancer associat-
ed, several methods have been developed to impli-
cate genes directly (Fig. 2). Direct implication of genes
may reduce false positive driver gene prediction in
cases where not all genes in a network module have
equal oncogenic potential. Although many gene-level
methods rely on patterns of mutation, networks have
also been applied to implicate driver genes.
Many network-based disease gene prediction

algorithms rely on the guilt-by-association concept,
which is based on the observation that phenotypi-
cally similar genes tend to be co-located in biological
networks [43,44]. There are different ways of
measuring topological proximity of genes in a
network [45]. Local approaches focus on genes
that are either in direct physical interaction, or are
located close to known disease genes. For example,
Wu et al. [46] used the shortest path algorithm to
predict gastric cancer-related genes based on gene–
gene interaction networks. However, the noisiness
and incompleteness of the background network can
limit the accuracy of predictions made based on local
approaches. Global approaches define proximity
based on the overall network topology, for example,
using algorithms such as random walk with restart
(RWR) [28], kernel diffusion [28], or network propa-
gation [47] or by transforming the network into a
probabilistic graphical model [48]. These approaches
may help overcome local incompleteness of the
network as they use information beyond the local
subnetwork in which a gene is located. On the other
hand, MUFFINN [49], a pathway-centric method that
identifies cancer genes based on mutational informa-
tion of both individual genes and their neighbors in
functional networks, reported that analysis of muta-
tions in indirect neighbors via diffusion algorithms did
not improve predictive performance compared to
analysis of only direct neighbors. NetSig [50] also
implicates novel cancer genes based on mutations
affecting a gene’s direct network neighbors. These
methods that combine mutational data with molecular
network information can complement gene-based
statistical tests [17,19,20,51] by uncovering drivers
from the long-tail of infrequently mutated genes that
have significantly mutated neighbors.
Employing only topological information while over-

looking other functional information might limit driver
gene detection methods. The integration of pheno-
type similarity information into biological networks
has been shown to improve cancer driver gene
prediction [45,52,53]. Incorporation of phenotype
information can also help avoid implicating genes
based on false-positive interactions present in
networks [52] or missing network edges [53]. As
cancer is a heterogeneous disease and different
classes of somatic perturbation (mutation, expres-
sion, methylation) can result in similar conse-
quences for biological function, incorporation of
multi-omics data into molecular networks can further
improve cancer driver gene predictions [54,55].
Identifying genes functionally targeted byCNVs can

be particularly difficult, since CNVs usually overlap
many genes. Indeed, large CNVs may promote
tumorigenesis through simultaneous effects on mul-
tiple genes that are positive or negative regulators of
cell proliferation [56]. CONEXIC approaches this
problem using the assumption that the expression of
a driver gene should correlate with the expression of
genes in its downstream module. CONEXIC [57]
learns a network of modulator genes and associated
gene expression modules from matched tumor CNV
and expression data, then uses the model to identify
small numbers of modulator genes within CNV
regions that best explain variation in module gene
expression. Matched CNV and gene expression data
are not always available, and several methods have
been developed to implicate driver geneswithinCNVs
in the absence of transcriptional measurements.
MAXDRIVER [58] relies on a hybrid network, com-
bining a custom gene functional similarity network,
gene–disease associations, and a disease phenotype
similarity network and then identifies driver genes
within CNV regions based on maximal information
flow between phenotype and genotype nodes in the
hybrid network, where phenotypes are specific
cancers.
Just as not all genes in a pathway have equal

oncogenic potential, not all driver mutations within a
cancer gene will alter function in the same way.
Proteins often have multiple functions, and muta-
tions can perturb specific functions while preserving
others. Approaches have been developed to identify
unexpected clustering of mutations in protein do-
mains [59], in 3D structure [60,61], or in general
[62,63]. Driver genes can then be implicated on the
basis of mutation clustering that suggests a partic-
ular function is statistically perturbed in cancer.
Protein interactions with distinct partners can

serve as a proxy for the different functional activities
of a protein [64,65]. Integrating protein structure with
protein interaction networks can allow reassignment
of amino acids to specific interactions as interface
residues, thereby mapping mutations to specific
protein activities [66–68]. Several groups have
developed scoring strategies that prioritize network
edges enriched for somatic mutations in cancer



2880 Review: Networks for Precision Cancer Medicine
under the assumption that recurrently perturbed
interactions (edges) in tumors implicates the asso-
ciated genes (nodes) as potential cancer drivers
(Fig. 4). Some methods evaluate the ratio of
observed to expected mutations in interface regions,
controlling for the size of the region relative to the
size of the protein [69] or the size and the amino acid
composition [70]. An alternative approach uses the
non-synonymous to synonymous (dN/dS) ratio at
interfaces, a signature of selective pressure that has
been used to identify cancer genes [71], to evaluate
whether interfaces are unexpectedly biased toward
functional mutations [72]. Mechismo quantifies the
consequences of amino acid substitutions at inter-
faces based on the expected pairing of specific
residues across interfaces [73], enabling an assess-
ment of the likely effect of the mutation based on the
shift toward a more or less frequently observed
amino acid pair. Some analyses additionally esti-
mate the impact of the amino acid substitution on the
stability of the protein complex [68,72,74] with
methods that use force fields to evaluate binding
affinity changes (e.g., FoldX [75]).
Alternative splicing can also play an important role

in cancer by perturbing molecular interaction net-
works [76]. Differential inclusion of exons that form
interaction interfaces in cancer can point to potential
mechanisms of tumorigenesis. Climente-González
et al. [76] demonstrated that protein domain families
that are frequently mutated in tumors are also
significantly perturbed by alternative splicing.
Interestingly, the set of tissue-specific exons that
form binding motifs was found to alter interactions
in signaling networks known to be enriched in
cancer genes, suggesting the potential for dysreg-
ulation of normal splicing differences to promote
cancer [77]. Moreover, cancer mutations can also
more broadly perturb splicing. DrAS-Net [78] uses
a network-based strategy to study how somatic
mutations impact the alternative splicing of neigh-
boring genes in a functional interaction network.
This study uncovered extensive effects of somatic
mutations on alternative splicing in multiple tumor
types.
Networks can be adapted to identify various types

