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SUMMARY

Drug resistance and relapse remain key challenges
in pancreatic cancer. Here, we have used RNA
sequencing (RNA-seq), chromatin immunoprecipita-
tion (ChIP)-seq, and genome-wide CRISPR analysis
to map the molecular dependencies of pancreatic
cancer stem cells, highly therapy-resistant cells
that preferentially drive tumorigenesis and progres-
sion. This integrated genomic approach revealed
an unexpected utilization of immuno-regulatory sig-
nals by pancreatic cancer epithelial cells. In partic-
ular, the nuclear hormone receptor retinoic-acid-re-
ceptor-related orphan receptor gamma (RORg),
known to drive inflammation and T cell differentia-
tion, was upregulated during pancreatic cancer pro-
gression, and its genetic or pharmacologic inhibition
led to a striking defect in pancreatic cancer growth
and a marked improvement in survival. Further, a
large-scale retrospective analysis in patients re-
vealed that RORg expressionmay predict pancreatic
cancer aggressiveness, as it positively correlated
with advanced disease and metastasis. Collectively,
these data identify an orthogonal co-option of im-
muno-regulatory signals by pancreatic cancer stem
cells, suggesting that autoimmune drugs should be

evaluated as novel treatment strategies for pancre-
atic cancer patients.

INTRODUCTION

Although cytotoxic agents remain the standard of care for most

cancers, their use is often associated with initial efficacy, fol-

lowed by disease progression. This is particularly true for

pancreatic cancer, a highly aggressive disease, where current

multidrug chemotherapy regimens result in tumor regression in

30% of patients, quickly followed by disease progression in

the vast majority of cases (Conroy et al., 2011). This progression

is largely due to the inability of chemotherapy to successfully

eradicate all tumor cells, leaving behind subpopulations that

can trigger tumor re-growth. Thus, identifying the cells that are

preferentially drug resistant, and understanding their vulnerabil-

ities, is critical to improving patient outcome and response to

current therapies.

In previous work, several groups have focused on identifying

the most tumorigenic populations within pancreatic cancer.

Through this, subpopulations of cells marked by expression of

CD24+/CD44+/ESA+ (Li et al., 2007), cMet (Li et al., 2011),

CD133 (Hermann et al., 2007), nestin (Kawamoto et al., 2009),

ALDH (Rasheed et al., 2010), and more recently DCLK1 (Bailey

et al., 2014) and Musashi (Fox et al., 2016), have been shown

to harbor stem cell characteristics, in being enriched for the ca-

pacity to drive tumorigenesis, and recreate the heterogeneity of
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the original tumor (Reya et al., 2001). Importantly, these tumor

propagating cells or cancer stem cells have been shown to be

highly resistant to cytotoxic therapies, such as gemcitabine,

consistent with the finding that cancer patients with a high can-

cer stem cell signature have poorer prognosis relative to those

with a low stem cell signature (Grosse-Wilde et al., 2015).

Although pancreatic cancer stem cells are epithelial in origin,

these cells frequently express epithelial to mesenchymal transi-

tion (EMT)-associated programs, which may in part explain their

over-representation in circulation and propensity to seed meta-

static sites (Fox et al., 2016; Hermann et al., 2007). Because

these studies define stem cells as a population that presents a

particularly high risk for disease progression, defining themolec-

ular signals that sustain them remains an essential goal for

achieving complete and durable responses.

Here, we have used a combination of RNA sequencing (RNA-

seq), chromatin immunoprecipitation (ChIP)-seq, and genome-

wide CRISPR screening to define the molecular framework

that sustains the aggressive nature of pancreatic cancer stem

cells. These studies identified a network of key nodes regulating

pancreatic cancer stem cells and revealed an unanticipated role

for immuno-regulatory genes in their self-renewal and mainte-

nance. Among these, the retinoic-acid-receptor-related orphan

receptor gamma (RORg), a nuclear hormone receptor known

for its role in Th17 cell specification and regulation of inflamma-

tory cytokine production (Ivanov et al., 2006), emerged as a key

regulator of stem cells. RORg expression increased with pro-

gression, and its blockade via genetic or pharmacologic

approaches depleted the cancer stem cell pool and profoundly

inhibited human and mouse tumor propagation, in part by sup-

pressing a super-enhancer-associated oncogenic network.

Finally, sustained treatment with a RORg inhibitor led to a signif-

icant improvement in autochthonous models of pancreatic can-

cer. Together, our studies offer a unique comprehensive map of

pancreatic cancer stem cells and identify critical vulnerabilities

that may be exploited to improve therapeutic targeting of

aggressive, drug-resistant pancreatic cancer cells.

RESULTS

Transcriptomic and Epigenetic Map of Pancreatic
Cancer Cells Reveals a Unique Stem Cell State
In previous work, we used the KPf/fC mouse model (Hingorani

et al., 2003, 2005) of pancreatic ductal adenocarcinoma

(PDAC) to show that a reporter mouse designed tomirror expres-

sion of the stem cell signal Musashi (Msi) could identify tumor

cells that are preferentially drug resistant and can drive tumor

re-growth (Fox et al., 2016). Consistent with this, Msi2+

tumor cells were 209-fold enriched in the ability to give rise to or-

ganoids in limiting dilution assays (Figures 1A, S1A, and S1B; Boj

et al., 2015). Because Msi+ cells were enriched for tumor prop-

agation and drug resistance—classically defined properties of

cancer stem cells—we postulated that Msi reporters could be

used as a tool to understand the molecular underpinnings of

this aggressive subpopulation within pancreatic cancer.

To map the functional genomic landscape of the stem cell

state, we utilized a combination of RNA-seq, ChIP-seq, and

genome-wide CRISPR screening (Sanjana et al., 2014). Pancre-

atic cancer cells were isolated from Msi2-reporter (REM2)

KPf/fC mice based on GFP and EpCAM expression and

analyzed by RNA-seq (Figure 1B). Principal-component anal-

ysis showed that KPf/fC reporter+ tumor cells were distinct

from reporter� tumor cells at a global transcriptional level

and were defined by a unique set of programs in turn driven

by the differential expression of over a thousand genes (Figures

1C and 1D). We focused on genes enriched in stem cells in

order to understand the transcriptional programs that may

functionally maintain the stem cell state. Gene set enrichment

analysis (GSEA) (Subramanian et al., 2005) was used to

compare this PDAC stem cell transcriptomic signature with

other cell signatures (Table S1). This revealed that the tran-

scriptional state of PDAC stem cells mapped closely with other

developmental and stem cell states, indicating molecular fea-

tures aligned with their observed functional traits (Figures 1E

and 1F). Additionally, the transcriptional signature of PDAC

stem cells was inversely correlated with cell proliferation signa-

tures (Figures S1C and S1D), consistent with our finding that

the stem cell pool is quiescent following chemotherapy (Fig-

ure S1E). Stem cells also harbored metabolic signatures asso-

ciated with tumor aggressiveness, including increased sulfur

amino acid metabolism (Ryu et al., 2011) and enhanced gluta-

thione synthesis, pathways that enable survival following radia-

tion and chemotherapy (Lu et al., 2017; Figures 1G and 1H).

Finally, the stem cell transcriptome bore similarities to signa-

tures from relapsed cancers of the breast, liver, and colon (Fig-

ures 1I and 1J); consistent with this, stem cells showed a

significant overlap with mesenchymal cells in single-cell RNA-

seq analysis of pancreatic tumors (Figure 1K). These molecular

properties may collectively underlie the ability of PDAC stem

cells to survive chemotherapy and drive tumor recurrence.

Analysis of H3 lysine-27 acetylation (H3K27ac) (Figures 1B

and S1F), a histone mark associated with active enhancers

(Hnisz et al., 2013), revealed that the differential gene expres-

sion programs in stem cells and non-stem cells were driven

by changes at the chromatin level. Thus, genomic regions en-

riched for H3K27ac coincided with regions where gene expres-

sion was increased in each cell type (Figures S1G–S1J; stem

cells: R2 = 0.28, p = 7.1 3 10�14; non-stem cells R2 = 0.46,

p = 22 3 10�16). Because super-enhancers have been pro-

posed to be key drivers of cell identity (Hnisz et al., 2013;

Whyte et al., 2013), we mapped shared and unique super-en-

hancers in stem and non-stem cells (Figures 1L–1O). This anal-

ysis revealed that super-enhancer-associated H3K27ac marks

were predominantly restricted to either stem cells or non-

stem cells, with 65% of all super-enhancers being unique to

each population (364 unique super-enhancers in stem cells/

388 unique super-enhancers in non-stem cells). In contrast,

almost all promoter and conventional enhancer-associated

H3K27ac marks were shared between stem and non-stem

cells, with less than 5% being unique. Further, although su-

per-enhancers in the stem cell population were clearly demar-

cated by peaks with substantially greater relative enrichment

than the same regions in non-stem cells (Figure 1M), the su-

per-enhancers found in non-stem cells showed a peak intensity

that was only marginally greater than the corresponding regions

in stem cells (Figure 1O). These data suggest that stem cells in
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pancreatic cancer have a more specialized super-enhancer

landscape than non-stem cells and raise the possibility that su-

per-enhancer linked genes and their regulators may serve to

control stem cell identity in pancreatic cancer. In support of

this, key transcription factors and programs that underlie devel-

opmental and stem cell states, such as Tead4, Wnt7b, and

Msi2 (Figure 1L) and Foxp, Klf7, and Hmga1 (Table S2), were

associated with super-enhancers in KPf/fC stem cells.

Genome-wide CRISPR Screen Identifies Core
Functional Programs in Pancreatic Cancer
To define which of the programs uncovered by the transcrip-

tional and epigenetic analyses represented true functional de-

pendencies of stem cells, we carried out a genome-wide

CRISPR screen. Thus, primary cell cultures enriched for stem

cells (Figure S2A) were derived fromREM-KPf/fCmice and trans-

duced with the mouse GeCKO CRISPRv2 single guide RNA

Figure 1. Transcriptomic and Epigenetic Map of Pancreatic Cancer Cells Reveals a Unique Stem Cell State

(A) Tumor organoid formation from primary Msi2+ and Msi2� REM2-KPf/fC tumor cells. Representative images, scale bars represent 100 mm.

(B) RNA-seq and ChIP-seq of EpCAM+GFP+ and Epcam+GFP� REM2-KPf/fC tumor cells (n = 3 RNA-seq; n = 1 ChIP-seq).

(C) Principal-component analysis of KPf/fC stem (purple) and non-stem (gray) cells.

(D) Transcripts enriched in stem (red and pink) and non-stem cells (dark blue and light blue). Pink, light blue, local false discovery rate (lfdr) < 0.3; red, dark blue,

lfdr < 0.1.

(E–J) GSEA cell states and corresponding heatmaps associated with development (E and F), metabolism (G and H), and cancer relapse (I and J).

(E, G, and I) Red denotes overlapping gene signatures; blue denotes non-overlapping gene signatures.

(F, H, and J) Red, over-represented gene expression; blue, under-represented gene expression; shades denote fold change.

(K) Single-cell sequencing of KPR172H/+C tumors (left) andmap ofMsi2 expression in ETC and EMT clusters (right); CAF, cancer-associated fibroblasts (red); EMT,

mesenchymal tumor cells (olive green); Endo, endothelial cells (green); ETC, epithelial tumor cells (blue); TAM, tumor-associated macrophages (magenta).

(L) Hockey stick plots of H3K27ac occupancy ranked by signal density. Stem cell super-enhancers (left) or shared super-enhancers (right) are demarcated by

highest ranking and intensity signals.

(M–O) H3K27ac ChIP-seq reads across genes marked by stem cell super-enhancers (M), shared super-enhancers (N), or non-stem super-enhancers (O).

See also Figure S1.
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Figure 2. Genome-Scale CRISPR Screen Identifies Core Stem Cell Programs in Pancreatic Cancer

(A) Schematic of CRISPR screen.

(B) Number of guides in each replicate following lentiviral infection (gray bars), puromycin selection (red bars), and sphere formation (blue bars).

(C and D) Volcano plots of guides depleted in 2D (C) and 3D (D). Genes indicated on plots, p < 0.005.

(legend continued on next page)
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(sgRNA) library (Sanjana et al., 2014; Figure 2A). The screen was

multiplexed in order to identify genes required in conventional 2D

cultures, as well as in 3D stem cell sphere cultures (Rovira et al.,

2010) that selectively allow stem cell growth (Fox et al., 2016;

Figure 2A). The screens showed clear evidence of selection,

with 807 genes depleted in 2D (Figures 2B and 2C) and an

additional 178 in 3D stem cell cultures (Figures 2B and 2D).

Importantly, the screens showed a loss of oncogenes and an

enrichment of tumor suppressors in conventional cultures (Fig-

ures 2C and S2B) and a loss of stem cell signals and gain of

negative regulators of stem signals in stem cell conditions (Fig-

ures 2D and S2C).

Computational integration of the transcriptomic and CRISPR-

based functional genomic data was carried out using a network

propagation method similar to one developed previously (Va-

nunu et al., 2010). First, the network was seeded with genes

that were preferentially enriched in stem cells and also identified

as essential for stem cell growth (Figure 2E). The genes most

proximal to the seeds were then determined using the mouse

search tool for the retrieval of interacting genes/proteins

(STRING) interactome (Szklarczyk et al., 2015) based on known

and predicted protein-protein interactions using network propa-

gation. Fold-change in RNA expression from the RNA-seq was

overlaid onto the resulting subnetwork. The network was subse-

quently clustered into functional communities based on high

interconnectivity between genes, and gene set over-representa-

tion analysis was performed on each community; this analysis

identified seven subnetworks built around distinct biological

pathways, thus providing a systems-level view of core programs

that may be involved in driving pancreatic cancer growth. These

programs identified stem and pluripotency pathways, develop-

mental and proteasome signals, lipid metabolism and nuclear

receptors, cell adhesion, cell-matrix, and cell migration, and im-

muno-regulatory signaling as pathways integral to the stem cell

state (Figures 2E and S2D).

Hijacked Immuno-regulatory Programs as Direct
Regulators of Pancreatic Cancer Cells
Ultimately, the power of such a map is the ability to identify and

understand key new functional dependencies. Thus, we used

the network map as a framework to select an integrated gene

set based on the transcriptomic, epigenomic, and CRISPR anal-

ysis (Table S3). Selected genes were subsequently targeted via

viral short hairpin RNA (shRNA) delivery into KPf/fC cells and

the impact on pancreatic cancer propagation assessed by

sphere assays in vitro or tracking tumor growth in vivo. Although

many genes within the pluripotency and development core pro-

gram were known to be important in pancreatic cancer (e.g.,

Wnt, Hedgehog, and Hippo pathways), others, such as Onecut3

and Tudor3, genes previously implicated in motor neuron devel-

opment or in stress response, presented new opportunities for

discovery and emerged as signals essential for pancreatic can-

cer stem cell growth (Figures 3A and S3A; Table S4). Further,

novel metabolic factors, such as Sptssb, a key contributor to

sphingolipid metabolism (Zhao et al., 2015), and Lpin2, an

enzyme involved in generation of pro-inflammatory very-low-

density lipoproteins (Dwyer et al., 2012), were found to be critical

stem cell dependencies, implicating lipid metabolism as a key

point of control in pancreatic cancer (Figure 3B; Table S4). This

analysis also identified new gene families in pancreatic cancer:

thus within the adhesion and cell matrix core program (Figures

3C–3J and S3B), several members of the multiple epidermal

growth factor (EGF) repeat (MEGF) subfamily of orphan adhesion

G-protein-coupled receptors (8 of 12) were preferentially ex-

pressed in stem cells (Figure 3E). Among this set, inhibition of

Celsr1, Celsr2 (Figures S3C and S3D), and Pear1 or Jedi (Fig-

ure S3E) triggered apoptosis, depleted Msi+ stem cells, and

potently blocked cancer propagation in vitro and in vivo (Figures

3G–3J and S3F–S3J; Table S4). These pathways will likely be

important to explore further, especially because GPCRs can

frequently serve as effective drug targets.

