
PERSPECTIVE
Special Series on Large-Scale Biology

Mapping Plant Interactomes Using Literature Curated and
Predicted Protein–Protein Interaction Data Sets W

KiYoung Lee,a,b,1,2 David Thorneycroft,c,1 Premanand Achuthan,c Henning Hermjakob,c and Trey Idekerb

a Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 443-749, Korea
b Departments of Medicine and Bioengineering, University of California at San Diego, La Jolla, California 92093
c European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom

Most cellular processes are enabled by cohorts of interacting proteins that form dynamic networks within the plant
proteome. The study of these networks can provide insight into protein function and provide new avenues for research. This
article informs the plant science community of the currently available sources of protein interaction data and discusses how
they can be useful to researchers. Using our recently curated IntAct Arabidopsis thaliana protein–protein interaction data
set as an example, we discuss potentials and limitations of the plant interactomes generated to date. In addition, we present
our efforts to add value to the interaction data by using them to seed a proteome-wide map of predicted protein subcellular
locations.

For well over two decades, plant scientists have studied protein
interactions within plants using many different and evolving ap-
proaches. Their findings are represented by a large and growing
corpus of peer-reviewed literature reflecting the increasing ac-
tivity in this area of plant proteomic research. More recently, a
number of predicted interactomes have been reported in plants
and, while these predictions remain largely untested, they could
act as a useful guide for future research. These studies have
allowed researchers to better understand the function of protein
complexes and to refine our understanding of protein function
within the cell (Uhrig, 2006; Morsy et al., 2008). The extraction of
protein interaction data from the literature and its standardized
deposition and representation within publicly available data-
bases remains a challenging task. Aggregating the data in data-
bases allows researchers to leverage visualization, data mining,
and integrative approaches to produce new insights that would
be unachievable when the data are dispersed within largely
inaccessible formats (Rodriguez et al., 2009).

Currently, there are three databases that act as repositories of
plant protein interaction data. These are IntAct (http://www.ebi.
ac.uk/intact/; Aranda et al., 2010), The Arabidopsis Information
Resource (TAIR; http://www.Arabidopsis.org/; Poole, 2007), and
BioGRID (http://www.thebiogrid.org/; Breitkreutz et al., 2008).

These databases curate experimentally established interactions
available from the peer-reviewed literature (as opposed to
predicted interactions, which will be discussed below). Each
repository takes its own approach to the capture, storage, and
representation of protein interaction data. TAIR focuses on
Arabidopsis thaliana protein–protein interaction data exclusively;
BioGRID currently focuses on the plant species Arabidopsis and
rice (Oryza sativa), while IntAct attempts to capture protein
interaction data from any plant species. Unlike the other repos-
itories, IntAct follows a deep curation strategy that captures
detailed experimental and biophysical details, such as binding
regions and subcellular locations of interactions using controlled
vocabularies (Aranda et al., 2010). While the majority of plant
interaction data held by IntAct concern protein–protein interac-
tion data in Arabidopsis, there is a small but growing content
of interaction data relating to protein–DNA, protein–RNA, and
protein–small molecule interactions, as well as interaction data
from other plant species.

Using the IntAct Arabidopsis data set as an example, we
outline how the accumulating knowledge captured in these
repositories can be used to further our understanding of the
plant proteome. We compare the characteristics of predicted
interactomes with the IntAct protein–protein interaction data
set, which consists entirely of experimentally measured protein
interactions, to gauge the predictive accuracy of these studies.
Finally, we show how the IntAct data set can be used together
with a recently developed Divide and Conquer k-Nearest Neigh-
bors Method (DC-kNN; K. Lee et al., 2008) to predict the sub-
cellular locations for most Arabidopsis proteins. This data set
predicts high confidence subcellular locations for many unan-
notatedArabidopsis proteins and should act as a useful resource
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for future studies of protein function. Although this article focuses
on the IntAct Arabidopsis protein–protein interaction data set,
readers are also encouraged to explore the resources offered by
our colleagues at TAIR and BioGRID.

Each database employs its own system to report molecular
interactions, as represented in the referenced source publica-
tions, and each avoids making judgments on interaction reliabil-
ity or whether two participants in a complex have a direct
interaction. Thus, the user should carefully filter these data sets
for their specific purpose based on the full annotation of the data
sets. In particular, the user should consider the experimental
methods and independent observation of the same interaction in
different publications when assessing the reliability and type of
interaction of the proteins (e.g., direct or indirect). Confidence
scoring schemes for interaction data are discussed widely in the
literature (Yu and Finley, 2009).