of cancer-associated elements. Hypothesizing that
cancer-associated miRNAs would consistently dys-
regulate their target genes, Xu et al. [79] prioritized
novel prostate cancer miRNAs from known miRNA-
targets using a network of dysregulated miRNA
target-pairs, based on joint analysis of miRNA and
mRNA expression profiles. Li et al. [80] uncovered
prognostic miRNA signatures in glioma malignant
progression by de novo inferring the functional
targets of miRNAs from an miRNA–mRNA regulato-
ry network constructed from paired miRNA–mRNA
expression profiles. Le [81] applied a variety of
module finding approaches to a miRNA similarity
network based on miRNA-target similarity, finding
that these approaches worked well to identify known
disease modules and implicating six new miRNAs in
breast cancer pathogenesis. Novel miRNAs were
also implicated in breast cancer by Hamed et al. [82],
who analyzed the proximity of somatic mutations to
regulatory interactions between miRNAs and
mRNAs as well as transcription factors and their
target genes. Creixell et al. [83] analyzed mutations
in the context of kinase signaling to identify altered
patterns of post-translational modification that likely
contribute to cancer. In general, non-coding RNAs
and post-translational modifications have received
less attention than somatic alterations and DNA
methylation changes affecting protein-coding genes;
however, there is ample evidence that they play an
important role in tumorigenesis [84,85].

Driver mutations

While identifying driver pathways and genes can
provide insight into tumor biology and identify new
candidate therapeutic targets, the challenge of dis-
criminating driver mutations from passengers per-
sists. In a clinical setting, it is important to identify
actionable mutations in cancer that indicate a partic-
ular treatment course. Even well-established cancer
genes can carry passengermutations (Fig. 2), and the
driver or passenger status of a mutation may
determine whether response to a gene-targeted
therapy is possible. While many methods exist to
predict whether a mutation is a driver [86,87],
networks provide a means by which multiple omic
data layers can be used as evidence of functional
effect.
Transcriptional data can be used to discriminate

drivers under the assumption that driver mutations
impact the gene expression levels of the proteins
they target, and hence their interacting partners
and/or the proteins within the same pathway, while
passenger mutations should not display a strong
effect [8,88]. DriverNet [88] uses this concept to
prioritize mutations by their effect on transcription-
al networks by relating the mutations to disrupted
transcriptional patterns via a bipartite graph and
assigns statistical significance to candidate pre-
dictions. With this approach, DriverNet identified
multiple rare drivers in breast and ovarian cancer.
ParadigmShift [89] predicts the functional effect of
a mutation on the pathway neighborhood of the
targeted gene by employing a belief-propagation
algorithm to deduce mutation activity based on
gene expression and copy number data upstream
and downstream of particular mutations. It has
been shown to be effective in predicting novel
mutations in glioblastoma, ovarian and lung
squamous cancers. These methods are comple-
mentary to frequency-based methods as they have
been shown to be successful in detecting rare
drivers.



Table 1. Network-based methods for identifying driver events in cancer across multiple scales (pathway, gene, miRNA, or mutation)

Method Application Approach URL Reference

HotNet Driver pathway identification Diffusion http://compbio.cs.brown.edu/projects/hotnet/ [24]
HotNet2 Driver pathway identification Diffusion http://compbio.cs.brown.edu/projects/hotnet2/ [25]
ReMIC Driver pathway identification Diffusion http://bioinformatics.tudelft.nl/users/sepideh-babaei [26]
VarWalker Driver pathway identification Diffusion https://bioinfo.uth.edu/VarWalker.html [27]
NetBox Driver pathway identification Edge density http://sanderlab.org/tools/netbox.html [30]
nCOP Driver pathway identification Network-informed set coverage https://github.com/Singh-Lab/nCOP [32]
Sun et al. Driver pathway identification Prize collecting Steiner tree – [33]
Tuncbag et al. Driver pathway identification Prize collecting Steiner tree – [34]
TieDIE Driver pathway identification Diffusion https://sysbiowiki.soe.ucsc.edu/tiedie [35]
iMCMC Driver pathway identification Network fusion and optimization-based module finding – [36]
Miller et al. Driver pathway identification Mutual exclusivity http://brl.bcm.tmc.edu/rme/index.rhtml [37]
Dendrix Driver pathway identification Mutual exclusivity http://compbio.cs.brown.edu/projects/dendrix/ [38]
MDPFinder Driver pathway identification Mutual exclusivity http://zhangroup.aporc.org/ShiHuaZhang [40]
Multi-Dendrix Driver pathway identification Mutual exclusivity http://compbio.cs.brown.edu/projects/multi-dendrix/ [39]
Szczurek and

Beerenwinkel
Driver pathway identification Mutual exclusivity – [41]

MEMo Driver pathway identification Mutual exclusivity http://sanderlab.org/tools/memo.html [42]
Wu et al. Driver gene identification Shortest path algorithm – [46]
Conflux Driver gene identification Probabilistic graphical model – [48]
MUFFINN Driver gene identification Functional impact on network neighbors http://www.inetbio.org/muffinn/ [49]
NetSig Driver gene identification Functional impact on network neighbors http://www.lagelab.org/resources [50]
Luo et al. Driver gene identification Data integration; mutation and phenotype similarity – [52]
Liu et al. Driver gene identification Data integration; mutation and phenotype similarity – [53]
Lin et al. Driver gene identification Data integration; mutation and phenotype similarity – [45]
Cantini et al. Driver gene identification Data integration; multi-omics https://github.com/lcan88/Gene4x [54]
Yuan et al. Driver gene identification Data integration; multi-omics – [55]
CONEXIC Driver gene identification Drivers within CNV regions http://www.c2b2.columbia.edu/danapeerlab/html/

conexic.html
[57]