An unexpected discovery from this map was the identification

of immune pathways and cytokine signaling as a core program.

In line with this, retrospective analysis of the RNA-seq and ChIP-

seq analysis revealed that multiple immuno-regulatory cytokine

receptors and their ligands were expressed in stem and non-

stem tumor epithelial cells (Figure S3K). This was of particular in-

terest because many genes associated with this program, such

as interleukin-10 (IL-10), IL-34, and CSF1R, have been previ-

ously studied in context of the tumor microenvironment but

have not been reported to be expressed by, or to functionally

impact, pancreatic epithelial cells directly. Single-cell RNA-seq

analysis of KPR172H/+C tumor cells (Figures 1K, 3K, and S3L)

confirmed the presence of IL-10Rb, IL-34, and CSF1R in epithe-

lial tumor cells (Figure 3L), as well as in Msi2+ cancer stem cells

(Figure S3M). Consistent with expression in stem cells, inhibition

of IL-10Rb and CSF1R led to a marked loss of sphere-forming

capacity and reduced stem cells (Figures 3M, 3N, S3N, and

S3O) in vitro and impaired tumor growth and propagation in vivo

(Figures 3O–3Q, S3P, and S3Q). The activity of IL-10Rb and

CSF1R may, at least in part, be ligand dependent, as their li-

gands were both expressed in epithelial cells (Figure S3R), and

the impact of ligand and receptor inhibition mirrored each other

(Figure 3R). Collectively, these findings demonstrate an orthog-

onal co-option of inflammatory mediators by pancreatic cancer

stem cells and suggest that agents that modulate cytokine net-

works may directly impact pancreatic cancer propagation.

RORg, aMediator of TCell Fate, Is aCritical Dependency
in Pancreatic Cancer
To understand how the gene networks defined above are

controlled, we focused on transcription factors because of their

(E) Network propagation integrating transcriptomic, epigenetic, and functional analysis of stem cells. Stem-enriched genes by RNA-seq (log2FC > 2) and depleted

in 3D (false discovery rate [FDR]-adjusted p < 0.5) were used to seed the network (triangles) and then analyzed for protein-protein interactions. Each node

represents a single gene; color denotes RNA-seq fold change; stem enriched, red; non-stem enriched, blue; not differentially expressed, gray. Labels shown are

for genes enriched in stem cells or non-stem cells by RNA-seq (RNA log2FC absolute value > 3.0) or by RNA-seq and ChIP-seq (RNA log2FC absolute value > 2.0,

ChIP-seq FDR < 0.01). Seven core programs were defined by gene groups with high connectivity; annotated by GO analysis (FDR < 0.05).

See also Figure S2.
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broad role in initiating programs key to cell fate and identity (Neph

et al., 2012). Of the 53 transcription factors identified within the

map, 12were found tobeenriched in stemcells by transcriptomic

and epigenetic parameters (Figure S4A) and included several

pro-tumorigenic pioneer factors, such as Sox9 (Kopp et al.,

2012) and Foxa2 (Bailey et al., 2016). Among transcription factors

with no known role in pancreatic cancer (Arntl2, Nr1d1, and

RORg), only RORg was actionable in the near term, with clin-

ical-grade antagonists currently available (Table S5; Gege,

2016). Motif enrichment analysis identified RORg sites as prefer-

entially enriched in chromatin regions uniquely open in stem cells

(Figure S4B) and in open chromatin regions that corresponded

with enriched gene expression in stem cells (Figure S4B). These

findings were consistent with RORg having a preferential role in

Figure 3. Identification of Novel Pathway Dependencies of Pancreatic Cancer Stem Cells

(A–D) Genes from developmental processes (A), lipid metabolism (B), and cell adhesion, motility, and matrix components (C and D) were inhibited via shRNA in

KPf/fC cells and sphere or flank tumor growth assessed. Sphere, n = 3–6; flank transplant, n = 4.

(E–I) Relative RNA expression of MEGF family and related (*Celsr1) genes in KPf/fC stem and non-stem cells (E). Red, over-represented; blue, under-represented;

color denotes fold change frommedian values. Impact of inhibiting Celsr1, Celsr2, and Pear1 on KPf/fC sphere formation (F) and flank transplants (G–I) is shown.

Sphere, n = 3–6; flank transplant, n = 4.

(J) Impact of shRNA-mediated inhibition of Pear1 in human FG cells on colony formation (n = 3) and flank tumor propagation assessed (n = 4).

(K and L) Single-cell sequencing of KPR172H/+C tumors (K) and tumor cells expressing IL-10Rb, IL-34, and Csf1R (L). CAF (red); EMT (olive green); Endo (green);

ETC (blue); TAM (magenta).

(M) Impact of shRNA-mediated inhibition of IL-10rb and Csf1R on sphere formation of KPf/fC cells, n = 3–6.

(N) Impact of shRNA-mediated inhibition of IL-10rb and Csf1R on stem content (Msi2-GFP+) of KPf/fC cells; assessed in 3D culture, n = 3.

(O and P) Impact of shRNA-mediated inhibition of IL-10rb (O) and Csf1R (P) on KPf/fC flank transplant growth, n = 4.

(Q) Impact of shRNA-mediated inhibition of IL-10Rb in human FG cells on sphere formation, n = 3, or flank transplant, n = 4.

(R) Impact of shRNA-mediated inhibition of IL-10 and IL-34 on KPf/fC sphere formation, n = 3.

Data represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 by Student’s t test or one-way ANOVA. See also Figure S3.
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controlling gene expression programs important for defining the

stem cell state in pancreatic cancer.

RORg was an unanticipated dependency, as it is a nuclear

hormone receptor that has been predominantly studied in Th17

cell differentiation (Ivanov et al., 2006) as well as in metabolism

in context of the circadian rhythm (Cook et al., 2015); consistent

with this, it mapped to both the hijacked cytokine signaling and

immune subnetwork and the nuclear receptor and metabolism

subnetwork (Figures 2E and S2D). Although RORg expression

was low in normal murine pancreas (data not shown), it rose

dramatically in KPf/fC tumors. Within epithelial tumor cells,

RORg expression was highly enriched in stem cells relative to

non-stem cells (Figures 4A, S4C, and S4D), mapping to individ-

ual EpCAM+Msi+ cells in single-cell RNA-seq analysis (Fig-

ure S4E). RORg was also expressed in KPR172H/+C tumor cells

(not shown), suggesting it is active across models of pancreatic

cancer. Importantly, RORg expression in mouse models was

predictive of expression in human pancreatic cancer: thus,

although RORg expression was low in the normal human

pancreas and in pancreatitis, its expression increased signifi-

cantly in epithelial tumor cells with disease progression (Figures

4B, 4C, and S4F). Interestingly, RORg levels decreased with in-

hibition of IL-1R signaling, suggesting that the upstream regula-

tors of RORg in pancreatic cancer and in Th17 cells may be

shared (Figure S4G). Functionally, shRNA-mediated knockdown

(Figure S4H) confirmed the role of RORg identified by the genetic

CRISPR-based screen, as it decreased stem cell sphere forma-

tion in both KPR172H/+C and KPf/fC cells (Figures 4D and 4E). At a

cellular level, RORg inhibition led to increased cell death (Fig-

ure S4I), decreased proliferation (Figure S4I), and an ultimate

depletion of Msi+ stem cells (Figure 4F). Importantly, tumor cells

lacking RORg showed a striking defect in tumor initiation and

propagation in vivo, with an 11-fold reduction in final tumor vol-

ume (Figures 4G and S4J). Finally, analysis of KPf/fC mice

crossed to either RORg-null (Ivanov et al., 2006) or wild-type

controls revealed that targeted genetic deletion of RORg can

trigger an overall decrease in tumor burden; this ranged from

reduced tumor weight or cellularity to the presence of more

normal and benign PanIN lesions and reduced areas of adeno-

carcinoma in the pancreata (Figures 4H and 4I).

To define the transcriptional programs RORg controls in

pancreatic cancer cells, we used a combination of ChIP-seq

and RNA-seq and found that RORg knockdown led to extensive

changes in transcriptional programs key to driving cancer

growth: this included stem cell signals, such as Wnt, BMP, and

Fox (Figure 4J), and pro-tumorigenic signals, such as Hmga2

(Figure 4K). Further, 28% of stem cell super-enhancer-linked

genes were downregulated in cells lacking RORg (Figure 4L).

Consistent with this, ChIP-seq analysis of active chromatin

regions identified RORg binding sites as disproportionately

present in stem cell super-enhancers compared to other tran-

scription factors, such as CBFB, or even the pioneer factor

Sox9 (Figure 4M). Additional super-enhancer-linked stem cell

genes regulated by RORg included Msi2, Klf7, and Ehf (Figures

4N and 4O), potent oncogenic signals that can control cell fate.

Mechanistically, loss of RORg did not markedly impact the

stem cell super-enhancer landscape in two independent

KPf/fC-derived lines (Figures S4K–S4M), suggesting that it may

instead bind a pre-existing landscape to preferentially impact

transcriptional changes. These data collectively suggest that

RORg is an upstream regulator of a powerful super-enhancer-

linked oncogenic network in pancreatic cancer stem cells.

The finding that RORg is a key dependency in pancreatic

cancer was particularly exciting, as multiple inhibitors have

been developed to target this pathway in autoimmune disease

(Huh and Littman, 2012). Pharmacologic blockade of RORg

using the inverse agonist SR2211 (Kumar et al., 2012)

decreased sphere and organoid formation in both KPf/fC and

KPR172H/+C cells (Figures 5A–5D). To assess the impact of

the inhibitor in vivo, SR2211 was delivered, either alone or in

combination with gemcitabine, into immunocompetent

KPf/fC-derived, tumor-bearing mice (Figures 5E and S5A).

SR2211 significantly reduced tumor growth as a single agent

(Figures 5F and 5G); further, although gemcitabine alone had

no impact on the stem cell burden, SR2211 triggered a 3-fold

depletion in CD133+ and Msi+ cells and an 11-fold depletion

of CD133+ and 6-fold depletion of Msi2+ cells in combination

with gemcitabine (Figures 5H and 5I). This suggests the

exciting possibility that SR2211 can eradicate chemo-

therapy-resistant cells (Figures 5H and 5I). Finally, to assess

any impact on survival, we delivered the RORg inhibitor into

autochthonous, tumor-bearing KPf/fC mice; although none of

the vehicle-treated mice were alive 25 days after the initiation

of treatment, 75% of mice that received SR2211 were still

alive at this point and 50% were alive even at 45 days after

treatment initiation. SR2211 not only doubled median sur-

vival—18 days for vehicle-treated mice and 38.5 days for

SR2211-treated mice—but also led to a 6-fold reduction in

the risk of death (Figure 5J; hazard ratio [HR] = 0.16).

Hmga2, identified originally from the RNA-seq as a down-

stream target of RORg, was downregulated in pancreatic

epithelial cells following SR2211 delivery in vivo, suggesting

effective target engagement at midpoint during treatment,

although this was less apparent in end-stage tumors and

may explain why treated mice ultimately succumbed to dis-

ease (Figures S5B and S5C). Collectively, these data show

that pancreatic cancer stem cells are profoundly dependent

on RORg and suggest that its inhibition may lead to a signifi-

cant improvement in disease control. Further, the fact that its

impact on tumor burden was amplified several fold when

combined with gemcitabine suggests that it may synergize

with chemotherapy to more effectively target tumors that

remain refractory to therapy.

To visualize whether RORg blockade impacts tumor progres-

sion by targeting stem cells, SR2211 was delivered in REM2-

KPf/fC mice with late-stage autochthonous tumors and re-

sponses tracked via live imaging. In vehicle-treated mice, large

stem cell clusters could be readily identified throughout the

tumor based on GFP expression driven by the Msi reporter (Fig-

ures 5K and 5L). SR2211 led to a marked depletion of the major-

ity of large stem cell clusters within 1 week of treatment (Figures

5K and 5L), with no increased necrosis observed in surrounding

tissues. This unique spatio-temporal analysis suggests that stem

cell depletion is an early consequence of RORg blockade and

highlights the REM2-KPf/fC model as an effective platform to

assess the impact of new agents on therapy-resistant cells.

Cell 177, 1–15, April 18, 2019 7

Please cite this article in press as: Lytle et al., A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma, Cell (2019), https://
doi.org/10.1016/j.cell.2019.03.010



Because treatment with the inhibitor in immunocompetent

mice or in patients in vivo could have an impact on both cancer

cells and immune cells, we tested the effect of SR2211 in the

context of an immunocompromised environment. SR2211

significantly impacted growth of KPf/fC tumors in an immunode-

ficient background (Figures 6A and 6B), suggesting that inflam-

matory T cells were not necessary for its effect. Further, in

chimeric mice where wild-type tumors were transplanted into

Figure 4. The Immuno-regulatory Gene RORg Is a Critical Dependency of Pancreatic Cancer

(A) Rorc expression in stem and non-stem REM2-KPf/fC tumor cells; representative of three biological replicates.

(B) Representative images of RORg expression in normal adjacent human pancreas (left), PanINs (middle), and PDAC (right). RORg (green), E-cadherin (red), DAPI

(blue), scale bars represent 50 mm.

(C) Frequency of RORg+ cells within E-cadherin+ epithelial fraction in patient samples quantified by immunofluorescence; Normal adjacent, n = 3; pancreatitis,

n = 8; PanIN 1, n = 10; PanIN 2, n = 6; PDAC, n = 8.

(D and E) Impact of shRNA-mediated RORg inhibition on 3D growth of KPR172H/+C (D) and KPf/fC (E) cells, n = 3 per shRNA.

(F) Impact of shRNA-mediated RORg inhibition on Msi2-GFP stem cell content in KPf/fC cells in 3D culture (H), n = 3.

(G) Impact of shRNA-mediated RORg inhibition on flank tumor growth of KPf/fC cells, n = 4.

(H and I) Reduced tumor burden in Rorc�/�KP f/f C mice. Age-matched wild-type (WT) KP f/f C and Rorc�/�KP f/f C mice displayed reduced tumor cell number (H)

and reduced adenocarcinoma content (I); low-grade PanIN indicated with red arrow, PDAC indicated with black arrow, scale bars represent 100 mm; n = 3 mice

from 8–10 weeks of age; representative plots and images from matched mice are displayed.

(J and K) Relative RNA expression of stem cell programs (J) and pro-tumorigenic factors (K) in KPf/fC cells transduced with shCtrl or shRorc. Red, over-rep-

resented; blue, under-represented; color denotes fold change.