COMPOSITION OF THE INTACT AND OTHER ARABIDOPSIS
INTERACTION RESOURCES

At the time of this writing, the IntAct team has curated 544
publications resulting in a data set of 4674 binary interactions
among 2334 Arabidopsis proteins. The vast majority of these
proteins have less than or equal to 15 interacting partners (2263
proteins; 97%). A few proteins, however, have a very large
number of interactions, including GRF2 (14-3-3-like protein GF14
omega, TAIR locus identifier AT1g78300), CAM4 (Calmodulin-1/4
protein, TAIR locus identifier AT1g66410), andCAM7 (Calmodulin-7
protein, TAIR locus identifier AT3g43810) with 131, 126, and 121
partners, respectively (Figure 1A). The Arabidopsis interactome
within IntAct shows a power law distribution, which implies a
scale-free network (Figure 1B). We compared the Arabidopsis
protein–protein interactions in IntAct to those in the TAIR and
BioGRID databases (Figure 1C). We observed that there is a
significant overlap of curated publications and protein interactions
between the three data sets. To reduce this redundant effort, the
International Molecular Exchange Consortium (IMEx) was estab-
lished to encourage data deposition and sharing by all of the
participating databases, including IntAct and BioGRID, to ensure
maximal data availability to the scientific community (http://imex.
sf.net; Orchard et al., 2007). TAIR alsomakesBioGRID and IntAct
data available via its website.

Central to the usefulness of these data sets is the accuracy of
the database record for each experiment. This is dependent on
curation accuracy, which has been a topic of debate recently.
Two recent studies found very different levels of curation accur-
acy within the data sets sampled using different approaches
(Cusick et al., 2009a; Salwinski et al., 2009). Salwinski et al.
calculated an error rate of 2% for the IntAct Arabidopsis protein–
protein interaction data set, while Cusick et al. calculated an error
rate of 10.7% for the same data set (Cusick et al., 2009b;
Salwinski et al., 2009). The conclusions that can be drawn from
this debate are that expert appraisal of repositories’ veracity is

central to quality assurance and that all participants in the pro-
duction, capture, storage, and dissemination of the data can take
steps to lower error rates. Some specific steps that researchers
can take to assist curators to improve accuracy are discussed at
the end of this article.

All three databases (IntAct, TAIR, and BioGRID) have devel-
oped versatile user interfaces and search engines, and each
welcomes user feedback to improve its service. BioGRID and
IntAct provide data and search results in a tabular or XML PSI-MI
(Protein Standards Initiative Molecular Interaction) compliant
format. TAIR makes tab-delimited file formats available, which
also allows the user to programatically interrogate large data
sets. All data sets mentioned in this article, including subcellular
location prediction data files and Arabidopsis-specific data sets,
are available at the following URL: ftp://ftp.ebi.ac.uk/pub/
databases/IntAct/various/2010-LeeEtAl/.

Once interaction data are downloaded, researchers typically
will wish to explore the data visually. IntAct has now incorporated
Cytoscape (http://www.cytoscape.org/; Cline et al., 2007), a
popular open source network visualization tool that has a large
number of plug-in packages that add extra functionality beyond
that of the core software (Shannon et al., 2003; Cline et al., 2007).
BioGRID has provided similar functionality using the Osprey
visualization package (http://biodata.mshri.on.ca/osprey/servlet/
Index). Figure 2 displays an aggregated data set derived from
several publications curated within IntAct involving proteins
that function in trichome differentiation (Gene Ontology term
GO:0010026). The network is visualized usingCytoscape and the
BINGO plug-in, which annotates GO process terms to each
protein (Maere et al., 2005). It is apparent that GO-annotated
proteins interact with many other proteins not annotated as
playing a role in trichomedifferentiation. A recent report indicates
that TT8 (transcription factor TT8, TAIR locus identifier
AT4g09820), annotated by GO as involved in anthocyanin pro-
duction, may also play a role in trichome formation (Maes et al.,
2008). This finding provides an example of how protein interac-
tion data can help refine our understanding of protein function.
The integration of network data with existing biological informa-
tion, such as GO terms or expression data, elevates the network
from a static representation to a condition-dependent dynamic
structure with added biological context and utility. The plug-in
architecture of Cytoscape is one solution to the pressing chal-
lenge of studying the dynamic nature of protein networks, but
other tools are widely available. Suderman and Hallett (2007)
provide a recent and highly informative review of this topic.