MAXDRIVER Driver gene identification Drivers within CNV regions – [58]
Porta-Pardo et al. Driver gene identification Ratio of observed to expected mutations in interface regions https://github.com/eduardporta/e-Driver [69]
Raimondi et al. Driver gene identification Ratio of observed to expected mutations in interface regions – [70]
Engin et al. Driver gene identification dN/dS ratio at interfaces – [72]
Mechismo Driver gene identification Pair potentials of amino acid substitutions at interfaces http://mechismo.russelllab.org [73]
Climente-González et

al.
Driver gene identification Network perturbation by alternative splicing – [76]

Buljan et al. Driver gene identification Network perturbation by alternative splicing – [77]
DrAS-Net Driver gene identification Alternative splicing perturbation by mutations http://www.bio-bigdata.com/dras_net/index.jsp [78]
Xu et al. Driver miRNA identification Data integration; regulatory interactions (miRNA–mRNA) – [79]
Li et al. Driver miRNA identification Data integration; regulatory interactions (miRNA–mRNA) – [80]
Le Driver miRNA identification Diffusion – [81]
Hamed et al. Driver miRNA identification Data integration; regulatory interactions (TF-gene and miRNA–

mRNA)
– [82]

Creixell et al. Network-attacking mutation
(NAM)
identification

Data integration; post-translational modifications http://lindinglab.science/ [83]

DriverNet Driver mutation identification Effects on transcriptional networks http://shahlab.ca/projects/drivernet/ [88]
PARADIGM-SHIFT Driver mutation identification Local network effects https://github.com/paradigmshift/paradigmshift.github.

com
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http://compbio.cs.brown.edu/projects/multi-dendrix/
http://sanderlab.org/tools/memo.html
http://www.inetbio.org/muffinn/
http://www.lagelab.org/resources
https://github.com/lcan88/Gene4x
http://www.c2b2.columbia.edu/danapeerlab/html/conexic.html
http://www.c2b2.columbia.edu/danapeerlab/html/conexic.html
https://github.com/eduardporta/e-Driver
http://mechismo.russelllab.org
http://www.bio-bigdata.com/dras_net/index.jsp
http://lindinglab.science/
http://shahlab.ca/projects/drivernet
https://github.com/paradigmshift/paradigmshift.github.com
https://github.com/paradigmshift/paradigmshift.github.com
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Fig. 3. Summary of several commonly used algorithmic approaches in the identification of driver pathways/
subnetworks. (A) An example network with nodes representing proteins and edges representing interactions between
proteins. Nodes marked with an asterisk are mutated proteins. (B) A heat diffusion process where each node is initially
assigned a color based on the mutation score of the corresponding gene. Heat diffuses across the edges of the network
where intensity of the node colors denotes the mutational influence on the protein. In the end, significantly mutated
subnetworks (outlined) are reported. (C) A prize-collecting Steiner tree approach where node size represents mutation
score and edge width represents the confidence in the interaction (other concepts can be used for determining the node
size and edge width). Algorithm reports the connected components with the most “prize” nodes and the least number of
edges. (D) A mutual exclusivity approach that identifies sets of genes that simultaneously maximize mutual exclusivity and
coverage of patient samples.
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Clinically relevant patient stratification with
networks

Understanding tumor biology is central to identifying
novel drug targets and building a body of knowledge
that can help with the interpretation of tumor genomes
(Table 2). A directly relevant aspect of this is defining
clinically informative cancer subtypes that can indicate
relevant characteristics of a tumor, including long-term
prognosis or likely drug sensitivities. Subtypes are well
established in some tumors (e.g., molecular subtypes
in breast cancer), but less obvious in others, and are
often defined based on the presence or absence of
specific molecular markers, or based on similar
patterns of gene expression. Different approaches
seem to work for different cancer types; gene
expression can be used to stratify breast and ovarian
cancer [90–94]; however, could not stratify tumors into
clinically informative subtypes in some cancers [93,95].
Because tumor genomes are so heterogeneous, it

is rare that a single molecular event (e.g., HER2
upregulation in breast cancer) defines an entire



Fig. 4. A network-based approach
for integration of protein–protein inter-
action networks with protein 3D struc-
tures and mutation data to identify
cancer driver genes. Nodes represent
proteins and edges represent interac-
tions between proteins in the network.
Unexpected mutational enrichment
(red lollipops) on the interaction inter-
face region of a protein (blue) impli-
cates the encoding gene as potential
cancer driver.
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subtype. Networks can be used to manage this
heterogeneity to group samples with similar molec-
ular profiles that might indicate tumor similarity even
though different genes play synonymous roles [96].
Indeed, in some tumor types, molecular subtypes
are naturally defined by the activity of a particular
biological pathway (e.g., Wnt and SHH subtypes of
medulloblastoma), but the pathway is activated by
different mutations across patients.
Using mutation profiles to infer similar patient

clusters requires that the data be processed to make
it more amenable to statistical learning. Tumor
mutation profiles are sparse and binary, with little
overlap. Network-based stratification (NBS) [97]
integrates molecular networks with mutation profiles
to stratify tumors into clinically meaningful subtypes
by clustering patients with mutations in similar
network regions. This is done by first projecting the
binary mutation profiles of each patient onto a gene
interaction network, followed by the application of
network propagation to spread the influence of
mutations over the network. Then the “network-
smoothed” patient profiles, which are neither binary
nor sparse, are clustered into subtypes using
network regularized non-negative matrix factoriza-
tion combined with consensus clustering to ensure
stability of the final clustering [97]. NetNorM normal-
izes patient mutation profiles based on gene network
topology, adding or removing mutations for particular
patients conditional on the distribution of mutations
on the network [98] instead of network smoothing to
overcome the sparse and binary nature of mutation
data. NBS or similar approaches have successfully
stratified cancer cohorts into subtypes that are
related to clinical outcomes such as patient survival,
response to therapy, or tumor histology in ovarian,
lung [97], colorectal, head and neck, kidney [99],
endometrial [97,99,100], and prostate cancers [101].
In its original application, NBS used a fixed gene