(L) Venn diagram of genes downregulated with RORg loss (q < 0.05, purple). Stem-specific super-enhancer-associated genes (green) and genes associated with

H3K27ac peaks with RORg consensus binding sites (orange) are shown.

(M) Number of RORg, CBFB, and Sox9 binding sites found in stem cell super-enhancers relative to random genomic background of equivalent base-pair

coverage (p < 0.05).

(N) Relative RNA expression of super-enhancer-associated oncogenes in KPf/fC cells transduced with shCtrl or shRorc. Red, over-represented; blue, under-

represented; color denotes fold change from median values.

(O) H3K27ac ChIP-seq reads for genes marked by stem cell super-enhancers and downregulated in RORg-depleted KPf/fC cells.

Data represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 by Student’s t test or one-way ANOVA. See also Figure S4.
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either wild-type or RORg-null recipients, tumors grew equiva-

lently (Figures 6C and 6D), suggesting that loss of RORg in

only the immune cells (such as Th17) and microenvironment

has no detectable impact on tumor growth. Finally, we delivered

SR2211 into these chimeric mice to test whether RORg antago-

nists may influence tumor growth via Th17 cells and found that

the impact of SR2211 on tumor growth, cellularity, and stem

cell content was equivalent in chimeric wild-type and RORg-

recipient mice (Figures 6E–6L). These data collectively suggest

that most of the observed effect of RORg inhibition is tumor

cell specific and not indirect through an environmental and/or

Th17 dependence on RORg (Figures 6E–6L, S6A, and S6B).

Consistent with a primarily epithelial cell impact, we did not

detect any significant impact of SR2211 on non-neoplastic cells,

such as CD45+, CD31+, myeloid derived suppressor cell

(MDSC), macrophage, dendritic, or T cells within the tumors at

early time points (Figures S6C–S6M). These data do not pre-

clude the possibility that RORg inhibitors may act on both tumor

Figure 5. Pharmacologic Targeting of RORg Impairs Progression and Improves Survival in Mouse Models of Pancreatic Cancer

(A and B) 3D growth of KPf/fC cells (A) and KPR172H/+C cells (B) in the presence of the SR2211 or vehicle (n = 3).

(C and D) KPf/fC organoid formation in the presence of SR2211 or vehicle. Representative images (C) and quantification (D) are shown; scale bars repre-

sent 100 mm.

(E–I) Analysis of flank KPf/fC tumor-bearing mice treated with SR2211 or vehicle for 3 weeks. Strategy (E) is shown. Total live cells (F), total EpCAM+ tumor cells

(G), total EpCAM+/CD133+ stem cells (H), and total EpCAM+/Msi2+ stem cells (I) are shown (n = 4 vehicle; n = 2 vehicle+gemcitabine; n = 4 SR2211; n = 3

SR2211+gemcitabine).

(J) Survival of KPf/fC mice treated daily with vehicle (gray) or SR2211 (black; p = 0.051; hazard ratio = 0.16; median survival: vehicle = 18 days, SR2211 =

38.5 days).

(K) Live imaging of REM2-KPf/fC mice treated with vehicle or SR2211 for 8 days (n = 2). Msi2-reporter (green), VE-cadherin (magenta), and Hoechst (blue) are

shown; Msi2-reporter+ stem cells, gray box; scale bars represent 200 mm.

(L) Quantification of stem cell clusters from REM2-KPf/fC live imaging (n = 2; 6–10 frames analyzed per mouse).

Data represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t test or one-way ANOVA. See also Figure S5.
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cells and immune cells in the human disease if more inflamma-

tory T cells were present.

To further explore the functional relevance of RORg to human

pancreatic cancer, RORg was inhibited through both genetic

and through pharmacologic means in human PDAC cells.

CRISPR-based disruption of RORg led to an �3- to 9-fold loss

of colony formation in human fast growing (FG) PDAC cells (Fig-

ure 7A). To test whether RORg inhibition could block human tu-

mor growth in vivo, we transplanted human PDAC cells into the

flanks of immunocompromised mice and allowed tumors to

become palpable before beginning treatment (Figure 7B).

Compared to vehicle treatment, SR2211 delivery was highly

effective and tumor growth was essentially extinguished with a

nearly 6-fold reduction in growth in mice receiving SR2211 (Fig-

ure 7C). Primary patient tumor cells were also remarkably sensi-

tive to RORg blockade, with an �300-fold reduction in total

organoid volume following SR2211 treatment (Figures 7D–7F)

and a severe reduction of in vivo tumor growth in primary pa-

tient-derived xenografts (Figure 7G). Mechanistically, RNA-seq

and Gene Ontology (GO) analysis of human FG and KPf/fC cells

identified a set of cytokines and growth factors as key common

RORg-driven programs: thus, semaphorin 3c, its receptor

neuropilin2, oncostatinM, and angiopoietin, all highly pro-tumor-

igenic factors harboring RORg-binding motifs, were shared tar-

gets of RORg in mouse and human pancreatic cancer (Figures

S7A–S7D). The dependence of human pancreatic tumors on

RORg function are exciting in light of the fact that genomic ampli-

fication of RORC occurs in �12% of pancreatic cancer patients

(Figure 7H). This raises the possibility that RORC status could

serve as a biomarker for patients who may be particularly

responsive to RORC inhibition.

Lastly, to determine whether expression of RORg could

serve as a prognostic for specific clinicopathologic features,

we performed RORg immunohistochemistry on tissue

Figure 6. RORg Is a Direct Dependency of Pancreatic Tumor Epithelial Cells

(A and B) Analysis of flank KPf/fC tumor-bearing NOD scid gamma (NSG) mice treated with SR2211 or vehicle for 2 weeks. Strategy (A) is shown. Flank tumor

growth following treatment with vehicle or SR2211 for 2 weeks (B) is shown. Fold change in tumor volume relative to volume at enrollment is shown (n = 4–6).

(C and D) Strategy (C). Growth of KPf/fC flank tumors in WT or RORg�/� recipient mice (D; n = 3–4).

(E–L) Strategy (E). Flank tumor growth inWT recipients treated with vehicle or SR2211 for 2 weeks (F) is shown. Flank tumor growth in RORg�/� recipients treated

with vehicle or SR2211 for 2 weeks (G) is shown. Tumor mass (H), total live cells (I), total EpCAM+ tumor cells (J), total EpCAM+/CD133+ stem cells (K), and total

Th17 cells (L) in WT and RORg�/� recipients are shown (n = 5–7).

Data represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 by Student’s t test or one-way ANOVA. See also Figure S6.
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microarrays from a clinically annotated retrospective cohort of

116 PDAC patients (Table S6). For 69 patients, matched

pancreatic intraepithelial neoplasia (PanIN) lesions were avail-

able. RORg protein was detectable (cytoplasmic expression

only denoted as low or cytoplasmic and nuclear expression

denoted as high; Figure 7I) in 113 PDAC cases and 55 PanIN

cases, respectively, and absent in 3 PDAC cases and 14

PanIN cases, respectively. Compared to cytoplasmic expres-

sion, nuclear RORg expression in PDAC cases was signifi-

cantly correlated with higher pathological tumor (pT) stages

at diagnosis (Figure 7J). In addition, RORg expression in PanIN

lesions was positively correlated with lymphatic vessel inva-

sion (L1; Figure 7K) and lymph node metastasis (pN1 and

pN2; Figure 7L) by the invasive carcinoma. These results indi-

cate that RORg expression in PanIN lesions and nuclear RORg

localization in invasive carcinoma could be useful markers to

predict PDAC aggressiveness.

DISCUSSION

It is an unfortunate truth that the most common outcome for

pancreatic cancer patients following a response to cytotoxic

therapy is not cure but eventual disease progression and death

driven by drug-resistant, stem-cell-enriched populations (Fox

et al., 2016; Van den Broeck et al., 2013). The work we report

here has allowed us to develop a comprehensive molecular

Figure 7. RORg Is Required for Human Pancreatic Cancer Growth and Predicts Advanced Disease

(A) Human FG colony formation after RORC CRISPR knockdown; n = 5.

(B) Representative images of RORg expression in human FG tumors, RORg (green), E-cadherin (red), and DAPI (blue). Scale bars represent 50 mm.

(C) Human FG tumor growth in mice treated with gemcitabine and either vehicle or SR2211 for 2.5 weeks. Tumor volume fold change is relative to volume at

enrollment.

(D–F) Primary patient organoid growth in the presence of vehicle or SR2211. Representative images of organoids in Matrigel (D; scale bars represent 100 mm),

following recovery from Matrigel (E; scale bars represent 50 mm), and quantification of organoid circumference (F, left) or volume (F, right) are shown.

(G) Growth of primary patient-derived xenografts treated with vehicle or SR2211 for 1.5 weeks; (n = 4).

(H) RORC amplification in tumors of patients diagnosed with various malignancies.

(I–L) Representative TMAs of PDAC and PanINs illustrating scoring for negative, cytoplasmic, and cytoplasmic + nuclear RORg staining (I). Correlation between

RORg staining and tumor stage (J), lymphatic invasion (K), and lymph node status (L) is shown.

Data represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001 by Student’s t test or one-way ANOVA. See also Figure S7.
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map of the core dependencies of pancreatic cancer stem cells

by integrating their epigenetic, transcriptomic, and functional

genomic landscape. This dataset thus provides a novel

resource for understanding therapeutic resistance and relapse

and for discovering new vulnerabilities in pancreatic cancer.

As an example, the MEGF family of orphan receptors repre-

sents a potentially actionable family of adhesion GPCRs, as

this class of signaling receptors has been considered drug-

gable in cancer and other diseases (Lappano and Maggiolini,

2011). Importantly, our epigenetic analyses revealed a signifi-

cant relationship between super-enhancer-associated genes

and functional dependencies in stem cell conditions; stem-

cell-unique, super-enhancer-associated genes were more likely

to drop out in the CRISPR screen in stem cell conditions

compared to super-enhancer-associated genes in non-stem

cells (Figure S7D). This provides additional evidence for the

epigenetic and transcriptomic link to functional dependencies

in cancer stem cells and further supports previous findings

that super-enhancer-linked genes may be more important for

maintaining cell identity and more sensitive to perturbation

(Whyte et al., 2013).

From the screens presented here, we identified an unex-

pected dependence of KPf/fC stem cells on inflammatory and im-

mune mediators, such as the CSF1R/IL-34 axis and IL-10R

signaling. Although these have been previously thought to act

primarily on immune cells in the microenvironment (Guillonneau

et al., 2017; Wang et al., 2019), our data suggest that stem cells

may have evolved to co-opt this cytokine-rich milieu, allowing

them to resist effective immune-based elimination. These find-

ings also suggest that agents targeting CSF1R, which are under

investigation for pancreatic cancer (Sankhala et al., 2017), may

act not only on the tumor microenvironment but also directly

on pancreatic epithelial cells themselves. Our studies also raise

the possibility that therapies designed to activate the immune

system to attack tumorsmay have effects on tumor cells directly:

just as we have learned chemotherapy can kill tumor cells but

may also impair the immune system, therapies designed to acti-

vate the immune system, such as IL-10, may also promote the

growth of tumor cells. This dichotomy of action will need to be

considered in order to better optimize immunomodulatory treat-

ment strategies.

A major new discovery driven by the development of the

network map was the identification of RORg as a key immuno-

regulatory pathway hijacked in pancreatic cancer. This, together

with prior work implicating RORg in prostate cancer models

(Wang et al., 2016), suggests that this pathway may not be

restricted to pancreatic cancer but may be more broadly utilized

in other epithelial cancers. Interestingly, although cytokines,

such as IL-17, IL-21, IL-22, and CSF2, are known targets of

RORg in Th17 cells, none of these were downregulated in

Rorc-deficient pancreatic tumor cells. The fact that RORg regu-

lated potent oncogenes marked by super-enhancers in stem

cells suggests it may be critical for defining the stem cell state

in pancreatic cancer. The basis of this intriguing epithelial-spe-

cific activity of RORg will be an important area for future

exploration. In addition, the network of genes impacted by

RORg inhibition included other immune modulators, such as

CD47, raising the possibility that it may also mediate interaction

with the surrounding niche and immune system cells. Finally, one

particularly exciting aspect of this work is the identification of

RORg as a potential therapeutic target in pancreatic cancer.

Given that inhibitors of RORg are currently in phase II trials for

autoimmune diseases (Gege, 2016), our findings suggest that re-

positioning these agents as pancreatic cancer therapies war-

rants further investigation.
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H.A., and Young, R.A. (2013). Super-enhancers in the control of cell identity

and disease. Cell 155, 934–947.

Hu, Y., and Smyth, G.K. (2009). ELDA: extreme limiting dilution analysis for

comparing depleted and enriched populations in stem cell and other assays.

J. Immunol. Methods 347, 70–78.

Huh, J.R., and Littman, D.R. (2012). Small molecule inhibitors of RORgt: target-

ing Th17 cells and other applications. Eur. J. Immunol. 42, 2232–2237.

Ivanov, I.I., McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille,

J.J., Cua, D.J., and Littman, D.R. (2006). The orphan nuclear receptor

RORgammat directs the differentiation program of proinflammatory IL-17+ T

helper cells. Cell 126, 1121–1133.

Kawaguchi, Y., Cooper, B., Gannon, M., Ray, M., MacDonald, R.J., and

Wright, C.V. (2002). The role of the transcriptional regulator Ptf1a in converting

intestinal to pancreatic progenitors. Nat. Genet. 32, 128–134.

Cell 177, 1–15, April 18, 2019 13

Please cite this article in press as: Lytle et al., A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma, Cell (2019), https://
doi.org/10.1016/j.cell.2019.03.010

http://refhub.elsevier.com/S0092-8674(19)30272-7/sref1
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref1
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref2
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref2
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref2
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref2
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref3
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref3
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref3
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref3
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref4
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref4
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref5
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref5
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref5
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref6
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref6
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref7
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref7
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref7
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref7
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref7
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref8
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref8
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref8
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref8
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref8
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref9
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref9
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref9
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref10
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref10
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref10
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref10
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref11
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref11
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref11
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref12
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref12
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref12
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref13
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref13
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref13
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref13
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref14
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref14
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref15
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref15
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref15
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref15
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref16
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref16
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref16
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref16
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref17
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref17
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref17
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref17
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref18
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref18
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref19
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref19
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref20
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref20
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref20
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref20
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref21
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref21
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref21
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref21
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref22
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref22
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref22
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref22
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref22
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref23
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref23
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref23
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref24
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref24
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref24
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref25
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref25
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref26
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref26
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref26
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref26
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref27
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref27
http://refhub.elsevier.com/S0092-8674(19)30272-7/sref27


Kawamoto, M., Ishiwata, T., Cho, K., Uchida, E., Korc, M., Naito, Z., and Tajiri,

T. (2009). Nestin expression correlates with nerve and retroperitoneal tissue in-

vasion in pancreatic cancer. Hum. Pathol. 40, 189–198.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L.