COMPARISON OF LITERATURE-CURATED AND
PREDICTED PROTEIN INTERACTION STUDIES

A recent study predicted 17,624 protein interactions in Arabi-
dopsis, but the authors reported that of these, only 75 predicted
interactions occurred in publicly available data sets of experi-
mentally detected interactions (De Bodt et al., 2009). These
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Figure 1. Characteristics of Curated Arabidopsis Interactions within IntAct and Comparison with Those of TAIR and BioGRID.
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authors also reported that of the 5840 predicted interactions
froma studybyGeisler-Lee et al. (2007), 37 appeared in the same
publicly available data sets (De Bodt et al., 2009). Such low
overlap likely occurs for two reasons: First, the interactions that
have been curated from the literature to date represent only a
fraction of the complete Arabidopsis interactome. Second, the
predictive approaches developed so far have failed to detect
many experimentally proven and highly probable interactions.

Both of the studies above (Geisler-Lee et al., 2007; De Bodt
et al., 2009) were based on an interolog approach, which infers
an interaction between two proteins if orthologs to both proteins
have been shown to interact in a reference species. By contrast,
in the IntAct data set, many Arabidopsis protein interactions
involve a single orthologous protein (from at least one reference
species) and a protein that does not have an ortholog in that
reference species (Table 1). This phenomenon probably arises
from a widespread evolutionary expansion of conserved protein
roles within the plant lineage. An equally large number of protein
interactions occur between proteins that both lack orthologs in
the reference species (Table 1). If these trends hold for complete
plant interactomes, predictive tools based solely on an interolog
approach will have limited coverage of the plant interactome but
should provide information on the most highly conserved protein
networks.

Two recent studies employed supervised learning approaches
to predict protein interactions in Arabidopsis (Cui et al., 2008; Lin
et al., 2009). These approaches used features such as sharedGO
annotation, orthology, and gene coexpression to predict protein
interactions and predicted 28,062 (Cui et al., 2008) and 224,206
(Lin et al., 2009) protein interaction pairs, respectively. To esti-
mate the false-negative rate of these predicted interactions, we
downloaded a data set of 1418 experimentally measured protein
interactions from IntAct that were not used by either of the
predictive studies above. The study by Cui et al. (2008) correctly
predicted 9% of the measured protein interactions, suggesting a
false-negative rate of 91%. The study by Lin et al. (2009) correctly
predicted 19% of the measured protein interactions, suggesting
a false-negative rate of 81%. By way of comparison, random
pairs of Arabidopsis proteins consistently returned false-negative
rates of >99.8%. Although these false-negative rates indicate
that many highly probable interactions were not predicted in
either study (Cui et al., 2008; Lin et al., 2009), further develop-
ment of supervised learning approaches may have potential as
predictive tools. In contrast with false-negative rates, estimation

of false positive rates is muchmore difficult given that the current
literature-curated databases do not record negative protein
interaction results. We therefore did not try to estimate false-
positive rate here, although it is clear that IntAct and other
literature-curated interaction databases would do well to record
negative results when available.

ADDING VALUE TO PROTEIN INTERACTION DATA SETS

The determination of subcellular locations of proteins is not a
trivial task, and, frequently, different experimental studies report
contradictory locations for the same protein. While many pro-
teins may occupy multiple cellular locations during their lifetime,
it is becoming apparent that many protein locations reported to
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Figure 1. (continued).

(A) The Arabidopsis interactions within IntAct. We have drawn the largest connected component (3949 interactions among 1848 Arabidopsis proteins)

among Arabidopsis interactions within the IntAct database (a total of 4674 unique interactions among 2334 Arabidopsis proteins) using the Cytoscape

tool (http://www.cytoscape.org/). Right three panels are the top three hub proteins, including GRF2 (AT1g78300; 131 interacting partners), CAM4

(AT5g37780; 126 partners), and CAM7 (AT3g43810; 121 partners).

(B) The distributions of numbers of interacting neighbors in the currently curated Arabidopsis interactomes within IntAct, TAIR, and BioGRID.

(C) Comparison of IntAct interactome to other well-known Arabidopsis interaction databases, including TAIR and BioGRID.

Figure 2. Protein Network of Proteins Involved in Trichome Differenti-

ation from the IntAct Protein–Protein Interaction Data Set.