network for all cancer types. It has recently been
suggested that interpatient heterogeneity could be
better overcome by using cancer-type-specific net-
works. To this end, He et al. [100] employed
expression data to create cancer-type-specific sig-
nificant co-expression networks that were then used
with somatic mutation data in an NBS approach. By
focusing on the disease-specific network, it was
possible to identify survival-associated subtypes in
uterine corpus endometrial carcinoma cancer that
were not detected by the original NBS method.
There are also similar approaches [102,103] that
integrate network architecture information with gene
expression profiles (as opposed to somatic mutation
data like in NBS) to assign weights to genes in a
gene by patient matrix which is then clustered to
stratify patients into groups and discover cancer
subtypes. Smoothing expression across the network
emphasizes groups of related genes with similar
expression patterns across samples, thereby iden-
tifying more stable signals within the expression
data.
Tumor stratification may be further improved by

integrating multiple omic data layers. PARADIGM
[104] integrates copy number variation, expression,
and pathway-level data to infer patient-specific
genetic activities. PARADIGM demonstrates that
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clustering patients based on their significant pathway
perturbations divides them into clinically relevant
subgroups in glioblastoma multiforme more success-
fully than using gene-level data (gene expression or
copy number variation) in isolation. A method called
SNF [105] constructs separate patient-by-patient
similarity networks from DNA methylation, mRNA
expression, and miRNA expression, then fuses them
into one network that represents the full spectrum of
underlying data and can be used for cancer subtype
discovery via spectral clustering. This approach not
only avoids noise and bias from different data types
but also takes advantage of the intersecting informa-
tion of the overall molecular characteristics of the
cohort. ndmaSNF [106] also takes advantage of the
SNF framework, extending it by adding somatic
mutation data to find cancer subtypes and demon-
strating that these subtypes are characterized by
distinct survival profiles. Overall, incorporating multi-
omic data to a fused network is reported to enhance
the power for discovering subtypes that correlate with
survival or other clinical features in cancer.
Establishing the effectiveness of stratification using

cost-effective gene panels is key to bring tumor
stratification approaches into the clinic. In a recent
study, Zhong et al. [99] demonstrated that small panels
are effective in clustering tumors across 13 major
cancer subtypes and even outperform full exome data
for most cancer types. This is likely due to the
enrichment of clinically important genes and cancer
drivers in such panels compared to the full exome data
which is dominated by passenger mutations [2].
Interestingly, the original NBS reported performance
loss when silent or non-functional mutations were
filtered [97], but the decrease in performance was not
attributable to an effect on overall mutation burden.

Network analysis to identify therapeutic
opportunities

Networks can be a useful tool in providing insights
and guidance for designing cancer therapies, or even
identifying possible synergistic drug combinations.
Synergistic drug combinations are particularly attrac-
tive because they tend to be effective at lower doses,
which can reduce toxicity and make it more difficult for
tumors to develop resistance [107]. Li et al. [108]
provided a report of recent tools and databases
available for predicting synergistic drug combinations
with omics data. To predict drug responses or design
drug combination, models have integrated disease
signaling network data and transcriptomic expression
data [109,110], protein interactions, protein–DNA
interactions [111,112], and pathway–pathway interac-
tions [113]. Using network modeling, researchers can
view the interactions between drugs, cancer-related
genes, therapeutic targets, and signaling pathways as
a system, and thereby enhance the ability to suggest
clinically applicable novel therapeutic approaches.
As an example, Lu et al. [114] performed Boolean
network analysis of epithelial cell transformation under
normal and inflammatory conditions, implicating key
regulatory modules in malignant transformation. By
perturbing specific nodes and running simulations on
the network, they were able to predict effective drug
combinations, validating that ceramide and PIK3CA/
AKT/MTOR pathway inhibitors had synergistic anti-
cancer effects in vitro. A similar analysis of TP53
signaling mapped perturbations of the TP53 pathway
to a state space of proliferation, senescence, or cell
death, and predicted that nutlin-3, an MDM2 inhibitor,
would have limited effectiveness in isolation, but
would synergize with WIP1 inhibition to increase cell
death [115].
Proteins involved in the same biological pathway

or protein complex should also be transcriptionally
co-regulated in order to maintain the necessary
stoichiometry of constituent molecules. Deviations in
co-regulation of proteins from a normal setting,
evaluated using networks of gene or protein co-
expression, has been shown to create exploitable
drug sensitivities [116,117]. Somatic mutations were
found to generate effects that were transmitted from
the affected proteins to distant tightly co-regulated
gene products via the PPI network [117], suggesting
the necessity to look beyond the mutated genes
themselves to understand oncogenic mechanism.
Diffusion-based approaches have been adapted to
evaluate possible downstream consequences of
individual mutations [118], and could potentially be
helpful for defining a search space for mutation-
associated differential protein co-regulation.
Of note, Lee et al. [119] reported that while

simultaneous application of EGFR inhibitors and
DNA-damaging chemotherapy did not result in
synergy, time-staggered application significantly sen-
sitized triple-negative breast cancer cells to chemo-
therapy. The authors chose EGFR signaling because
of its known cross-talk with the DNA damage repair
pathway. This suggests that dynamic network models
could provide a strategy for systematically evaluating
opportunities for drugs targeting one pathway to
expose therapeutic vulnerabilities in another. This
avenue remains largely unexplored, however, be-
cause high-density time course measurements are
required and are difficult to obtain in an in vivo setting.