(2013). TopHat2: accurate alignment of transcriptomes in the presence of in-

sertions, deletions and gene fusions. Genome Biol. 14, R36.

Kopp, J.L., von Figura, G., Mayes, E., Liu, F.F., Dubois, C.L., Morris, J.P.,

4th, Pan, F.C., Akiyama, H., Wright, C.V., Jensen, K., et al. (2012). Iden-

tification of Sox9-dependent acinar-to-ductal reprogramming as the prin-

cipal mechanism for initiation of pancreatic ductal adenocarcinoma. Can-

cer Cell 22, 737–750.

Kumar, N., Lyda, B., Chang, M.R., Lauer, J.L., Solt, L.A., Burris, T.P., Kame-

necka, T.M., and Griffin, P.R. (2012). Identification of SR2211: a potent syn-

thetic RORg-selective modulator. ACS Chem. Biol. 7, 672–677.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with

Bowtie 2. Nat. Methods 9, 357–359.

Lappano, R., and Maggiolini, M. (2011). G protein-coupled receptors: novel

targets for drug discovery in cancer. Nat. Rev. Drug Discov. 10, 47–60.

Li, C., Heidt, D.G., Dalerba, P., Burant, C.F., Zhang, L., Adsay, V., Wicha, M.,

Clarke, M.F., and Simeone, D.M. (2007). Identification of pancreatic cancer

stem cells. Cancer Res. 67, 1030–1037.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Sub-

group (2009). The sequence alignment/map format and SAMtools. Bioinfor-

matics 25, 2078–2079.

Li, C., Wu, J.J., Hynes, M., Dosch, J., Sarkar, B., Welling, T.H., Pasca di

Magliano, M., and Simeone, D.M. (2011). c-Met is a marker of pancreatic

cancer stem cells and therapeutic target. Gastroenterology 141, 2218–

2227.e5.

Li, W., Xu, H., Xiao, T., Cong, L., Love, M.I., Zhang, F., Irizarry, R.A., Liu, J.S.,

Brown, M., and Liu, X.S. (2014). MAGeCK enables robust identification of

essential genes from genome-scale CRISPR/Cas9 knockout screens.

Genome Biol. 15, 554.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

chicken anti-GFP Abcam Cat# ab13970, RRID:AB_300798

Rabbit anti-RORg Thermo Fisher Cat# PA5-23148, RRID:AB_2540675

Mouse anti-E-Cadherin BD Biosciences Cat# 610181, RRID:AB_397580

Anti Mouse Pan-Keratin Abcam, ab8068 Cat# ab8068, RRID:AB_306238

Anti Celsr1 EMD Millipore Cat# ABT119, RRID:AB_11215810

Anti Celsr2 BosterBio Cat# A06880

Anti-Hmga2 Abcam Cat# ab52039, RRID:AB_880470

Anti-mouse EpCAM-APC eBioscience Cat# 17-5791-82, RRID:AB_2716944

Anti-mouse CD133-PE eBioscience Cat# 12-1331-82, RRID:AB_465849

Anti-mouse CD45-PE/Cy7 eBioscience Cat# 25-0451-82, RRID:AB_2734986

Anti mouse CD31-PE BD Bioscience Cat# 12-0311-83, RRID:AB_465633

Anti-mouse Gr-1-FITC eBioscience Cat# 11-5931-82, RRID:AB_465314

Anti-mouse F4/80-PE Invitrogen Cat# 12-4801-82, RRID:AB_465923

Anti-mouse CD11b-APC Affymetrix Cat# 17-0112-83, RRID:AB_469344

Anti-mouse CD11c-BV421 Biolegend Cat# 117329, RRID:AB_10897814

Anti-mouse CD4-FITC eBioscience Cat# 11-0042-82, RRID:AB_464896

Anti mouse CD4-Pacific blue Biolegend) Cat# 116007, RRID:AB_11147758

Anti-mouse CD8-PE eBioscience Cat# 12-0081-82, RRID:AB_465530

Anti-mouse IL-17-APC Biolegend Cat# 506916, RRID:AB_536018

Anti-mouse PDGFRa-BV421 eBioscience Cat# 566293, RRID:AB_2739666

Anti-H3K27Ac Abcam Cat# ab4729, RRID:AB_2118291

Anti-BrdU-APC BD Bioscience Cat# 552598, RRID: N/A

Anti-Annexin V-APC eBioscience Cat# 88-8007-72, RRID:AB_2575165

Bacterial and Virus Strains

Chemically competent One shot Stbl3 Invitrogen Cat# C737303

Biological Samples

Patient-derived pancreatic cancer

xenografts and organoid lines

Moores Cancer Center,

University of California

San Diego

N/A

Chemicals, Peptides, and Recombinant Proteins

SR2211 Cayman Chemicals Cat# 11972

SR2211 Tocris Cat# 4869

Gemcitabine Sigma Cat# G6423

Critical Commercial Assays

NEBNext Ultra II DNA library prep kit New England Biolabs Cat# E7645S and Cat# 7600S

NucleoBond Xtra Maxi DNA purification kit Macherey-Nagel Cat# 740416.50

KAPA HiFi HotStart ReadyMIX KAPA Biosystems Cat# KK2602

QIAGEN Blood and Cell Culture DNA Midi Kit QIAGEN #13343 Cat# 13343

Chromium Single Cell 30 GEM library and

gel bead kit v2

10x Genomics Cat# PN-120237

RNeasy Micro Plus kit QIAGEN Cat# 74034

Illumina’s TruSeq Stranded mRNA Sample

Prep Kit

Illumina Cat# 20020594

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

NEBNext� Ultra II Directional RNA Library

Prep Kit for Illumina�
New England Biolabs Cat# E7760S

Superscript III Invitrogen Cat# 18080044

Deposited Data

Primary Msi2+ and Msi2- KPf/fC H3K27ac

ChIP-seq data

https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE113712

GSE113712

Custom code for CRISPR screen analysis https://github.com/ucsd-ccbb/

crispr_network_analysis.

N/A

Primary Msi2+ and Msi2- KPf/fC RNA-seq data https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE114906

GSE114906

Genome-wide CRISPR screen data https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE114914

GSE114914

shRorc versus shControl KPf/fC RNA-seq data https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE126538

GSE126538

shRorc versus shControl KPf/fC H3K27ac

ChIP-seq data

https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE126536

GSE126536

sgRorc versus sgNT human PDAC FG RNA-seq https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE126537

GSE126537

Single-cell sequencing of KPR172HC tumors https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE126388

GSE126388

Single-cell sequencing of KPf/fC tumors https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE126539

GSE126539

Experimental Models: Cell Lines

Human: HEK293 T cells American Type Culture Collection Cat# ATCC CRT-3216

Human: FG Cells Gifted by Dr. Andrew Lowy,

Morgan et al., 1980

RRID:CVCL_8196

Mouse: KPR172HC This paper N/A

Mouse: KPf/fC This paper N/A

Mouse: REM2-KPf/fC This paper N/A

Experimental Models: Organisms/Strains

Mouse: LSL-KrasG12D: B6.129S4-Krastm4Tyj/J The Jackson Laboratory JAX: 008179

Mouse: p53flox/flox: B6.129P2- Trp53tm1Brn/J The Jackson Laboratory JAX: 008462

Mouse: RORgt-knockout: B6.127P2-

Rorctm1Litt/J

The Jackson Laboratory JAX: 007571

Mouse: REM2 (Msi2eGFP/+) reporter Fox et al., 2016 N/A

Mouse: Ptf1a-Cre [Ptf1a < tm1.1(cre)Cvw > ] Kawaguchi et al., 2002 MGI:2387812

Mouse: LSL-R172H p53; Trp53R172H Olive et al., 2004, Gifted by

Dr. Tyler Jacks

JAX: 008652

Mouse: NOD/SCID; NOD.CB17-Prkdcscid/J The Jackson Laboratory JAX: 001303

Mouse: NSG; NOD.Cg-PrkdcscidIL2rgtm1Wji/SzJ The Jackson Laboratory JAX: 005557

Oligonucleotides

shRNA targeting sequences- see Table S7 This paper N/A

All primer sequences, see Table S7 This paper N/A

Recombinant DNA

mouse GeCKO CRISPRv2 knockout

pooled library

Sanjana et al., 2014 Addgene GeCKO v2: Cat# 1000000052

pRSV/REV Dull et al., 1998 Addgene pRSV-Rev: Cat# 12253

pMDLg/pRRE Dull et al., 1998 Addgene pMDLg/pRRE: Cat#12251

(Continued on next page)

Cell 177, 1–15.e1–e13, April 18, 2019 e2

Please cite this article in press as: Lytle et al., A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma, Cell (2019), https://
doi.org/10.1016/j.cell.2019.03.010

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113712
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113712
https://github.com/ucsd-ccbb/crispr_network_analysis
https://github.com/ucsd-ccbb/crispr_network_analysis
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114906
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114906
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114914
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114914
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126538
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126538
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126536
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126536
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126537
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126537
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126388
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126388
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126539
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126539


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pHCMVG Sena-Esteves et al., 2004 Addgene pHCMV-EcoEnv: Cat#15802

pLV-hU6-mPGK-red Biosettia Sort-B15

Software and Algorithms

Kallisto Bray et al., 2016 https://pachterlab.github.io/kallisto/

DESeq2 Anders and Huber, 2010 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Limma Ritchie et al., 2015 http://bioconductor.org/packages/

release/bioc/html/limma.html

Gene Set Enrichment Analysis (GSEA) Subramanian et al., 2005 http://software.broadinstitute.org/

gsea/index.jsp

Bioconductor GSVA Hänzelmann et al., 2013 https://bioconductor.org/packages/

release/bioc/html/GSVA.html

Bowtie2 aligner version 2.1.0 Langmead and Salzberg, 2012 https://sourceforge.net/projects/bowtie-

bio/files/bowtie2/2.1.0/

Samtools, version 0.1.16 Li et al., 2009 https://sourceforge.net/projects/samtools/

files/samtools/0.1.16/

Picard tools, version 1.98 Broad Institute https://broadinstitute.github.io/picard/

BEDTools, version 2.17.0 Aaron Quinlan Lab https://github.com/genomecuration/JAMg/

tree/master/3rd_party/bedtools-2.17.0

SICER-df algorithm version 1.1 Zang et al., 2009 https://home.gwu.edu/�wpeng/Software.htm

Tophat2 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/index.shtml

Cufflinks, Cuffdiff Trapnell et al., 2012 http://cole-trapnell-lab.github.io/cufflinks/manual/

ChippeakAnno Zhu et al., 2010 http://bioconductor.org/packages/release/

bioc/html/ChIPpeakAnno.html

WebGestalt Wang et al., 2017 http://www.webgestalt.org/

FastQC Babraham Bioinformatics (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/)

Cutadapt v1.11 Martin, 2011 https://github.com/marcelm/cutadapt

PinAPL-Py webtool Spahn et al., 2017 https://github.com/LewisLabUCSD/PinAPL-Py

STRING mouse interactome Szklarczyk et al., 2015 https://string-db.org/

VisJS2jupyter, version 0.1.16 Rosenthal et al., 2018 https://pypi.org/project/visJS2jupyter/

Seurat FindClusters Macosko et al., 2015 https://github.com/satijalab/seurat

SuperCT Xie et al., 2018 https://sct.lifegen.com/register

BaseSpace Illumina https://www.basespace.illumina.com

STAR aligner Dobin et al., 2013 https://github.com/alexdobin/STAR

ImageJ 1.51 s National Institute of Health https://imagej.nih.gov/ij/download.html

Leica LAS AF 1.8.2 software Leica https://leica-las-af-lite.software.informer.com/

GraphPad Prism software version 7.0d GraphPad Software Inc. https://www.graphpad.com/scientific-

software/prism/

cBioPortal cBioportal http://www.cbioportal.org

FlowJo software, v9.9.6 Tree Star https://s3-us-west-2.amazonaws.com/

fjinstallers/FlowJo_9.9.6.zip

Other (Equipment)

Covaris S2 ultrasonicator Covaris Inc. N/A

HiSeq 2500 system Illumina N/A

HiSeq 4000 system Illumina N/A

NextSeq 500 system Illumina N/A

iCycler Real-Time PCR System Biorad N/A

Leica TCS SP5 II Confocal System Leica Microsystems N/A

Leica SP5 Confocal System Leica Microsystems N/A

FACSAria III Becton Dickinson N/A
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tannish-

tha Reya (treya@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
REM2 (Msi2eGFP/+) reporter mice were generated as previously described (Fox et al., 2016); all of the reporter mice used in experi-

ments were heterozygous for the Msi2 allele. The LSL-KrasG12Dmouse, B6.129S4-Krastm4Tyj/J (Stock No: 008179), the p53flox/flox

mouse, B6.129P2- Trp53tm1Brn/J (Stock No: 008462), and the RORg -knockout mouse (Stock No: 007571), were purchased from The

Jackson Laboratory. Dr. Chris Wright provided Ptf1a-Cre mice as previously described (Kawaguchi et al., 2002). LSL-R172H mutant

p53, Trp53R172H mice were provided by Dr. Tyler Jacks as previously described (Olive et al., 2004) (JAX Stock No: 008183). The mice

listed above are immunocompetent, with the exception of RORg -knockout mice which are known to lack TH17 T cells as described

previously (Ivanov et al., 2006); thesemice weremaintained on antibiotic water (sulfamethoxazole and trimethoprim) when enrolled in

flank transplantation and drug studies as outlined below. Immune compromised NOD/SCID (NOD.CB17-Prkdcscid/J, Stock No:

001303) and NSG (NOD.Cg-PrkdcscidIL2rgtm1Wji/SzJ, Stock No: 005557) mice purchased from The Jackson Laboratory. All mice

were specific-pathogen free, and bred and maintained in the animal care facilities at the University of California San Diego. Animals

had access to food and water ad libitum, and were housed in ventilated cages under controlled temperature and humidity with a 12

hour light-dark cycle. All animal experiments were performed according to protocols approved by the University of California San

Diego Institutional Animal Care and Use Committee. No sexual dimorphism was noted in all mouse models. Therefore, males and

females of each strain were equally used for experimental purposes and both sexes are represented in all datasets. All mice enrolled

in experimental studies were treatment-naive and not previously enrolled in any other experimental study.

Both REM2-KPf/fC and WT-KPf/fC mice (REM2; LSL-KrasG12D/+; Trp53f/f; Ptf1a-Cre and LSL-KrasG12D/+, ; Trp53f/f; Ptf1a-Cre

respectively) were used for isolation of tumor cells, establishment of primary mouse tumor cell and organoid lines, and autochtho-

nous drug studies as described below. REM2-KPf/fC andKPf/fCmicewere enrolled in drug studies between 8 to 11weeks of age, and

were used for tumor cell sorting and establishment of cell lines when they reached end-stage disease between 10 and 12 weeks of

age. REM2-KPf/fC mice were used for in vivo imaging studies between 9.5-10.5 weeks of age. KPR172HC (LSL-KrasG12D/+, ;

Trp53R172h/+; Ptf1a-Cre) mice were used for cell sorting and establishment of tumor cell lines when they reached end-stage disease

between 16-20 weeks of age. In some studies, KPf/fC-derived tumor cells were transplanted into the flanks of immunocompetent

littermates between 5-8 weeks of age. Littermate recipients (WT or REM2-LSL-KrasG12D/+, ; Trp53f/f or Trp53f/f mice) do not develop

disease or express Cre. NOD/SCID and NSGmice were enrolled in flank transplantation studies between 5 to 8 weeks of age; KPf/fC

derived cell lines and human FG cells were transplanted subcutaneously for tumor propagation studies in NOD/SCID recipients and

patient-derived xenografts and KPf/fC derived cell lines were transplanted subcutaneously in NSG recipients as described in

detail below.