Interactions of proteins (in gray) annotated as being involved in trichome

development (GO term GO:0010026) in Arabidopsis. Proteins currently

not annotated as involved in trichome development are in yellow. Node

and node font sizes are proportional to number of interactions. The

GL2_DNA (GLABRA2 gene promoter MYB binding site) is not circled to

indicate that it is a nucleic acid not a protein molecule.
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date should be viewed with caution unless supported by both
targeting and accumulation studies (Millar et al., 2009). Millar
et al. (2009) highlighted the importance of understanding the
relationship between subcellular location, protein interaction,
and protein function. As these authors commented, protein
interaction data can provide useful information for predicting
protein subcellular location, since interacting proteins typically
represent colocalized functional units of a biological process. To
illustrate how curated protein interaction data sets can be
applied to address current problems in plant biology, we used
a recently developed DC-kNN method (K. Lee et al., 2008) that
uses protein interaction data to predict protein locations with
high accuracy in multiple species.

We assembled a set of known locations based on the following
sources: IntAct subcellular location data; green fluorescent pro-
tein data from theArabidopsisSubcellular Database (Heazlewood
et al., 2007); data fromboth ARAPerox (Reumann et al., 2004) and
AtNoPDB (Brown et al., 2005); and localization data annotated
by the GO project having evidence codes EXP (inferred from
experiment), IDA (inferred from direct assay), or IPI (inferred from
interaction) (Rhee et al., 2008). From these sources, we were able
to assign 2032 proteins with 3144 annotated subcellular locations
covering 15 specific cellular compartments (Table 2).

Next, we assembled a set of protein features for predicting a
protein’s subcellular location, including its sequence, chemical
properties, motifs, and functions (so-called single protein fea-
tures) along with characteristics of its network neighbors (cap-
turing neighbors’ single protein features and their subcellular
locations if known) (see Supplemental Methods online for de-
tailed information on location prediction). Using the DC-kNN
method (K. Lee et al., 2008) together with the known locations,
we selected a subset of the protein features that were informative
for predicting each subcellular location of Arabidopsis (see
Supplemental Figures 1 to 3 online). Finally, based on the
selected feature set for each location (see Supplemental Figure
2 online), we predicted the locations of all 25,497 Arabidopsis
proteins for which subcellular locations had not yet been
reported. It was possible to predict 18,788 locations for 13,749
proteins of these with high confidence (P value < 0.05 and
corresponding to a false discovery rate of 0.35; see Supplemen-
tal Data Set 1 online for all predicted results).

Using cross-validation on the known locations, we observed a
very high accuracy of 0.914 average AUC (area under receiver
operator characteristic curve) (Molodianovitch et al., 2006;
Streiner and Cairney, 2007) for prediction of subcellular location
(the red “x” marker in Figure 3; see Supplemental Figure 3 online
for the receiver operator characteristic curves of individual
locations). Given that the average number of interacting neigh-
bors (referred to as average degree) of Arabidopsis interactome
is 3.9, the performance is a little higher than the previous
simulation result using yeast interactions (Figure 3). This might
result from the higher fraction (87%) of location-sharing interac-
tions ofArabidopsis proteins than that (59%) of yeast interactions
that are used in the simulation (see the inset of Figure 3). As
expected, the fraction was much higher than for random net-
works (z-score = 40 and P value ! 0 based on 100 location-
permutated random networks). The high performance of location
prediction mainly depends on the use of group features of
interacting neighbors as well as characteristics of self proteins
(K. Lee et al., 2008). For example, proteins inmitochondrion have
a weak degree of self purity of location, which means that many
of the proteins can reside at other locations, including chloro-
plast (see Supplemental Figure 4A online). However, many
interacting partners of mitochondrial protein reside also in the
mitochondrion, which means a high degree of neighbor purity
(see Supplemental Figure 4A online). Location prediction using a
DCkNN method thus showed relatively high performance on the
mitochondrion (0.95 AUC; see Supplemental Figure 4C online).
For the case of cytosol, however, both degrees of self and
neighbor purities are low, which resulted in relatively low perfor-
mance even using the DCkNNmethodwith both kinds of features.

Next, we assessed the accuracy of the newly predicted
locations using two recent studies of peroxisomal and
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Table 1. Analysis of Orthologous Protein Interactions in the IntAct

Arabidopsis Data Set

Interaction Type Number in Data Set

Ortholog interacting with ortholog 424

Ortholog interacting with nonortholog 2016

Nonortholog interacting with nonortholog 1735

Reference species were Homo sapiens, Caenorhabditis elegans, Sac-

charomyces cerevisiae, and Drosophila melanogaster as used in the

studies of Geisler-Lee et al. (2007) and De Bodt et al. (2009). The source

ortholog database was InParanoid, as used by the two studies.