Networks as prognostic biomarkers

Another important aspect of clinical decision
making is understanding prognosis. Some tumors
may be slow to progress to malignancy and patients
may be over-treated (as is common for ductal
carcinoma in situ and prostate tumors), whereas
others may be very aggressive and merit aggressive
clinical intervention. Another important aspect of
prognosis is monitoring for tumor progression post-
treatment. Due to inter-tumor and inter-patient
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heterogeneity, individual somatic alterations or over-
expressed proteins have limited value as bio-
markers. One alternative is to use a panel of
biomarkers; however, this comes with a risk of
potential overfitting as there is a large number of
possible combinations to explore [120]. Networks
have been applied to optimize selection of relevant
biomarkers [121] and have even been used directly
as biomarkers themselves [122].
When clinically relevant tumor subtypes have

been established, biomarkers are needed to confi-
dently place patients within those subtypes. mCGfin-
der [123] uses a matrix decomposition framework
over a gene interaction network to find genes where
alterations are more concentrated in subsets of
patients. This approach prioritizes recurrently altered
genes that are biased toward subtypes and can thus
be used to assign new patients, provided that a new
patient has mutations in the relevant genes. Weight-
ed gene co-expression network analysis (WGCNA)
[124] provides a strategy to identify modules of co-
expressed genes that distinguish groups of patients,
and was able to implicate modules associated with
tumor stage or grade in serous ovarian cancer.
Stage and grade are markers of disease aggres-
siveness that are typically determined from histolog-
ical analysis of tumor biopsies. CAERUS [125] was
able to predict cancer-free versus recurrent disease
status in both breast and ovarian cancers by
analyzing the correlation of expression levels of
selected marker genes and their network neighbors.
Survival time or time to recurrence post-treatment

can serve as a proxy for aggressiveness of tumor
subtype. Biomarkers associated with short versus
long survival can be helpful in determining whether a
patient’s disease should be monitored or treated
aggressively. Mutations and gene expression levels
can be assessed as prognostic biomarkers by
analyzing their correlation with time to recurrence
or death. Cox proportional hazards model [126] is a
popular method performed for this task, but due to
high dimensionality of mutation and expression data,
it can suffer from overfitting. Use of networks has
been suggested to overcome this issue by reducing
dimensionality in a way that accounts for the
relationship between genes. Network-based Cox
regression models have been reported to improve
accuracy of survival prediction in ovarian cancer
(Net-Cox [127] and DegreeCox [128]). These
methods incorporate a matrix representation of
network information into the model such that the
model is constrained to focus on genes that are
particularly relevant. Net-Cox focuses on genes that
are functionally related and co-expressed, whereas
DegreeCox focuses on genes that are central in the
network. Both methods have been shown to
outperform Lasso and Ridge regression, ap-
proaches to dimensionality reduction that ignore
the relationship between genes.
As it has been shown that non-redundant features
are more effective in a machine learning setting,
several approaches use networks to reduce redun-
dancy in the space of features that are used for
survival analysis. For example, under the assump-
tion that miRNA–mRNA target pairs will have
correlated expression, Gade et al. [121] built a
bipartite network of mRNA and miRNA target
information in order to fuse miRNA and mRNA
expression profiles and guide selection of non-
redundant mRNA and miRNA features. A method
called GIREN uses an interaction network to group
features, assuming that proximity in the network
indicates functional redundancy [129].
Other methods have used measures of pathway

activity as features for Cox regression instead of
individual genes. For example, Huang et al. [130]
used pathway deregulation scores; Eng et al. [131]
created a pathway-specific score by first using Lasso
to select genes within pathways, and then combining
the direction of gene activity into a patient-specific
pathway index score; and Zhang et al. [132] first
used Cox modeling to determine a prognostic score
for each pathway based on the predictive value of
their constituent genes, and then used the pathway
prognostic scores as features for survival analysis.
Biomarkers of metastasis provide an alternative

measure of progression that can be assessed from
biopsy of the primary tumor and can be useful for
identifying patients that may benefit from more
aggressive therapeutic approaches. Chuang et al.
[122] analyzed gene expression on a PPI network to
identify subnetworks differentially expressed be-
tween metastatic and non-metastatic breast tumors,
enabling classification of tumors as metastatic based
on gene expression profiles. These subnetwork
biomarkers were more reproducible across cohorts
than biomarkers based on individual genes. Be-
cause transitions in biological systems are often
abrupt, time series analysis has been used to search
for tipping points or dynamic network biomarkers that
indicate an imminent state change. Yang et al. [133]
applied this approach in the setting of hepatocellular
carcinoma and implicated a subnetwork centered
around CALM3 as a biomarker of pulmonary
metastasis.
Because different mutated and differentially

expressed genes characterize different tumor types
and subtypes, different biomarkers of prognosis and
progression are likely to be necessary for each
disease. Wu et al. [46] identified new prognostic
genes for gastric cancer using proximity to known
gastric cancer genes in a protein interaction network.
Tissue-specific networks may provide a strategy to
better identify disease-specific biomarkers [134].
Yuan et al. [135] constructed a leukemia-specific
protein–protein interaction network by filtering a
global network against curated annotations in order
to search for biomarkers for leukemia. Tissue-



Table 2. Network-based methods for patient stratification and biomarker identification (prognostic, therapeutic, progression)

Method Application Approach URL Reference

NBS Patient stratification Clustering patients based on network-smoothed
mutation profiles

http://chianti.ucsd.edu/~mhofree/NBS/ [97]

NetNorM Patient stratification NBS with mutation profile normalization instead of
network smoothing

https://github.com/marineLM/NetNorM [98]

He et al. Patient stratification NBS using cancer-type-specific co-expression
networks

– [100]

NCIS Patient stratification Network-informed co-clustering using expression
data

http://bioen-compbio.bioen.illinois.edu/NCIS/ a [102]

NetBC Patient stratification Network-informed bi-clustering using expression
data

http://mlda.swu.edu.cn/codes.php?name=NetBC a [103]

PARADIGM Patient stratification Data integration; mutation and pathway-level
activities

http://sbenz.github.io/Paradigm/ [104]

SNF Patient stratification Data integration; multi-omic patient similarity
networks

http://compbio.cs.toronto.edu/SNF/SNF/Software.
html

[105]

ndmaSNF Patient stratification SNF framework with addition of somatic mutation
data

– [106]

Zhong et al. Patient stratification NBS using small panels of exome-level data – [99]
DrugComboRanker Therapeutic biomarkers Integrating disease signaling network data and

transcriptomic expression data
Available upon request [109]

EPN Therapeutic biomarkers Integrating disease signaling network data and
transcriptomic expression data