Human and mouse pancreatic cancer cell lines
Mouse primary pancreatic cancer cell lines and organoids were established from end-stage, treatment-naive KPR172HC andWT- and

REM2-KPf/fC mice as follows: tumors from endpoint mice (10-12 weeks of age for KPf/fC or 16-20 weeks of age for KPR172HC mice)

were isolated and dissociated into single cell suspension as described below. Cells were then either plated in 3D sphere or organoid

culture conditions detailed below, or plated in 2D in 1x DMEM containing 10% FBS, 1x pen/strep, and 1x non-essential amino acids.

At the first passage in 2D, cells were collected and resuspended in HBSS (GIBCO, Life Technologies) containing 2.5%FBS and 2mM

EDTA, then stainedwith FC block followed by 0.2 mg/106 cells anti-EpCAMAPC (eBioscience). EpCAM+ tumor cells were sorted then

re-plated for at least one additional passage. To evaluate any cellular contamination and validate the epithelial nature of these lines,

cells were analyzed by flow cytometry again at the second passage for markers of blood cells (CD45-PeCy7, eBioscience), endothe-

lial cells (CD31-PE, eBioscience), and fibroblasts (PDGFR-PacBlue, Biolegend). Cell lines were derived from both female and male

KPR172HC andWT- and REM2-KPf/fC mice equivalently; both sexes are equally represented in the cell-based studies outlined below.

Functional studies were performed using cell lines between passage 2 and passage 6. Human FG cells were originally derived from a

PDACmetastasis and have been previously validated and described (Morgan et al., 1980). Patient-derived xenograft cells and orga-

noids were derived from originally-consented (now deceased) PDAC patients and use was approved by UCSD’s IRB; cells were de-

identified and therefore no further information on patient status, treatment or otherwise, is available. FG cell lines were cultured in 2D

conditions in 1x DMEM (GIBCO, Life Technologies) containing 10% FBS, 1x pen/strep (GIBCO, Life Technologies), and 1x non-

essential amino acids (GIBCO, Life Technologies). 3D in vitro culture conditions for all cells and organoids are detailed below.

Patient cohort for PDAC tissue microarray
The PDAC patient cohort and corresponding TMAs used for RORg immunohistochemical staining and analysis have been reported

previously (Wartenberg et al., 2018). Patient characteristics are detailed in Table S6. Briefly, a total of 4 TMAs with 0.6 mm core

size was constructed: three TMAs for PDACs, with samples from the tumor center and invasive front (mean number of spots per
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patient: 10.5, range: 2-27) and one TMA for matching PanINs (mean number of spots per patient: 3.7, range: 1-6). Tumor samples

from 116 patients (53 females and 63 males; mean age: 64.1 years, range: 34-84 years) with a diagnosis of PDAC were included.

Matched PanIN samples were available for 69 patients. 99 of these patients received some form of chemotherapy; 14 received radio-

therapy. No sexual dimorphism was observed in any of the parameters assessed, including overall survival (p = 0.227), disease-free

interval (p = 0.3489) or RORg expression in PDAC (p = 0.9284) or PanINs (p = 0.3579). The creation and use of the TMAs were re-

viewed and approved by the Ethics Committee at the University of Athens, Greece, and the University of Bern, Switzerland, and

included written informed consent from the patients or their living relatives.

METHOD DETAILS

In vitro and in vivo experimental strategies
Tissue dissociation, cell isolation, and FACS analysis

Mouse pancreatic tumors were washed inMEM (GIBCO, Life Technologies) and cut into 1-2mmpieces immediately following resec-

tion. Tumor pieces were collected into a 50mL Falcon tube containing 10mLGey’s balanced salt solution (Sigma), 5mg Collagenase

P (Roche), 2 mg Pronase (Roche), and 0.2 mg DNase I (Roche). Samples were incubated for 20 minutes at 37�C, then pipetted up and

down 10 times and returned to 37�C. After 15 more minutes, samples were pipetted up and down 5 times, then passaged through a

100 mm nylon mesh (Corning). Red blood cells were lysed using RBC Lysis Buffer (eBioscience) and the remaining tumor cells were

washed, then resuspended in HBSS (GIBCO, Life Technologies) containing 2.5% FBS and 2 mM EDTA for staining, FACS analysis,

and cell sorting. Analysis and cell sorting were carried out on a FACSAria III machine (Becton Dickinson), and data were analyzed with

FlowJo software (Tree Star). For analysis of cell surface markers by flow cytometry, 5x105 cells were resuspended in HBSS contain-

ing 2.5% FBS and 2 mM EDTA, then stained with FC block followed by 0.5 mL of each antibody. For intracellular staining, cells were

fixed and permeabilized using the BrdU flow cytometry kit (BD Biosciences); Annexin V apoptosis kit was used for analysis of

apoptotic cells (eBioscience). The following rat antibodies were used: anti-mouse EpCAM-APC (eBioscience), anti-mouse

CD133-PE (eBioscience), anti-mouse CD45-PE and PE/Cy7 (eBioscience), anti-mouse CD31-PE (BD Bioscience), anti-mouse Gr-

1-FITC (eBioscience), anti-mouse F4/80-PE (Invitrogen), anti-mouse CD11b-APC (Affymetrix), anti-mouse CD11c-BV421 (Bio-

legend), anti-mouse CD4-FITC (eBioscience) and CD4-Pacific blue (Bioglegend), anti-mouse CD8-PE (eBioscience), anti-mouse

IL-17-APC (Biolegend), anti-mouse BrdU-APC (BD Biosciences), and anti-mouse Annexin-V-APC (eBioscience). Propidium-iodide

(Life Technologies) was used to stain for dead cells.

In vitro growth assays

We describe below the distinct growth assays used for pancreatic cancer cells. Colony formation is an assay in Matrigel (thus

adherent/semi-adherent conditions), while tumorsphere formation is an assay in non-adherent conditions. We have found that

cell types from different sources grow better in different conditions. For example, the murine KPR172H/+C and the human FG cell lines

growmuch better in Matrigel, while KPf/fC cell lines often grow well in non-adherent, sphere conditions (though they can also grow in

Matrigel).

Pancreatic tumorsphere formation assay

Pancreatic tumorsphere formation assayswere performed andmodified fromRovira et al. (2010). Briefly, low-passage (< 6 passages)

WT or REM2-KPf/fC cell lines were infected with lentiviral particles containing shRNAs; positively infected (red) cells were sorted 72

hours after transduction. 100-300 infected cells were suspended in tumorsphere media: 100 mL DMEM F-12 (GIBCO, Life Technol-

ogies) containing 1x B-27 supplement (GIBCO, Life Technologies), 3% FBS, 100 mMB-mercaptoethanol (GIBCO, Life Technologies),

1x non-essential amino acids (GIBCO, Life Technologies), 1x N2 supplement (GIBCO, Life Technologies), 20 ng/ml EGF (GIBCO, Life

Technologies), 20 ng/ml bFGF2 (GIBCO, Life Technologies), and 10 ng/ml ESGROmLIF (Thermo Fisher). Cells inmedia were plated in

96-well ultra-low adhesion culture plates (Costar) and incubated at 37�C for 7 days. KPf/fC in vitro tumorsphere formation studies

were conducted at a minimum of n = 3 independent wells per cell line across two independent shRNA of n = 3 wells; however,

the majority of these experiments were additionally completed in > 1 independently-derived cell lines n = 3, at n = 3 wells per shRNA.

shRNA sequences and average knockdown efficiencies are available in Table S7.

Matrigel colony assay

For FG and KPR172H/+C cells, 300-500 cells were resuspended in 50 mL tumorsphere media as described below, then mixed with

Matrigel (BD Biosciences, 354230) at a 1:1 ratio and plated in 96-well ultra-low adhesion culture plates (Costar). After incubation

at 37�C for 5 min, 50 mL tumorsphere media was placed over the Matrigel layer. Colonies were counted 7 days later. For RORg in-

hibitor studies, SR2211 or vehicle was added to cells in tumorsphere media, then mixed 1:1 with Matrigel and plated. SR2211 or

vehicle was also added to the media that was placed over the solidified Matrigel layer. For FG colony formation, n = 5 independent

wells across 5 independent CRISPR sgRNA and two independent non-targeting gRNA. KPR172H/+C cells were plated at n = 3 wells

per shRNA from one cell line.

Organoid culture assays

Tumors from 10-12week old end stage REM2-KPf/fCmicewere harvested and dissociated into a single cell suspension as described

above. Tumor cells were stained with FC block then 0.2 mg/106 cells anti-EpCAM APC (eBioscience). Msi2+/EpCAM+ (stem) and

Msi2-/EpCAM+ (non-stem) cells were sorted, resuspended in 20 mL Matrigel (BD Biosciences, 354230). For limiting dilution assay,

single cells were resuspended in matrigel at the indicated numbers from 20,000 to 10 cells/20uL and were plated as a dome in a
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pre-warmed 48 well plate. After incubation at 37�C for 5 min, domes were covered with 300 mL PancreaCult Organoid Growth Media

(StemCell Technologies, Inc.). Organoids were imaged and quantified 6 days later. Limiting dilution analysis for stemness assess-

ment was performed using web based- extreme limiting dilution analysis (ELDA) software (Hu and Smyth, 2009). Msi2+/EpCAM+

(stem) andMsi2-/EpCAM+ (non-stem) organoids were derived from n = 3 independent mice and plated at the indicated cell numbers.

Organoids from REM2-KPf/fC were passaged at �1:2 as previously described (Boj et al., 2015). Briefly, organoids were isolated

using Cell Recovery Solution (Corning 354253), then dissociated using Accumax Cell Dissociation Solution (Innovative Cell Technol-

ogies AM105), and plated in 20 mLmatrigel (BD Biosciences, 354230) domes on a pre-warmed 48-well plate. After incubation at 37�C
for 5 min, domes were covered with 300 mL PancreaCult Organoid Growth Media (StemCell Technologies, Inc.). SR2211 (Cayman

Chemicals 11972) was resuspended in DMSO at 20mg/ml, diluted 1:10 in 0.9%NaCl containing 0.2% acetic acid, and further diluted

in PancreaCult Organoid Media (StemCell Technologies, Inc.) to the indicated dilutions. Organoids were grown in the presence of

vehicle or SR2211 for 4 days, then imaged and quantified, n = 3 independent wells plated per dose per treatment group.

Primary patient organoids were established and provided by Dr. Andrew Lowy. Briefly, patient-derived xenografts were digested

for 1 hour at 37�C in RPMI containing 2.5% FBS, 5mg/ml Collagenase II, and 1.25mg/ml Dispase II, then passaged through a 70 mM

mesh filter. Cells were plated at a density of 1.5 3 105 cells per 50 mL Matrigel. After domes were solidified, growth medium was

added as follows: RPMI containing 50% Wnt3a conditioned media, 10% R-Spondin1-conditioned media, 2.5% FBS, 50 ng/ml

EGF, 5 mg/ml Insulin, 12.5 ng/ml hydrocortisone, and 14 mM Rho Kinase Inhibitor. After establishment, organoids were passaged

and maintained as previously described (Boj et al., 2015). Briefly, organoids were isolated using Cell Recovery Solution (Corning

354253), then dissociated into single cell suspensions with TrypLE Express (ThermoFisher 12604) supplemented with 25 mg/ml

DNase I (Roche) and 14 mM Rho Kinase Inhibitor (Y-27632, Sigma). Cells were split 1:2 into 20 mL domes plated on pre-warmed

48 well plates. Domes were incubated at 37�C for 5 min, then covered with human complete organoid feeding media (Boj et al.,

2015) without Wnt3a-conditioned media. SR2211 was prepared as described above, added at the indicated doses, and refreshed

every 3 days. Organoids were grown in the presence of vehicle or SR2211 for 7 days, then imaged and quantified, n = 3 independent

wells plated per dose per treatment group. All images were acquired on a Zeiss Axiovert 40 CFL. Organoids were counted and

measured using ImageJ 1.51 s software.

Flank tumor transplantation studies

For the flank transplantation studies outlined below, investigators blinded themselves when possible to the assigned treatment group

of each tumor for analysis; mice were de-identified after completion of flow cytometry analysis. The number of tumors transplanted

for each study is based on past experience with studies of this nature, where a group size of 10 is sufficient to determine if pancreatic

cancer growth is significantly affected when a regulatory signal is perturbed (see Fox et al., 2016).

For shRNA-infected pancreatic tumor cell propagation in vivo, cells were infected with lentiviral particles containing shRNAs and

positively infected (red) cells were sorted 72 hours after transduction. 1000 low passage, shRNA-infected KPf/fC, or 2x105 shRNA-

infected FG cells were resuspended in 50 mL culture media, then mixed 1:1 with matrigel (BD Biosciences). Cells were injected sub-

cutaneously into the left or right flank of 5-8 week-old NOD/SCID recipient mice. Subcutaneous tumor dimensions were measured

with calipers 1-2x weekly for 6-8 weeks, and two independent transplant experiments were conducted for each shRNA at n = 4 in-

dependent tumors per group.

For drug-treated KPf/fC flank tumors, 2x104 low passage REM2-KPf/fC tumor cells were resuspended in 50 mL culture media, then

mixed 1:1 with matrigel (BD Biosciences). Cells were injected subcutaneously into the left or right flank of 5-8 week-old non-tumor

bearing, immunocompetent littermates or NSGmice. Tumor growth wasmonitored twice weekly; when tumors reached 0.1-0.3 cm3,

mice were randomly enrolled in treatment groups and were treated for 3 weeks as described below. After 3 weeks of therapy, tumors

were removed, weighed, dissociated, and analyzed by flow cytometry. Tumor volume was calculated using the standard modified

ellipsoid formula ½ (Length x Width2); n = 2-4 tumors per treatment group in immunocompetent littermate recipients and n = 4-6 tu-

mors per treatment group in NSG recipients.

For chimeric transplantation studies, 2x104 low passage REM2-KPf/fC tumor cells were resuspended in 50 mL culture media, then

mixed 1:1 with matrigel (BD Biosciences). Cells were injected subcutaneously into the left or right flank of 5-8 week-old RORg-

knockout or wild-type recipients; recipient mice were maintained on antibiotic water (sulfamethoxazole and trimethoprim). Tumor

growth was monitored twice weekly; when tumors reached 0.1-0.3 cm3, mice were randomly enrolled in treatment groups and

were treated for 3 weeks as described below. After 3 weeks of therapy, tumors were removed, weighed, dissociated, and analyzed

by flow cytometry. Tumor volume was calculated using the standard modified ellipsoid formula ½ (Length x Width2); n = 5-7 tumors

per treatment group.

