
Leading Edge

Previews
Modeling Transcriptome
Dynamics in a Complex World

Philipp A. Jaeger,1 Colleen Doherty,2 and Trey Ideker1,*
1Departments of Medicine and Bioengineering
2Division of Biological Sciences

University of California San Diego, La Jolla, CA 92093, USA

*Correspondence: trey.ideker@gmail.com

http://dx.doi.org/10.1016/j.cell.2012.11.031

An accurate prediction of how extrinsic stimuli influence changes in gene expression has been chal-
lenging. In this issue, Nagano and colleagues successfully model genome-wide mRNA expression
changes under variable environmental conditions in rice, raising hopes that scientists will soon be
able to predict genome-wide transcriptional responses in a variety of organisms in uncontrolled
real-world settings.
A longstanding challenge in biology has

been to predict gene expression changes

in response to a varying environment. In

model species such as Arabidopsis or

yeast, a popular approach has been to

model gene expression patterns in

response to a panel of perturbations to

individual environmental factors in other-

wise controlled conditions. Ultimately,

however, one needs to extrapolate these

models to ‘‘real-world’’ scenarios, such

as predicting the gene expression

response to the complex conditions

seen in healthy or diseased tissues or in

the field.

In this issue, Nagano et al. (2012) take

an entirely different approach by building

a model of the transcriptional response

of rice grown directly in the field under

real-world conditions. Climate, develop-

mental age, and genotype are used as

input to a ‘‘simple’’ linear model to pre-

dict the genome-wide transcriptional

response. Surprisingly, the model accu-

rately predicts most expression changes

in the rice plants based on atmospheric

data and developmental age alone. This

study successfully demonstrates that

models incorporating relevant information

from the complex surrounding environ-

ment can yield improvements over the

more traditional controlled environment

approaches. Nagano and colleagues

thus infuse renewed vigor into attempts

to model other organisms’ transcriptome

changes under circumstances that

cannot be modeled in the laboratory,

such as changes in human gene expres-
sion patterns that occur during develop-

ment or disease.

In recent years, major advances in

high-throughput technology have vastly

increased our ability to measure changes

in the ‘‘omics’’ world. We can now

routinely measure DNA sequences,

epigenetic changes, transcription factor

binding, mRNA expression, protein pro-

duction and decay, and numerous

metabolic changes (Chen et al., 2012).

Transcriptome changes in response to

environmental or developmental stimuli

have been studied in a variety of model

organisms, for example, in single-cell

bacteria (Bonneau et al., 2007), yeast

(Nagalakshmi et al., 2008), maize (Li

et al., 2010), fruit flies (Graveley et al.,

2011), mice (Okazaki et al., 2002), and

even humans (Kang et al., 2011; Djebali

et al., 2012). However, more important

than monitoring static transcriptome

status is our ability to develop robust

models to predict dynamic transcriptome

changes in response to complex and

ever-changing stimuli. Here, rice provides

an excellent model organism, as it has

a well-annotated genome and available

high-throughput technologies, and it

can be characterized easily with high

temporal resolution across key environ-

mental stimuli and developmental stages.

Previous attempts in plant biology, for

example in Arabidopsis or rice (Opgen-

Rhein and Strimmer, 2007), have suc-

cessfully generated gene regulatory

networks for a limited number of genes

based on expression patterns (Walley
Cell 151, D
and Dehesh, 2010). These have provided

targets and markers for investigations in

crop plants (Ferrier et al., 2011). However,

few such approaches have incorporated

detailed growth and environmental con-

ditions that replicate actual field condi-

tions, and of those that have, it remains

unclear how successful the translation

from controlled growth chambers to

actual field conditions will be.

Taking advantage of these benefits,

Nagano and colleagues sampled mRNA

expression values from field-grown rice

leaves at various seasonal, diurnal, and

developmental time points. Continuous

monitoring of the atmospheric conditions

in the field enabled them to associate

changes in expression with environmental

conditions. They tested these models on

plants grown the following year, in which

the environment became substantially

warmer, and found that the models were

nonetheless highly predictive for the

expression of the majority of the genome.

This surprising success is perhaps due to

a unique incorporation of the biological

understanding of the effects of environ-

ment and of how variables were incorpo-

rated into their model. For example, the

effects of the environment were allowed

to impact the expression models either

directly or through a gating (time-of-day-

dependent) mechanism imposed by the

circadian clock.

Intriguingly, although the Nagano et al.

model performs well in the field, it per-

forms less well on predicting expression

changes in plants grown under controlled
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Figure 1. Breakthrough into a Complex World
Successful modeling and prediction of gene expression changes in rice under
variable field conditions leads model organisms into a new era of real-world
‘‘omics.’’
laboratory conditions. It will

be interesting to investigate

whether this reduced pre-

dictive ability is an artifact

of the modeling approach or

whether it reflects a genuine

need of the plants for environ-

mental variability to establish

stable expression patterns.

The latter possibility might

have far-reaching conse-

quences for other modeling

attempts. Hypothesis genera-

tion in biology is often based

on highly controlled labo-

ratory organisms; however,

the transcriptome or any

other omics-derived network

models based on these or-

ganisms might be ‘‘unstable’’

due to a lack of complex envi-

ronmental inputs. This idea

is supported by observations

in yeast that only about 60%

of genes show epistatic inter-
actions under standard growth condi-

tions, whereas the other 40% contribute

to the genetic network only once the cell

is stressed (Hillenmeyer et al., 2008; Dow-

ell et al., 2010). This finding suggests that

a complex environment with changing

conditions could substantially improve

network connectivity, reduce random

network noise, and ultimately improve

the model’s predictive power.

For the plant biology community, this

research represents a leap forward in

understanding which environmental vari-

ables are predictive of gene expression.

However, possibly the most significant

impact will be to identify the links between

the predictive atmospheric and devel-

opmental factors and the regulatory

processes and signaling pathways that

mediate this response. Such mapping

will providemolecular targets for breeding

and future research to improve crop yield
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and performance. Extending this in-the-

field modeling approach to include the

effects of stress factors such as patho-

gens or drought may offer insights into

molecular mechanisms that can circle

back into basic research (Figure 1). More-

over, determining the effects that stresses

such as high CO2 or increased tempera-

ture have on gene expression will have

significant impact for understanding the

effects of climate change on the molec-

ular networks of plants.
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