Available upon request [110]

Wu et al. Therapeutic biomarkers Data integration; protein interactions, protein–DNA
interactions, and signaling pathways

– [111]

Choi et al. Therapeutic biomarkers Network perturbation analysis Available upon request [112]
Chen et al. Therapeutic biomarkers Pathway–pathway interaction network-based

synergy evaluation
– [113]

SimpleBool Therapeutic biomarkers Boolean network analysis on a knowledge-based
network

https://github.com/SimpleBool/SimpleBool [114]

Choi et al. Therapeutic biomarkers Boolean network modeling and attractor landscape
analysis

Available upon request [115]

IMAHP Therapeutic biomarkers Protein co-regulation analysis to explore drug
sensitivities

– [116]
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Method Application Approach URL

Lee et al. Therapeutic biomarkers Effect of time-staggered application of drugs on
therapeutic response

– [119]

Roumeliotis et al. Variant Interpretation Impact of genomic alterations on protein networks – [117]
Engin et al. Variant Interpretation Diffusion to evaluate downstream consequences of

network perturbations
– [118]

mCGfinder Subtype biomarkers Matrix decomposition to prioritize alterations
concentrated in subsets of patients

https://github.com/USTC-HIlab/mCGfinder [123]

Sun et al. Subtype biomarkers Weighted gene co-expression network analysis
(WGCNA)

h t t p s : / / l a b s . g ene t i c s . u c l a . e du / h o r v a t h /
CoexpressionNetwork/Rpackages/WGCNA/

[124]

CAERUS Subtype biomarkers Co-expression analysis of marker genes and
network neighbors

http://www.oicr.on.ca/research/ouellette/caerus a [125]

Net-Cox Survival analysis Network-informed Cox regression http://compbio.cs.umn.edu/Net-Cox/ [127]
DegreeCox Survival analysis Network-informed Cox regression http://sels.tecnico.ulisboa.pt/gitlab/averissimo/

degree-cox
[128]

Gade et al. Survival analysis Data integration; mRNA and miRNA expression
profiles

Available as supplementary material [121]

GIREN Survival analysis Data integration; gene measurements and
interaction information

https://github.com/lzcyzm/GIREN [129]

Huang et al. Survival analysis Pathway-based Cox regression – [130]
Eng et al. Survival analysis Pathway-based Cox regression – [131]
Zhang et al. Survival analysis Pathway-based Cox regression http://www.ssg.uab.edu/bhglm/ [132]
Yang et al. Prognostic biomarkers Time series analysis for dynamic network

biomarkers indicating imminent state change
– [133]

Chuang et al. Prognositic biomarkers Detection of subnetworks associated with
metastatic breast cancer

– [122]

Wu et al. Prognostic biomarkers Proximity to known cancer genes in interaction
network

– [46]

Yuan et al. Prognostic biomarkers Filtering a global interaction network against curated
annotations

– [135]

Zhou et al. Prognostic biomarkers Data integration; mRNA, miRNA and long non-
coding RNA interactions

– [136]

a Link listed in the original publication of the method is not valid.
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specific interaction networks for RNAs are less well
established. Zhou et al. [136] constructed a network
from mRNA, miRNA, and long non-coding RNA
interactions from measurements derived from ovar-
ian cancers and uncovered ten potential prognostic
lncRNA biomarkers that classified patients into high-
and low-risk subgroups with significantly different
survival outcomes.
Patient-specific methods

In the clinical setting, decisionsmust bemade about
the treatment of individual patients. Even clinical trials
are increasingly incorporating individual genomic
information by placing patients into “baskets” accord-
ing to the genes in their tumor that harbor mutations
[137]. However, a growing body of evidence suggests
that patients with different mutations affecting the
same gene can have very different responses to the
same treatment [138]. For instance, different re-
sponses to HER2/HER3 inhibition by neratinib were
recently reported for different mutations and tumor
types [139]. Response to cetuximab, a drug used for
treatment of colorectal cancer, also differs for specific
mutations in the KRAS protein [140]. There are also
examples of warfarin, carbamazepine, and clopido-
grel being shown to be ineffective in the presence of
certain genetic perturbations [141,142]. This under-
scores the need for tools to accurately interpret
patient-specific 'omics data to advance precision
cancer medicine (Table 3).
Although affordable omics-based technologies

have enabled great leaps in understanding of the
mechanisms underlying the biology and clinical
characteristics of cancer, few of these techniques
work at the single-sample level. There is increasing
interest in the development of bioinformatics tools that
are able to interpret 'omics data for individual subjects
in disease related studies (e.g., personalome) [143]. In
the setting of cancer, early methods have taken
advantage of the availability of tumor 'omics data to
develop computational tools for single-patient tasks
including identifying activated pathways, implicating
personal driver mutations and predicting prognosis or
drug sensitivities. Such N-of-1 methodologies could
eventually inform patient assignments in clinical trials
or support decision making in the clinic.

N-of-1 pathway identification

Studies that identify activated pathways from
transcriptome profiles have thus far relied on the
following three principles: (i) the statistical universe is
a single patient; (ii) significance is derived from
aggregating data on gene sets or biological modules
from single or paired samples from the same patient;
and (iii) pathway-level information is able to
answer questions of clinical importance [143–147].
Transcriptome-based analyses can be formulated to
allow interpretation [148,149] in terms of detection of
deregulated gene sets related to mechanisms at
various scales of biological organization (e.g., DNA
repair, signaling, immune response). Using expres-
sion and pathway information, several N-of-1 studies
have developed unidirectional pathway scores relying
on a single [144,147] or paired samples from the same
individual [145]. These scores are designed to find
enrichment for extreme values within a pathway, for
example, by comparing the normalized sum of rank-
weighted gene expression for genes in the pathway to
all genes not in that pathway, after which pathways
can be ranked by their scores [144]. Paired sample
analysis takes advantage of having two or more
samples from the same patient, either as a time-
series, or as samples from a diseased versus non-
diseased site, and then by using a statistical test (e.g.,
the Wilcoxon signed-rank test) to identify pathways
that are overall up- or down-regulated between
samples [145]. Variants have also been developed
to detect pathway enrichment from bi-directional
dysregulation which is ubiquitous in biological sys-
tems. N-of-1-pathways MixEnrich uses mixture
modeling to cluster geneswith normal versus aberrant
(up- or down-regulated) expression, enabling detec-
tion of enrichment based on bi-directional effects
[147]. kMEn also groups genes based on normal
versus aberrant expression by clustering transcripts
based on the absolute value of the log2 fold change
between paired samples [146]. N-of-1 transcriptome-
based methods have been applied to multiple cancer
types, including head and neck cancer [144,147], lung
adenocarcinoma [145], ovarian, and breast cancer
[146,149,150], and have been shown to distinguish
tumor samples from matched normal and healthy
control samples, and to correlate with survival.
For methods aimed at informing clinical decisions,