For drug-treated human pancreatic tumors 2x104 human pancreatic FG cancer cells or 2x106 patient-derived xenograft cells were

resuspended in 50 mL culture media, then mixed 1:1 with matrigel (BD Biosciences). Cells were injected subcutaneously into the left

or right flank of 5-8 week-old NSG recipient mice. Mice were randomly enrolled in treatment groups and were treated for 3 weeks as

described below. After 3 weeks of therapy, tumors were removed, weighed, and dissociated. Subcutaneous tumor dimensions were

measured with calipers 1-2x weekly. Tumor volume was calculated using the standard modified ellipsoid formula ½ (Length x

Width2); at minimum n = 4 tumors per treatment group.

In vivo and in vitro drug therapy

The RORg inverse agonists SR2211 (Cayman Chemicals, 11972, or Tocris, 4869) was resuspended in DMSO at 20 mg/ml or

50 mg/ml, respectively, then mixed 1:20 in 8% Tween80-PBS prior to use. Gemcitabine (Sigma, G6423) was resuspended in H2O
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at 20 mg/ml. For in vitro drug studies, low passage (< 6 passage) WT- or REM2-KPf/fC cells, (< 10 passage) KPR172H/+C cells, or FG

cells were plated in non-adherent tumorsphere conditions or Matrigel colony conditions for 1 week in the presence of SR2211 or

vehicle. For KPf/fC littermate, NSG mice, and RORg-knockout mice bearing KPf/fC-derived flank tumors and for NSG mice bearing

flank patient-derived xenograft tumors, mice were treated with either vehicle (PBS) or gemcitabine (25mg/kg i.p., 1x weekly) alone or

in combination with vehicle (5% DMSO, 8% Tween80-PBS) or SR2211 (10 mg/kg i.p., daily) for 3 weeks. RORg-knockout mice and

paired wild-type littermates were maintained on antibiotic water (sulfamethoxazole and trimethoprim). For NOD/SCID mice bearing

flank FG tumors, mice were treated with either vehicle (5% DMSO in corn oil) or SR2211 (10 mg/kg i.p., daily) for 2.5 weeks. All flank

tumors were measured 2x weekly and mice were sacrificed if tumors were > 2cm3, in accordance with IACUC protocol. For KPf/fC

autochthonous survival studies, 8 week old tumor-bearing KPf/fC mice were enrolled in either vehicle (10% DMSO, 0.9% NaCl with

0.2% acetic acid) or SR2211 (20 mg/kg i.p., daily) treatment groups, and treated until moribund, where n = 4 separate mice per treat-

ment group. For all drug studies, tumor-bearing mice were randomly assigned into drug treatment groups; treatment group size was

determined based on previous studies (Fox et al., 2016).

Immunofluorescence staining

Pancreatic cancer tissue from KPf/fC mice was fixed in Z-fix (Anatech Ltd, Fisher Scientific) and paraffin embedded at the UCSD His-

tology and Immunohistochemistry Core at The Sanford Consortium for RegenerativeMedicine according to standard protocols. 5 mm

sections were obtained and deparaffinized in xylene. The human pancreas paraffin embedded tissue array was acquired from US

Biomax, Inc (BIC14011a). For paraffin embeddedmouse and humanpancreas tissues, antigen retrieval was performed for 40minutes

in 95-100�C 1x Citrate Buffer, pH 6.0 (eBioscience). Sections were blocked in PBS containing 0.1% Triton X-100 (Sigma- Aldrich),

10% Goat Serum (Fisher Scientific), and 5% bovine serum albumin (Invitrogen).

KPf/fC cells and human pancreatic cancer cell lines were suspended in DMEM (GIBCO, Life Technologies) supplemented with 50%

FBS and adhered to slides by centrifugation at 500 rpm. 24 hours later, cells were fixed with Z-fix (Anatech Ltd, Fisher Scientific),

washed in PBS, and blocked with PBS containing 0.1% Triton X-100 (Sigma-Aldrich), 10% Goat serum (Fisher Scientific), and

5% bovine serum albumin (Invitrogen). All incubations with primary antibodies were carried out overnight at 4�C. Incubation with

Alexafluor-conjugated secondary antibodies (Molecular Probes) was performed for 1 hour at room temperature. DAPI (Molecular

Probes) was used to detect DNA and images were obtained with a Confocal Leica TCS SP5 II (Leica Microsystems). The following

primary antibodies were used: chicken anti-GFP (Abcam, ab13970) 1:500, rabbit anti-RORg (Thermo Fisher, PA5-23148) 1:500,

mouse anti-E-Cadherin (BD Biosciences, 610181) 1:500, anti-Keratin (Abcam, ab8068) 1:15, anti-Hmga2 (Abcam. Ab52039)

1:100, anti-Celsr1 (EMD Millipore abt119) 1:1000, anti-Celsr2 (BosterBio A06880) 1:250.

Tumor imaging

9.5-10.5 week old REM2-KPf/fC mice were treated either vehicle or SR2211 (10 mg/kg i.p., daily) for 8 days. For imaging, mice were

anesthetized by intraperitoneal injection of ketamine and xylazine (100/20mg/kg). In order to visualize blood vessels and nuclei, mice

were injected retro-orbitally with AlexaFluor 647 anti-mouse CD144 (VE-cadherin) antibody and Hoechst 33342 immediately

following anesthesia induction. After 25 minutes, pancreatic tumors were removed and placed in HBSS containing 5% FBS and

2mM EDTA. 80-150 mm images in 1024 3 1024 format were acquired with an HCX APO L20x objective on an upright Leica SP5

confocal system using Leica LAS AF 1.8.2 software. GFP cluster sizes were measure using ImageJ 1.51 s software. 2 mice per treat-

ment group were analyzed in this study; 6-10 frames were analyzed per mouse.

Analysis of tissue microarrays
Immunohistochemistry (IHC) and staining analysis

TMAs were sectioned to 2.5 mm thickness. IHC staining was performed on a Leica BOND RX automated immunostainer using BOND

primary antibody diluent and BOND Polymer Refine DAB Detection kit according to the manufacturer’s instructions (Leica Bio-

systems). Pre-treatment was performed using citrate buffer at 100�C for 30 min, and tissue was stained using rabbit anti-human

RORg(t) (polyclonal, #PA5-23148, Thermo Fisher Scientific) at a dilution of 1:4000. Stained slides were scanned using a Pannoramic

P250 digital slide scanner (3DHistech). RORg(t) staining of individual TMA spots was analyzed in an independent and randomized

manner by two board-certified surgical pathologists (C.M.S andM.W.) using Scorenado, a custom-made online digital TMA analysis

tool. Interpretation of staining results was in accordance with the ‘‘reporting recommendations for tumor marker prognostic studies’’

(REMARK) guidelines. Equivocal and discordant cases were re-analyzed jointly to reach a consensus. RORg(t) staining in tumor cells

was classified microscopically as 0 (absence of any cytoplasmic or nuclear staining), 1+ (cytoplasmic staining only), and 2+ (cyto-

plasmic and nuclear staining). For patients in whom multiple different scores were reported, only the highest score was used for

further analysis. Spots/patients with no interpretable tissue (less than 10 intact, unequivocally identifiable tumor cells) or other arti-

facts were excluded.

Statistical analysis of TMA data

Descriptive statistics were performed for patients’ characteristics. Frequencies, means, and range values are given. Association of

RORg(t) expression with categorical variables was performed using the Chi-square or Fisher’s Exact test, where appropriate, while

correlation with continuous values was tested using the non-parametric Kruskal-Wallis or Wilcoxon test. Univariate survival time dif-

ferences were analyzed using the Kaplan-Meier method and log-rank test. All p values were two-sided and considered significant

if < 0.05.
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shRNA lentiviral constructs and production

Short hairpin RNA (shRNA) constructs were designed and cloned into pLV-hU6-mPGK-red vector by Biosettia. The target sequences

are listed in Table S7. Virus was produced in 293T cells transfected with 4 mg shRNA constructs along with 2 mg pRSV/REV, 2 mg

pMDLg/pRRE, and 2 mg pHCMVG constructs (Dull et al., 1998; Sena-Esteves et al., 2004). Viral supernatants were collected for

two days then concentrated by ultracentrifugation at 20,000 rpm for 2 hours at 4�C. Knockdown efficiency for the shRNA constructs

used in this study varied from 45%–95% (Table S7).

RT-qPCR analysis

RNA was isolated using RNeasy Micro and Mini kits (QIAGEN) and converted to cDNA using Superscript III (Invitrogen). Quantitative

real-time PCR was performed using an iCycler (BioRad) by mixing cDNAs, iQ SYBR Green Supermix (BioRad) and gene specific

primers. Primer sequences are available in Table S7. All real time data was normalized to B2M or Gapdh.

Genome-wide profiling and bioinformatic analysis
Primary Msi2+ and Msi2- KPf/fC RNA-seq, data analysis, and visualization

Stem and non-stem tumor cell isolation followed byRNA-sequencing. Tumors from three independent 10-12week oldREM2-KPf/fC

mice were harvested and dissociated into a single cell suspension as described above. Tumor cells were stained with FC block then

0.2 mg/106 cells anti-EpCAM APC (eBioscience). 70,00-100,00 Msi2+/EpCAM+ (stem) and Msi2-/EpCAM+ (non-stem) cells were

sorted and total RNA was isolated using RNeasy Micro kit (QIAGEN). Total RNA was assessed for quality using an Agilent Tapesta-

tion, and all samples hadRINR7.9. RNA libraries were generated from 65 ng of RNA using Illumina’s TruSeqStrandedmRNASample

Prep Kit following manufacturer’s instructions, modifying the shear time to 5minutes. RNA libraries weremultiplexed and sequenced

with 50 basepair (bp) single end reads (SR50) to a depth of approximately 30million reads per sample on an Illumina HiSeq2500 using

V4 sequencing chemistry.

RNA-seq analysis. RNA-seq fastq files were processed into transcript-level summaries using kallisto (Bray et al., 2016), an ultrafast

pseudo-alignment algorithm with expectation maximization. Transcript-level summaries were processed into gene-level summaries

by adding all transcript counts from the same gene. Gene counts were normalized across samples using DESeq normalization (An-

ders and Huber 2010) and the gene list was filtered based on mean abundance, which left 13,787 genes for further analysis. Differ-

ential expression was assessed with an R package limma (Ritchie et al., 2015) applied to log2-transformed counts. Statistical signif-

icance of each test was expressed in terms of local false discovery rate lfdr (Efron and Tibshirani, 2002) using the limma function

eBayes (Lönnstedt and Speed, 2002). lfdr, also called posterior error probability, is the probability that a particular gene is not differ-

entially expressed, given the data.

Cell state analysis. For cell state analysis, Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was performed with the

Bioconductor GSVA (Hänzelmann et al., 2013) and the Bioconductor GSVAdata c2BroadSets gene set collection, which is the C2

collection of canonical gene sets from MsigDB3.0 (Subramanian et al., 2005). Briefly, GSEA evaluates a ranked gene expression

data-set against previously defined gene sets. GSEA was performed with the following parameters: mx.diff = TRUE, verbose =

TRUE, parallel.sz = 1, min.sz = 5, max.sz = 500, rnaseq = F.

Primary Msi2+ and Msi2- KPf/fC ChIP-seq for histone H3K27ac
Stem and non-stem tumor cell isolation followed by H3K27ac ChIP-sequencing

70,000 Msi2+/EpCAM+ (stem) and Msi2-/EpCAM+ (non-stem) cells were freshly isolated from a single mouse as described above.

ChIP was performed as described previously (Deshpande et al., 2014); cells were pelleted by centrifugation and crosslinked with 1%

formalin in culturemedium using the protocol described previously (Deshpande et al., 2014). Fixed cells were then lysed in SDS buffer

and sonicated on a Covaris S2 ultrasonicator. The following settings were used: Duty factor: 20%, Intensity: 4 and 200 Cycles/burst,

Duration: 60 s for a total of 10 cycles to shear chromatin with an average fragment size of 200-400 bp. ChIP for H3K27Acetyl was

performed using the antibody ab4729 (Abcam, Cambridge, UK) specific to the H3K27Ac modification. Library preparation of eluted

chromatin immunoprecipitated DNA fragments was performed using the NEBNext Ultra II DNA library prep kit (E7645S and E7600S-

NEB) for Illumina as per the manufacturer’s protocol. Library prepped DNA was then subjected to single-end, 75-nucleotide reads

sequencing on the Illumina NexSeq500 sequencer at a sequencing depth of 20 million reads per sample.

H3K27ac signal quantification from ChIP-seq data
Pre-processed H3K27ac ChIP sequencing data was aligned to the UCSC mm10 mouse genome using the Bowtie2 aligner (version

2.1.0 (Langmead and Salzberg, 2012), removing reads with quality scores of < 15. Non-unique and duplicate reads were removed

using samtools (version 0.1.16, Li et al., 2009) and Picard tools (version 1.98), respectively. Replicates were then combined using

BEDTools (version 2.17.0). Absolute H3K27ac occupancy in stem cells and non-stem cells was determined using the SICER-df al-

gorithm without an input control (version 1.1; (Zang et al., 2009), using a redundancy threshold of 1, a window size of 200bp, a frag-

ment size of 150, an effective genome fraction of 0.75, a gap size of 200bp and an E-value of 1000. Relative H3K27ac occupancy in

stem cells versus non-stem cells was determined as above, with the exception that the SICER-df-rb algorithm was used.
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Determining the overlap between peaks and genomic features
Genomic coordinates for features such as coding genes in themousemm10 build were obtained from the Ensembl 84 build (Ensembl

BioMart). The observed versus expected number of overlapping features and bases between the experimental peaks and these

genomic features (datasets A and B) was then determined computationally using a custom python script, as described in (Cole

et al., 2017). Briefly, the number of base pairs within each region of A that overlapped with each region of B was computed. An ex-

pected background level of expected overlap was determined using permutation tests to randomly generate > 1000 sets of regions

with equivalent lengths and chromosomal distributions to dataset B, ensuring that only sequenced genomic regions were consid-

ered. The overlaps between the random datasets and experimental datasets were then determined, and p values and fold changes

were estimated by comparing the overlap occurring by chance (expected) with that observed empirically (observed). This same pro-

cess was used to determine the observed versus expected overlap of different experimental datasets.

RNA-Seq/ChIP-Seq correlation
Overlap between gene expression and H3K27ac modification

Genes that were up- or downregulated in stem cells were determined using the Cuffdiff algorithm, and H3K27ac peaks that were

enriched or disfavored in stem cells were determined using the SICER-df-rb algorithm. The H3K27ac peaks were then annotated

at the gene level using the ‘ChippeakAnno’ (Zhu et al., 2010) and ‘org.Mm.eg.db’ packages in R, and genes with peaks that were

either exclusively upregulated or exclusively downregulated (termed ‘unique up’ or ‘unique down’) were isolated. The correlation be-

tween upregulated gene expression and upregulated H3K27ac occupancy, or downregulated gene expression and downregulated

H3K27ac occupancy, was then determined using the Spearman method in R.