Table 2. Subcellular Locations Considered in the Prediction of Protein

Cellular Location Using Protein Interaction Data

Location

Number of

Known

Proteins

Number of Predicted

Locations among

Unknown Test Proteins

Apoplast 68 750

Cell plate 14 1,094

Chloroplast 399 506

Cytoskeleton 43 851

Cytosol 397 937

Endoplasmic reticulum 118 670

Extracellular 31 1,523

Golgi apparatus 79 822

Mitochondrion 332 1,523

Nucleolus 132 188

Nucleus 830 4,149

Peroxisome 138 2,164

Plastid 136 1,894

Plasma membrane 181 1,110

Vacuole 246 607

All 3,144 18,788
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mitochondrial proteomes that employed mass spectrometry
(Eubel et al., 2008; C.P. Lee et al., 2008). The selected studies
employed stringent purification protocols for peroxisomal and
mitochondrial proteins, which would seem to offer the highest
quality data of this type. These two data sets were reserved for
testing prediction accuracy and thus were not included in the
DC-kNN training set.

When the proteins detected in these studies were compared
with the predicted locations, it was shown that the predictions
based on the IntAct interactions performed quite well, with many
agreements between the in vivo study and in silico predictions
(Figure 4). For example, C.P. Lee et al. (2008) found peroxisomal
locations for 26 proteins by mass spectrometry that were not
included in the DC-kNN training set; of these, 18 proteins were
predicted as peroxisomal with high confidence (Figure 4A;
sensitivity = 0.69). Strikingly, our predictions also support the
previously reported dual targeting of NTRA (AT2G17420),
NADPH-dependent thioredoxin reductase A, to both mitochon-
dria (highest score) and peroxisomes (second highest score)
(Laloi et al., 2001). We suppose that the high accuracy of
prediction results from the fact that the DC-kNN method uses
known subcellular locations of the extended network neighbor-
hood, in addition to single protein features of each neighbor (see
Figure 4C for an example of AT4G02580, NADH-ubiquinone

oxidoreductase 24-kD subunit, which is part of a protein network
containingmany characterized components of themitochondrial
electron transport chain). Thus, themethodwill bemost accurate
in large networks seeded with a sizable fraction of proteins
whose locations are already known. A number of subcellular
locations have very limited numbers of experimentally proven
protein residents; therefore, our predictions in those locations
will tend to be less robust than those subcellular locations with
large cohorts of experimentally proven protein residents. By
referring to the results section, the reader can make a judgment
about the level of caution with which they should view the
predictions for each location.

Subcellular localization is a prerequisite to interaction and
function, but in order to discover biologically meaningful protein
networks, these data need to be integrated with other data sets
to build a robust and verifiable model to guide future research
(Fukushima et al., 2009). Currently, gene coexpression data sets
are widely available (Brady and Provart, 2009), and a commonly
held assumption in system biology is that coexpression of genes
is a strong indicator of possible interaction of their translated
products. A recent study, however, demonstrated that in Arabi-
dopsis, only a low proportion of experimentally determined
interacting protein pairs were coexpressed (Lysenko et al.,
2009). While the Arabidopsis interaction data set is limited and
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Figure 3. Performance of Predicted Locations on Location-Known Arabidopsis Proteins.

The red “x” denotes the performance of predicted locations on 2032 location-known Arabidopsis proteins using IntAct interactions based on leave-one-

out cross-validation. The x axis and y axis are the average degree (or number) of interacting partners in protein-protein interaction data and the average

AUC value, respectively. Performance on yeast, fly, worm, and human were redrawn from our previous work (courtesy of Nucleic Acid Research). The

inset denotes the fraction of location-sharing interactions among theArabidopsis interactomewithin IntAct. In the calculation of location-sharing fraction,

we used the 2032 known locations only. For a random case, we randomly selected 100 location-permutated random networks and averaged them.
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Figure 4. Validation of Predicted Locations on Independent Test Data Sets.