an additional requirement is effective extraction and
reporting of clinically relevant and actionable targets
from complex data for single samples [151]. Schiss-
ler et al. [143] refined the N-of-1-pathway framework
wherein the Wilcoxon signed-rank test and Mahala-
nobis distance are combined to create a “clinical
relevance metric” which provides information about
the magnitude of deregulation of pathways with
biological or clinical significance. The clinical utility of
the score was evaluated using bootstrapping,
simulation, and evaluation in biological replicates
as well as by evaluating the ability of pathway scores
to predict long term survival in breast cancer.
OncoRep derives multiple layers of information
from single-sample RNA-seq data in the setting of
breast cancer, including molecular subtype classifi-
cation, altered genes and pathways, gene fusions,
and clinically actionable mutations [151]. The tool
provides an HTML report of findings, as well as drug
recommendations based on DrugBank [152] and
PharmGkb [153].



Table 3. Network-based methods for N-of-1 tumor analyses to identify altered pathways or driver mutations

Method Application Approach URL Reference

Ingenuity Pathway Analysis N-of-1 pathway analysis Regulatory network inference and scoring from
expression data using a curated causal network
from the Ingenuity Knowledge Base

http://www.ingenuity.com [148]

Pathifier N-of-1 pathway analysis Inferring pathway dysregulation scores for each
tumor sample on the basis of expression data

www.weizmann.ac.il/pathifier/ [149]

FAIME N-of-1 transcriptomic analysis Pathway and molecular functional profiles from
gene expression

http://www.lussiergroup.org/publications/FAIME/ [144]

N-of-1-pathway N-of-1 transcriptomic analysis Pathway and molecular functional profiles from
gene expression (paired samples)

http://lussierlab.org/publications/N-of-1-pathways [145]

MixEnrich N-of-1 transcriptomic analysis Detects bidirectionally responsive pathways using
mixture models to group genes

http://lussiergroup.org/publications/MixEnrich [147]

kMEn N-of-1 transcriptomic analysis Detects bidirectionally responsive pathways using
K-means to group genes (paired samples)

http://www.lussierlab.org/publications/kMEn/ [146]

N-OF-1-PATHWAYS-MD N-of-1 transcriptomic analysis Approximates the magnitude of dysregulation of
pathways with biological or clinical significance
(paired samples)

http://www.lussierlab.net/publications/N-of-1-pathways [143]

OncoRep N-of-1 transcriptomic analysis Derives multiple layers of clinically relevant
information from single sample RNA-Seq data

https://bitbucket.org/sulab/oncorep/ [151]

Merid et al. N-of-1 driver prediction Co-occurrence of mutations and CNVs in a
functional network

http://research.scilifelab.se/andrej_alexeyenko/downloads.
html

[154]

DawnRank N-of-1 driver prediction Ranks mutated genes for overall impact on
differential expression of downstream genes in the
molecular interaction network

http://bioen-compbio.bioen.illinois.edu/DawnRank/ a [155]

OncoIMPACT N-of-1 driver prediction Formulates the minimum set cover problem on a
bipartite network linking mutated genes to
downstream targets identified from network path
analysis

https://sourceforge.net/projects/oncoimpact/ [156]

SSN N-of-1 driver prediction Sample-specific networks based on expression
differences relative to a panel of reference samples

http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm [157]

SCS N-of-1 driver prediction Formulates the minimum set cover problem on a
bipartite patient-specific network linking mutated
genes to downstream targets identified using
control theory

http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm [158]

a Link listed in the original publication of the method is not valid.
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N-of-1 driver prediction

Robust personalized driver prediction is required for
discovering rare causal events in cancer that are often
obscured by tumor heterogeneity and may provide
important information for selecting effective therapies.
Whereas Merid et al. [154] developed a strategy to
identify drivers based on co-occurrence of mutations
and CNVs from individual tumors in a functional
network in the absence of expression data, most
driver prediction methods integrate mutation and
expression. In general, most mutations in tumors are
expected to be passengers with little impact on gene
expression, therefore this problem can be framed as
identifying the minimum set of mutations that explain
the maximum variation in gene expression condi-
tioned on connectivity in a network. DawnRank [155]
and OncoIMPACT [156] predict personalized drivers
based on the impact of mutated genes on the overall
differential expression of downstream genes in the
molecular interaction network. While DawnRank uses
network propagation to rank genes that broadly
influence gene expression while controlling for the
effects of network topology, OncoIMPACT finds paths
between mutated and differentially expressed, defin-
ing parameters related to the path length and degree
of nodes along the path to constrain predictions.
OncoIMPACT uses the resulting paths to construct a
bipartite network connecting mutated genes with
differentially expressed genes and applies the mini-
mum set cover criteria to select drivers.
The previously described methods rely on a single