Creation of composite plots

Composite plots showing RNA expression and H3K27ac signal across the length of the gene were created. Up- and downregulated

RNA peaks were determined using the FPKM output values from Tophat2 (Kim et al., 2013), and up- and downregulated H3K27ac

peakswere determined using the SICER algorithm. Peakswere annotatedwith nearest gene information, and their location relative to

the TSS was calculated. Data were then pooled into bins covering gene length intervals of 5%. Overlapping up/up and down/down

sets, containing either up- or downregulated RNA andH3K27ac, respectively, were created, and the stem and non-stem peakswithin

these sets were plotted in Excel.

Super-enhancer identification
Enhancers in stem and non-stem cells were defined as regions with H3K27ac occupancy, as described in Hnisz et al., 2013. Peaks

were obtained using the SICER-df algorithm before being indexed and converted to .gff format. H3K27ac Bowtie2 alignments for

stem and non-stem cells were used to rank enhancers by signal density. Super-enhancers were then defined using the ROSE algo-

rithm, with a stitching distance of 12.5kb and a TSS exclusion zone of 2.5kb. The resulting super-enhancers for stem or non-stem

cells were then annotated at the gene level using the R packages ‘ChippeakAnno’(Zhu et al., 2010) and ‘org.Mm.eg.db’, and over-

lapping peaks between the two sets were determined using ‘ChippeakAnno’. Super-enhancers that are unique to stem or non-stem

cells were annotated to known biological pathways using the Gene Ontology (GO) over-representation analysis functionality of the

tool WebGestalt (Wang et al., 2017).

Genome-wide CRISPR screen
CRISPR library amplification and viral preparation

The mouse GeCKO CRISPRv2 knockout pooled library (Sanjana et al., 2014) was acquired from Addgene (catalog# 1000000052) as

two half-libraries (A and B). Each library was amplified according to the Zhang lab library amplification protocol (Sanjana et al., 2014)

and plasmid DNA was purified using NucleoBond Xtra Maxi DNA purification kit (Macherey-Nagel). For lentiviral production, 24 x

T225 flasks were plated with 21x106 293T each in 1x DMEM containing 10% FBS. 24 hours later, cells were transfected with pooled

GeCKOv2 library and viral constructs. Briefly, media was removed and replaced with 12.5 mL warm OptiMEM (GIBCO). Per plate,

200 mL PLUS reagent (Life Technologies), 10 mg library A, and 10 mg library B was mixed in 4 mL OptiMEM along with 10 mg

pRSV/REV (Addgene), 10 mg pMDLg/pRRE (Addgene), and 10 mg pHCMVG (Addgene) constructs. Separately, 200 mL Lipofectamine

(Life Technologies) was mixed with 4 mL OptiMEM. After 5 minutes, the plasmid mix was combined with Lipofectamine and left to

incubate at room temperature for 20minutes, then added dropwise to each flask. Transfectionmediawas removed 22 hours later and

replaced with DMEM containing 10% FBS, 5 mM MgCl2, 1 U/ml DNase (Thermo Scientific), and 20mM HEPES pH 7.4. Viral super-

natants were collected at 24 and 48 hours, passaged through 0.45 mm filter (corning), and concentrated by ultracentrifugation at

20,000 rpm for 2 hours at 4�C. Viral particles were resuspended in DMEM containing 10% FBS, 5 mM MgCl2, and 20 mM

HEPES pH 7.4, and stored at �80�C.
CRISPR screen in primary KPf/fC cells

3 independent primary REM2-KPf/fC cell lines were established as described above and maintained in DMEM containing 10% FBS,

1x non-essential amino acids, and 1x pen/strep. At passage 3, each cell line was tested for puromycin sensitivity and GeCKOv2 len-

tiviral titer was determined. At passage 5, 1.6x108 cells from each cell line were transduced with GeCKOv2 lentivirus at anMOI of 0.3.

48 hours after transduction, 1x108 cells were harvested for sequencing (‘‘T0’’) and 1.6x108 were re-plated in the presence of puro-

mycin according to previously tested puromycin sensitivity. Cells were passaged every 3-4 days for 3weeks; at every passage, 5x107
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cells were re-plated to maintain library coverage. At 2 weeks post-transduction, cell lines were tested for sphere forming capacity. At

3 weeks, 3x107 cells were harvested for sequencing (‘‘2D; cell essential genes’’), and 2.6x107 cells were plated in sphere conditions

as described above (‘‘3D; stem cell essential genes’’). After 1 week in sphere conditions, tumorspheres were harvested for

sequencing.

Analysis of the 2D datasets revealed that while some genes were required for growth in 2D, other genes that were not (detectably)

required for growth in 2D were still required for growth in 3D (for example, Rorc Sox4, Foxo1, Wnt1 and ROBO3). These findings sug-

gested that growth in 3D is dependent on a distinct or additional set of pathways. Since only stem cells give rise to 3D spheres, targets

within the 3D datasets were prioritized for subsequent analyses. Of the genes that significantly dropped out in 3D, some also dropped

out in 2D either significantly or as a trend.

DNA isolation, library preparation, and sequencing

Cells pellets were stored at�20�C until DNA isolation using QIAGENBlood and Cell Culture DNAMidi Kit (13343). Briefly, per 1.5x107

cells, cell pellets were resuspended in 2 mL cold PBS, then mixed with 2 mL cold buffer C1 and 6 mL cold H2O, and incubated on ice

for 10 minutes. Samples were pelleted 1300 x g for 15 minutes at 4�C, then resuspended in 1 mL cold buffer C1 with 3 mL cold H2O,

and centrifuged again. Pellets were then resuspended in 5 mL buffer G2 and treated with 100 mL RNase A (QIAGEN 1007885) for

2 minutes at room temperature followed by 95 mL Proteinase K for 1 hour at 50�C. DNA was extracted using Genomic-tip 100/G col-

umns, eluted in 50�C buffer QF, and spooled into 300 mL TE buffer pH 8.0. Genomic DNA was stored at 4�C. For sequencing, gRNAs
were first amplified from total genomic DNA isolated from each replicate at T0, 2D, and 3D (PCR1). Per 50 mL reaction, 4 mg gDNAwas

mixed with 25 mL KAPA HiFi HotStart ReadyMIX (KAPA Biosystems), 1 mM reverse primer1, and 1 mM forward primer1 mix (including

staggers). Primer sequences are available upon request. After amplification (98�C 20 s, 66�C 20 s, 72�C 30 s,3 22 cycles), 50 mL of

PCR1 products were cleaned up using QIAquick PCR Purification Kit (QIAGEN). The resulting�200bp products were then barcoded

with Illumina Adaptors by PCR2. 5 mL of each cleaned PCR1 product was mixed with 25 mL KAPA HiFi HotStart ReadyMIX (KAPA

Biostystems), 10 mL H2O, 1 mM reverse primer2, and 1 mM forward primer2. After amplification (98�C 20 s, 72�C 45 s, 3 8 cycles),

PCR2 products were gel purified, and eluted in 30 mL buffer EB. Final concentrations of the desired products were determined

and equimolar amounts from each sample was pooled for Next Generation Sequencing.

Processing of the CRISPR screen data

Sequence read quality was assessed using fastqc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Prior to alignment,

50 and 30 adapters flanking the sgRNA sequences were trimmed off using cutadapt v1.11 (Martin, 2011) with the 50-adaptor
TCTTGTGGAAAGGACGAAACACCG and the 30 adaptor GTTTTAGAGCTAGAAATAGCAAGTT, which came from the cloning proto-

cols of the respective libraries deposited on Addgene (https://www.addgene.org/pooled-library/). Error tolerance for adaptor iden-

tification was set to 0.25, and minimal required read length after trimming was set to 10 bp. Trimmed reads were aligned to the

GeCKO mouse library using Bowtie2 (Langmead and Salzberg, 2012) in the–local mode with a seed length of 11, an allowed seed

mismatch of 1 and the interval function set to ‘S,1,0.75’. After completion, alignments were classified as either unique, failed, toler-

ated or ambiguous based on the primary (‘AS’) and secondary (‘XS’) alignment scores reported by Bowtie2. Reads with the primary

alignment score not exceeding the secondary score by at least 5 points were discarded as ambiguous matches. Read counts were

normalized by using the ‘‘size-factor’’ method as described in Li et al. (2014). All of this was done using implementations in the

PinAPL-Py webtool (Spahn et al., 2017), with detailed code available at https://github.com/LewisLabUCSD/PinAPL-Py.

gRNA growth and decay analysis

Weused a parametric method in which the cell population with damaged gene i grows asNiðtÞ = Nið0Þeða0 + diÞt, where a0 is the growth

rate of unmodified cells and di is the change of the growth rate due to the gene deletion. Since the aliquot extracted at each time point

is roughly the same and represents only a fraction of the entire population, the observed sgRNA counts ni do not correspond to Ni

directly. The correspondence is only relative: if we define cihni=
P

k

nk as the compositional fraction of sgRNA species i, the corre-

spondence is ci = Ni

P

k

Nk . As a result, the exponential can only be determined up to a multiplicative constant, e�di t =

A,cið0Þ=ciðtÞ. The constant is determined from the assumption that a gene deletion typically does not affect the growth rate. Math-

ematically, 1 = A med½cið0Þ=ciðtÞ�. We define the statistic that measures the effect of gene deletion as xihe�di t and calculate it for

every gene i from

xi =A
cið0Þ
ciðtÞ :

Since we were interested in genes essential for growth, we performed a single-tailed test for xi. We collected the three values of xi,

one from each biological replicate, into a vector xi. A statistically significant effect would have all three values large (> 1) and consis-

tent. If xi were to denote position of a point in a three-dimensional space, we would be interested in points that lie close to the body

diagonal and far away from the origin. A suitable statistic is s = ðx,nÞ2 � ½x � ðx,nÞn�2, where n= ð1;1;1Þ= ffiffiffi
3

p
is the unit vector in the

direction of the body diagonal and , denotes scalar product. A q-value (false discovery rate) for each gene was estimated as the num-

ber of s-statistics not smaller than si expected in the null model divided by the observed number of s-statistics not smaller than si in

the data. The null model was simulated numerically by permuting gene labels in xi for every experimental replicate, independently of

each other, repeated 103 times.
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STRING Interactome Network Analysis

The results from the CRISPR 3D experiment were integrated with the RNA-seq results using a network approach. We identified likely

CRISPR-essential genes by filtering to include genes which had a false-discovery rate corrected p value of less than 0.5, resulting in

94 genes. We chose a relaxed filter here because the following filtering steps would help eliminate false positives, and our network

analysis method would help to amplify weak signals. These genes were further filtered in two ways: first, we included only genes

whichwere expressed in the RNA-seq data (this resulted in 57 genes), and second, we further restricted by genes which had enriched

expression in stem cells by > 2 log fold change in the RNA-seq (this resulted in 10 genes). These results were used to seed the

network neighborhood exploration. We used the STRING mouse interactome (Szklarczyk et al., 2015) as our background network,

including only high confidence interactions (edge weight > 700). The STRING interactome contains known and predicted functional

protein-protein interactions. The interactions are assembled from a variety of sources, including genomic context predictions, high

throughput lab experiments, and co-expression databases. Interaction confidence is a weighted combination of all lines of evidence,

with higher quality experiments contributing more. The high confidence STRING interactome contains 13,863 genes, and 411,296

edges. Because not all genes are found in the interactome, our seed gene sets were further filtered when integrated with the network.

This resulted in 39 CRISPR-essential, RNA-expressed seed genes, and 5 CRISPR-essential, RNA differentially-expressed seed

genes. After integrating the seed genes with the background interactome, we employed a network propagation algorithm to explore

the network neighborhood around these seed genes. Network propagation is a powerful method for amplifying weak signals by tak-

ing advantage of the fact that genes related to the same phenotype tend to interact. We implemented the network propagation

method developed in Vanunu et al. (2010), which simulates how heat would diffuse, with loss, through the network by traversing

the edges, starting from an initially hot set of ‘seed’ nodes. At each step, one unit of heat is added to the seed nodes, and is then

spread to the neighbor nodes. A constant fraction of heat is then removed from each node, so that heat is conserved in the system.

After a number of iterations, the heat on the nodes converges to a stable value. This final heat vector is a proxy for how close each

node is to the seed set. For example, if a node was between two initially hot nodes, it would have an extremely high final heat value,

and if a node was quite far from the initially hot seed nodes, it would have a very low final heat value. This process is described by the

following as in Vanunu et al. (2010):

Ft =W
0
Ft�1 + ð1� aÞY

Where Ft is the heat vector at time t, Y is the initial value of the heat vector, W’ is the normalized adjacency matrix, and a˛ð0;1Þ rep-
resents the fraction of total heat which is dissipated at every timestep. We examined the results of the subnetwork composed of the

500 genes nearest to the seed genes after network propagation. This is referred to as the ‘hot subnetwork’. In order to identify path-

ways and biological mechanisms related to the seed genes, we applied a clustering algorithm to the hot subnetwork, which parti-

tioned the network into groups of genes which are highly interconnected within the group, and sparsely connected to genes in other

groups. We used a modularity maximization algorithm for clustering (Blondel et al., 2008), which has proven effective in detecting

modules, or clusters, in protein-protein interaction networks (van Laarhoven and Marchiori, 2012). These clusters were annotated

to known biological pathways using the over-representation analysis functionality of the tool WebGestalt (Wang et al., 2017). We

used the 500 genes in the hot subnetwork as the background reference gene set. To display the networks, we used a spring-

embedded layout, which is modified by cluster membership (along with some manual adjustment to ensure non-overlapping labels)

(Figure 2E). Genes belonging to each cluster were laid out radially along a circle, to emphasize the within cluster and between cluster

connections. VisJS2jupyter (Rosenthal et al., 2018) was used for network propagation and visualization. Node color is mapped to the

RNA-seq log fold change, with downregulated genes displayed in blue, upregulated genes displayed in red, and geneswith small fold

changes displayed in gray. Labels are shown for geneswhich have a log fold changewith absolute value greater than 3.0. Seed genes

are shown as triangles with white outlines, while all other genes in the hot subnetwork are circles. The clusters have been annotated

by selecting representative pathways from the enrichment analysis.

KPR172HC single cell analysis

Freshly harvested tumors from two independent KPR172hC mice were subjected to mechanical and enzymatic dissociation using a

Miltenyi gentleMACS Tissue Dissociator to obtain single cells. The 10X Genomics Chromium Single Cell Solution was employed for

capture, amplification and labeling of mRNA from single cells and for scRNA-Seq library preparation. Sequencing of libraries was

performed on a Illumina HiSeq 2500 system. Sequencing data was input into the Cell Ranger analysis pipeline to align reads and

generate gene-cell expression matrices. Finally, Custom R packages were used to perform gene-expression analyses and cell clus-

tering projected using the t-SNE (t-Distributed Stochastic Neighbor Embedding) clustering algorithm. scRNA-seq datasets from the

two independent KPR127hC tumor tissues generated on 10xGenomics platform were merged and utilized to explore and validate the

molecular signatures of the tumor cells under dynamic development. The tumor cells that were used to illustrate the signal of Il10rb,

Il34 and Csf1r etc. were characterized from the heterogeneous cellular constituents using SuperCTmethod developed by Dr. Wei Lin

and confirmed by the Seurat FindClusters with the enriched signal of Epcam, Krt19 and Prom1 etc (Xie et al., 2018). The tSNE layout

of the tumor cells was calculated by Seurat pipeline using the single-cell digital expression profiles.