(A) and (B) Heat maps of validation results on two independent test data sets for peroxisome (A) and mitochondrion (B), respectively. Each column

corresponds to each test protein, and each row corresponds to one of 15 locations tested. Each cell shows the significance of prediction assigned

to each protein and location (with grayscale representing the P value); darker gray means a higher significance. Proteins in red have <0.01 P value,

and proteins in blue have <0.05. Predicted locations (P value <0.05) are marked in red rectangles, and asterisks indicate the proteins with the

highest predicted scores in the peroxisome (A) or mitochondrion (B), respectively. Especially in the case of NTRA (AT2G17420) in (A), our prediction
showed a high score on mitochondrion in addition to peroxisome. The mitochondrion prediction of NTRA is also confirmed by other literature (Laloi

et al., 2001).
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may be unrepresentative of the full interactome, this finding
might indicate that other factors, such as posttranslational
protein modification and protein disorder, may be of much
more relevant to protein interaction than coexpression of the
encoding genes (Stein et al., 2009). Although many studies
have been performed in these areas, the integration and anal-
ysis of these data with protein interaction data sets to predict
and verify protein interaction networks is challenging and in its
early stages.

FUTURE CONSIDERATIONS

Unfortunately, there are few literature curators, while there are a
growing army of researchers producing and publishing their
results. This inevitably results in a backlog of data buried within
the primary literature, resistant tomodern analytical approaches.
But it is widely agreed that the capture, storage, and dissemi-
nation of this information is vital to modern research (Jorrin et al.,
2007). How can the plant science community resolve this di-
lemma and ensure that the efforts of hundreds of dedicated
scientists are maximized to gain new insights into the complexity
of plant biology?

The Human Proteome Organization–Protein Standards Initia-
tive has published guidelines to outline the minimum information
required for reporting amolecular interaction experiment (MIMIx)
(Orchard et al., 2007). MIMIx outlines the minimum information
required to describe all relevant aspects of the interaction
experiment while minimizing the burden placed on the re-
searchers generating the data. This standard does not dictate
how to conduct research but, if followed, allows researchers to
set out their findings in a manner that can be understood by the
widest audience, including curators (Orchard and Taylor, 2009).
Following standards like MIMIx is the most effective action a
researcher can take to assist database curators and ensure the
efficient and accurate deposition of their data into a relevant
database, the content of which is often the raw materials for
bioinformatic analysis. Currently, up to half of curators’ working
hours are taken up with identifying missing information required
to correctly represent the data in a curated paper, and this
bottleneck would be removed if MIMIx guidelines were fol-
lowed by the reporting authors. The IMEx website (http://imex.
sourceforge.net/MIMIx/index.html) and a recent article by
Orchard et al. (2007) document concrete entry points for efficient
deposition and dissemination of molecular interaction data
(Orchard et al., 2007). We contend that direct data deposition
as part of themanuscript publication processwill ensure a higher
visibility of both the data set and the publication and will result

in a higher data quality through direct author validation of the
data representation in the database.

As protein interaction studies expand and evolve, the relation-
ship between researcher, publisher, and repository will also have
to evolve to allow researchers access to the bulk and breadth of
data. It would appear that, although text mining can assist
manual curation, it has yet to fulfill its obvious potential for
reliable high-throughput literature curation (Winnenburg et al.,
2008; Kabiljo et al., 2009). On the other hand, large-scale funding
to create a cadre of dedicated database curators has not been
forthcoming either and would seem unlikely in the near future if
science budgets contract due to the recent economic downturn.
It would appear that the increased use of standardized reporting
and researcher-initiated deposition of data are our best hope of
maintaining and improving critical resources for the future of
plant research. By minimizing the burden of adopting standards
and by working with the research community to streamline data
deposition, we hope the full potential of the efforts of hundreds of
scientists can be harnessed for the benefit of agriculture and
plant biology.
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The following materials are available in the online version of this article.

Supplemental Figure 1. Feature Set Selection for the Subcellular

Locations of Arabidopsis Proteins Based on AUC Measure.

Supplemental Figure 2. Selected Feature Sets and Model for Each

Subcellular Location of Arabidopsis Proteins.
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Proteins and Performance for Individual Locations of Arabidopsis.

Supplemental Methods. The Detailed Information on Location Pre-

diction of Arabidopsis Proteins.

Supplemental Data Set 1. The Predicted Locations of Location-

Untagged Arabidopsis Proteins.
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Figure 4. (continued).

(C) Up to second network neighbors of AT4G02580 (NADH-ubiquinone oxidoreductase 24-kD subunit) in the IntAct interactome of Arabidopsis

proteins. Different color on each protein means different locations of the protein. AT4G02580 has many network neighbors known to locate in

mitochondrion (12 neighbors among 13 location-known proteins). Thus, our prediction of AT4G02580 is mitochondrion.
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