global network for prioritizing driver genes; however,
it is also possible to create patient-specific networks
from transcriptional measurements. This is the
approach taken by sample-specific networks (SSN)
[157], which constructs networks that emphasize
expression differences relative to a panel of refer-
ence samples. This approach was applied to the
TCGA to characterize cancer at a network level and
to identify individual-specific disease modules and
driver genes without using mutation information. The
Single-sample Controller Strategy creates patient-
specific networks by focusing on the regions of a
molecular network most relevant to mutations and
differentially expressed genes [158], where differen-
tial expression is determined from paired tumor-
normal samples. Personalized drivers are again
identified through mapping to a bipartite network, in
this case by relying on control theory, and then by
applying the minimum set cover. Early results from
these analyses suggest that patient-specific net-
works may be more effective for identifying the
drivers in individual tumors [158], and aggregating
single-sample drivers across tumors could lead to
new insights for some cancer types [157].
While some N-of-1 methods truly require only data

from a single sample, others may rely on cohort
analysis for parameter fitting [156], or require com-
parison against a control or reference population
[149,157]. Although N-of-1 network analyses show
promise for enabling single-patient inference, it is rare
for tumors to undergowhole transcriptomeandexome
sequencing and even less frequent that matched
tumor-normal transcriptomic and genomic data are
available. Thus, there are currently practical limita-
tions for the broad adoption of such approaches.
Road to the clinic

Mutations and copy number changes of individual
genes have long been used as clinical biomarkers
for the selection of therapies in patients with various
forms of cancer. In most cases, these genetic
abnormalities are directly related to the targeted
therapy in question, like BCR–ABL and imatinib,
activating EGFR mutations and erlotinib, and HER2
amplification and trastuzumab. These relationships
are not cryptic and are easy to demonstrate in pre-
clinical studies, making it easier to develop them in
clinical trials. Historically, genetic associations with
response to these types of targeted agents have
been robust, dramatic, and extremely meaningful
clinically. This has made the adoption of molecularly
targeted therapies and their associated genetic
biomarkers routine in the area of oncology.
There have also been examples of more complex

genomic information used to tailor therapy in cancer
patients, although the road to clinical implementation of
these approaches has been more challenging. For
example, patterns of gene expression in patients with
early-stage, estrogen receptor-positive breast cancer
can predict the likelihood of disease recurrence and the
expected risk reduction from adjuvant chemotherapy.
The prototypic clinical implementation of this approach
was with the Oncotype DX test that examines the
expression of 21 genes in a breast tumor sample [159].
This panel was reduced from a larger analysis of 250
candidate genes validated in three independent
cohorts and can be performed on fresh-frozen,
paraffin-embedded tissue [160]. The results of the
test are given asa single score that estimates the risk of
recurrence and can be roughly divided into a binary
decision with only a small range of indeterminate
values. Subsequent studies and years of clinical use
have repeatedly supported the analytic validity and
predictive value of this test which is now considered a
standard of care [161–164]. Several similar ap-
proaches have since been implemented in breast and
other cancers including colorectal and prostate.
There are three principle lessons that can be

learned from the Oncotype DX example that apply to
newer, and more complex, network-derived bio-
markers. First, the experimentally generated model
must be reduced to practice in a way that is
economically feasible, reproducible, and analytically
valid across a range of conditions (e.g., sample
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quantity, age, quality, fixation, etc.). Second, the result
of the assay must be unambiguous and easy to
interpret. A propensity score associated with a clinical
outcome like the Oncotype DX RS score or a binary
result like “positive” or “negative” are more interpret-
able than a list of likely cancer driver pathways
untethered to a specific drug or therapy. Finally, the
assay will require extensive validation in multiple
cohorts and must outperform the existing standard of
care. Even then, clinical adoption and inclusion in
consensus treatment guidelines (often required for
insurance reimbursement) can take time. Partnering
with cooperative groups, study sponsors, and clinical
tissue banks to examine already collected samples
would greatly accelerate the validation process.
In some cases, genomic analysis could lead to a

discovery which then enables the identification of a
non-genetic biomarker that is easier to detect.
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Unsupervised gene expression analysis of diffuse
large B-cell lymphomas, for example, found two
highly reproducible gene profiles dubbed germinal
B-cell like and activated B-cell like for their resem-
blance to normal germinal and activated B-cell
signatures [165]. The distinction between activated
B-cell like and germinal B-cell like subtypes of diffuse
large B-cell lymphoma was clinically significant as
these groups had very different outcomes after
standard treatment. While the expression signature
could be predicted by analyzing a small number of
genes, it was noted that cell surface markers
identifiable with immunohistochemistry could also
distinguish these groups [166–168]. At the time, this
assay was much more accessible and familiar to
pathologists, enabling its rapid adoption in practice.
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patients must be reduced to practice in a way that is
accessible to both those doing the testing and those
receiving the results. Being able to generate the
requisite data with established methods will lower
the barrier to clinical implementation.
The types of network and machine learning

algorithms described here will enable more precise
and individualized classification ofmany cancer types.
For rarer tumor types, large-scale validation studies
of recommended therapies may not be possible.
Instead, we will need to use approaches like
CancerLinQ, developed by the American Society of
Clinical Oncology, to register and follow outcomes of
every patient evaluated with these tools and treated
based on the predictions they make. This will enable
the evaluation of competing approaches in a variety of
clinical contexts, ultimately providing confidence
about the value of these techniques.
Discussion and conclusion

Networks have proved repeatedly to be a powerful
tool for studying biological systems in health and
disease. In this review, we examined algorithmic and
analytic innovations in the application of network
analysis to cancer, a setting uniquely characterized
by an abundance of molecular data including multiple
'omic data layers and paired disease-normal samples.
In this setting, networks have been used to overcome
inter-tumoral heterogeneity, facilitate data integration
and capture interactions among genomic, epigenetic,
and transcriptomic alterations. Across samples, net-
works have helped implicate driver pathways, genes,
and mutations; identify cancer subtypes; stratify
patients with similar disease; and uncover novel
biomarkers of prognosis and therapeutic response
(Fig. 5). Networks can also support single-sample
inference, helping to identify activated pathways and
personal driver mutations. Across all of these settings,
networks are an important departure point for systems
biology; they provide a fundamental structure for
moving beyond single-gene explanations for disease
phenomena. However, there are many practical
considerations to be addressed before network
methods can be translated for applications in precision
medicine.
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