KPf/fC single cell analysis

Three age-matched KPf/fC pancreatic tumors were collected and freshly dissociated, as described above. Tumor cells were stained

with rat anti-mouse CD45-PE/Cy7 (eBioscience), rat anti-mouse CD31-PE (eBioscience), and rat anti-mouse PDGFRa-PacBlue
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(eBioscience) and tumor cells negative for these three markers were sorted for analysis. Individual cells were isolated, barcoded, and

libraries were constructed using the 10x genomics platform using the Chromium Single Cell 30 GEM library and gel bead kit v2 per

manufacturer’s protocol. Libraries were sequenced on an Illumina HiSeq4000. The Cell Ranger software was used for alignment,

filtering and barcode and UMI counting. The Seurat R package was used for further secondary analysis using default settings for

unsupervised clustering and cell type discovery.

shRorc versus shCtrl KPf/fC RNA-seq

Primary WT-KPf/fC cell lines were established as described above. WT-KPf/fC cells derived from an individual low passage cell line

(< 6 passage) were plated and transduced in triplicate with lentiviral particles containing shCtrl or shRorc. Positively infected (red)

cells were sorted 5 days after transduction. Total RNA was isolated using the RNeasy Micro Plus kit (QIAGEN). RNA libraries

were generated from 200 ng of RNA using Illumina’s TruSeq Stranded mRNA Sample Prep Kit (Illumina) following manufacturer’s

instructions. Libraries were pooled and single end sequenced (1X75) on the Illumina NextSeq 500 using the High output V2 kit (Illu-

mina Inc., San Diego CA).

Read data was processed in BaseSpace (https://basespace.illumina.com). Reads were aligned toMusmusculus genome (mm10)

using STAR aligner (https://code.google.com/p/rna-star/) with default settings. Differential transcript expression was determined us-

ing the Cufflinks Cuffdiff package (Trapnell et al., 2012) (https://github.com/cole-trapnell-lab/cufflinks). Differential expression data

was then filtered to represent only significantly differentially expressed genes (q value < 0.05). This list was used for pathway analysis

and heatmaps of specific significantly differentially regulated pathways.

shRorc versus shCtrl KPf/fC ChIP-seq for histone H3K27ac

Primary WT-KPf/fC cell lines were established as described above. Low passage (< 6 passages) WT-KPf/fC cells from two indepen-

dent cell lines were plated and transduced in triplicate with lentiviral particles containing shCtrl or shRorc. Positively infected (red)

cells were sorted 5 days after transduction. ChIP-seq for histone H3K27-ac, signal quantification, and determination of the overlap

between peaks and genomic features was conducted as described above.

Super-enhancers in control and shRorc-treated KPf/fC cell lines as well as Musashi stem cells were determined from H3K27ac

ChIPseq data using the ROSE algorithm (http://younglab.wi.mit.edu/super_enhancer_code.html). The Musashi stem cell super-

enhancer peaks were then further refined to include only those unique to the stem cell state (defined as present in stem cells but

not non-stem cells) and/or those with RORg binding sites within the peaks. Peak sequences were extracted using the ‘getSeq’

function from the ‘BSGenome.MMusculus.UCSC.mm10’ R package. RORg binding sites were then mapped using the matrix

RORG_MOUSE.H10MO.C.pcm (HOCOMOCO database) as a reference, along with the ‘matchPWM’ function in R at 90% strin-

gency. Baseline peaks were then defined for each KPf/fC cell line as those overlapping each of the four Musashi stem cell peaklists

with each KPC control super-enhancer list, giving eight in total. The R packages ‘GenomicRanges’ and ‘ChIPpeakAnno’ were used to

assess peak overlap with a minimum overlap of 1bp used. To estimate the proportion of super-enhancers that are closed on RORC

knockdown, divergence between each baseline condition and the corresponding KPf/fC shRorc super-enhancer list was assessed

by quantifying the peak overlap and then expressing this as a proportion of the baseline list (‘shared%’). The proportion of unique

peaks in each condition was then calculated as 100%-shared% and plotted.

sgRORC versus sgNT human RNA-seq

Human FG cells were plated and transduced in triplicate with lentiviral particles containing Cas9 and non-targeting guide RNA or

guide RNA against Rorc. Positively infected (green) cells were sorted 5 days after transduction. Total RNA was isolated using the

RNeasy Micro Plus kit (QIAGEN). RNA libraries were generated from 200 ng of RNA using Illumina’s TruSeq Stranded mRNA Sample

Prep Kit (illumina) following manufacturer’s instructions. Libraries were pooled and single end sequenced (1X75) on the Illumina

NextSeq 500 using the High output V2 kit (Illumina Inc., San Diego CA).

Comparative RNA-seq and cell state analysis

RORC knockdown and control RNA-seq fastq files in mouse KPf/fC and human FG cells were processed into transcript-level sum-

maries using kallisto (Bray et al., 2016). Transcript-level summaries were processed into gene-level summaries and differential gene

expression was performed using sleuth with the Wald test (Pimentel et al., 2017). GSEA was performed as detailed above (Subra-

manian et al., 2005). Gene ontology analysis was performed using Metascape using a custom analysis with GO biological processes

and default settings with genes with a FDR < 5% and a beta value > 0.5.

cBioportal
RORC genomic amplification data from cancer patients was collected from the Memorial Sloan Kettering Cancer Center cBioPortal

for Cancer Genomics (http://www.cbioportal.org).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were carried out using GraphPad Prism software version 7.0d (GraphPad Software Inc.). Sample sizes for in vivo

drug studies were determined based on the variability of pancreatic tumormodels used. For flank transplant and autochthonous drug

studies, tumor bearing animals within each group were randomly assigned to treatment groups. Treatment sizes were determined
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based on previous studies (Fox et al., 2016). Data are shown as the mean ± SEM. Two-tailed unpaired Student’s t tests with Welch’s

correction or One-way analysis of variance (ANOVA) for multiple comparisons when appropriate were used to determine statistical

significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

The level of replication for each in vitro and in vivo study is noted in the figure legends for each figure and described in detail in the

Method Details section above. However to summarize briefly, in vitro tumorsphere or colony formation studies were conducted with

n = 3 independent wells per cell line across two independent shRNA of n = 3 wells; however, the majority of these experiments were

additionally completed in > 1 independently derived cell line, n = 3 wells per shRNA. For limiting dilution assays, organoids were

derived from 3 independent mice; drug-treated mouse and human organoids were plated at n = 3 wells per dose per treatment con-

dition. Flank shRNA studies were conducted twice independently, with n = 4 tumors per group in each experiment. Flank drug studies

were conducted at n = 2-7 tumors per treatment group; autochthonous KPf/fC survival studies were conducted with a minimum of 4

mice enrolled in each treatment group. Live imaging studies were carried out with two mice per treatment group.

Statistical considerations and bioinformatic analysis of large data-sets generated are explained in great detail above. In brief, pri-

mary KPf/fC RNA-seq was performed using Msi2+ and Msi2- cells sorted independently from three different end-stage KPf/fC mice.

Primary KPf/fC ChIP-seq was performed using Msi2+ and Msi2- cells sorted from an individual end-stage KPf/fC mouse. The

genome-wide CRISPR screen was conducted using three biologically independent cell lines (derived from three different KPf/fC

tumors). Single-cell analysis of tumors represents merged data from �10,000 cells across two KPR172HC and three KPf/fC mice.

RNA-seq for shRorc and shCtrl KPf/fC cells was conducted in triplicate, while ChIP-seq was conducted in single replicates from

two biologically independent KPf/fC cell lines.

DATA AND SOFTWARE AVAILABILITY

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable

request. Singe cell, Genome-wide CRISPR screen, H3K27ac ChIP, and RNA sequencing data have been deposited at NCBI GEO:

Primary Msi2+ and Msi2- KPf/fC RNA-seq

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114906

Primary Msi2+ and Msi2- KPf/fC ChIP-seq for histone H3K27ac

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113712

Genome-wide CRISPR screen

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114914

shRorc versus shControl KPf/fC ChIP-seq for histone H3K27ac

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126536

shRorc versus shCtrl KPf/fC RNA-seq

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126538

sgRORC versus sgNT human RNA-seq

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126537

KPf/fC single cell analysis

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126539

KPR172HC single cell analysis

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126388

Code availability
Custom code developed for CRISPR screen analysis and network propagation were deposited to github.com and can be accessed

at https://github.com/ucsd-ccbb/crispr_network_analysis.
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Supplemental Figures

Figure S1. Overlap of Transcriptional and Epigenetic Features in Pancreatic Cancer Tumor-Initiating Cells, Related to Figure 1

(A) Tumor organoid formation from primary isolated Musashi2+ and Musashi2- KPf/fC tumor cells. Number of cells plated is indicated above representative

images, scale = 200um.

(B) Limiting dilution frequency (left) calculated forMsi2+ (black) andMsi2- (red) organoid formation. Table (right) indicates cell doses tested in biological replicates.

(C and D) Gene set enrichment analysis (GSEA) of stem and non-stem gene signatures. Cell states (C), and corresponding heat-maps (D) of selected genes

related to cell cycle. (C) Red denotes overlapping gene signatures; blue denotes non-overlapping gene signatures. (D) Red, over-represented gene expression;

blue, under-represented gene expression; shades denote fold change from median values.

(E) Frequency of proliferating (Ki67+) Msi2+ (left) and Msi2- (right) tumor cells in untreated 10-12 week old REM2-KPf/fC mice (n = 3), or treated with gemcitabine

for 72 hours (n = 1) or 6 days (n = 1) prior to analysis; 200 mg/kg gemcitabine i.p. was delivered every 72 hours.

(F) Overlap of H3K27ac peaks and genomic features. For each genomic feature, frequency of H3K27ac peaks in stem cells (blue) and non-stem cells (gray) are

represented as ratio of observed peak distribution/expected random genomic distribution.

(G and H) Concordance of H3K27ac peaks with RNA expression in stem cells (G; p = 7.1x10�14) and non-stem cells (H; p < 22x10�16).

(I and J) Ratio of observed/expected overlap in gene expression and H3K27ac enrichment comparing stem and non-stem cells. Down/Up, gene expression

enriched in non-stem/H3K27ac enriched in stem; Up/Down, gene expression enriched in stem/H3K27ac enriched in non-stem; Down/Down, both gene

expression and H3K27ac enriched in non-stem; Up/Up, both gene expression and H3K27ac enriched in stem.



Figure S2. Stem-Specific Map of Core Pancreatic Cancer Programs, Related to Figure 2

(A) Establishment of three independent REM2-KPf/fC cell lines from end-stage REM2-KPf/fCmice for genome-wide CRISPR-screen analysis. Stem cell content of

freshly-dissociated REM2-KPf/fC tumors (A, left), and after puromycin selection in standard growth conditions (A, right).

(B and C) Volcano plots of guides enriched in 2D (B, tumor suppressors) and 3D (C, negative regulators of stem cells). Genes indicated on plots, p < 0.005.

(legend continued on next page)



(D) Network propagation analysis integrating transcriptomic, epigenetic and functional analysis of stem cells. Genes enriched in stem cells by RNA-seq (ratio of

stem to non-stem log2 fold-change > 2) and depleted in 3D stem cell growth conditions (FDR < 0.5) were used to seed the network (triangles), then analyzed for

known and predicted protein-protein interactions and restricted to genes enriched in stem cells by RNA-seq (ratio of stem to non-stem log2 fold-change > 2). Each

node represents a single gene; node color is mapped to the RNA-seq fold change; stem cell enriched genes in red. Labels shown for genes enriched in stem cells

by RNA-seq (RNA log2FC absolute value > 3.0) or by RNA-seq and ChIP-seq (RNA Log2FC absolute value > 2.0, ChIP-seq FDR < 0.01). Seven core programs

were defined by groups of genes with high interconnectivity; each core program is annotated by Gene Ontology analysis (FDR < 0.05).



(legend on next page)



Figure S3. Role of MEGF Family and Cytokine Signals in Pancreatic Cancer, Related to Figure 3

(A and B) Sphere forming capacity of KPf/fC cells following shRNA knockdown. Selected genes involved in stem and developmental processes (A) or cell

adhesion, cell motility, and matrix components (B).

(C and D) Immunofluorescence analysis of Celsr1 (C) and Celsr2 (D) in EpCAM+ stem (CD133+) and non-stem (CD133-) primary tumor cells isolated from KPf/fC

mice. Three frames were analyzed per slide, and the frequency of Celsr1-high or Celsr2-high cells determined, scale = 25um.

(E) KPf/fC cells were infected with shRNA against Pear1and protein knockdown efficiency determined five days post-transduction by western blot.

(F–H) Independent replicates for impact of shRNA inhibition of target genes on tumor growth in vivo. Celsr1 (F), Celsr2 (G), and Pear1 (H) were inhibited via shRNA

delivery in KPf/fC cells, and impact on tumor growth assessed by tracking flank transplants in vivo, n = 4 per condition.

(I) Pear1 was inhibited via shRNA in REM-KPf/fC cells in sphere culture and impact on Msi+ stem cell content assessed by FACS, n = 3 per condition, p = 0.0629.

(J) Pear1 was inhibited via shRNA in KPf/fC cells and impact on apoptosis in sphere culture as marked by Annexin-V assessed by FACS, n = 3 per condition.

(K) Heatmap of relative RNA expression of cytokines and related receptors in KPf/fC stem and non-stem cells (left) and average RNA-seq TPM values inMsi2- and

Msi2+ cells (right). Red, over-represented; blue, under-represented; color denotes fold change from median values.

(L) Single cell RNA Sequencing maps of KPR172H/+C tumors. Tumor cells defined by expression of EpCAM (far left), Krt19 (left center), Cdh1 (right center), and

Cdh2 (far right).

(M) Left, KPR172H/+C tumor single-cell sequencing map of cells expressing Msi2 within the EpCAM+ tumor cell fraction. Right, KPR172H/+C tumor single-cell

sequencing map of cells expressing IL-10Rb, IL-34, and CSF1R within the EpCAM+Msi2+ stem cell fraction.

(P and Q) Independent replicates for impact of shRNA inhibition of target genes on tumor growth in vivo. IL-10Rb (P) and CSF1R (Q) were inhibited via shRNA

delivery in KPf/fC cells, and impact on tumor growth assessed by tracking flank transplants in vivo, n = 4 per condition.

(N) Cytokine receptors IL-10Rb and CSF1R were inhibited by shRNA delivery in KPf/fC cells and plated in sphere culture for one week. Increased apoptosis in

KPf/fC cells with shIL10Rb (p < 0.05) and shCSF1R (trend). Frequency of apoptotic cells determined by Annexin-V staining and FACS analysis, n = 3 per condition.

(O) Representative FACS plots for stem content analysis in vitro. IL-10rb and Csf1R were inhibited via shRNA delivery in KPf/fC cells, and impact on stem content

(Msi2-GFP+ cells) in sphere culture assessed by FACS, n = 3 per condition.

(R) ELISA based quantification (Quantikine, R&DSystems) of IL-10, IL-34, andCSF-1 inmedia (left) and KPf/fC cell lystate (right). Cytokineswere quantified in fresh

sphere culture media, KPf/fC stem and non-stem cell conditioned media, and KPf/fC epithelial cell lysate. Conditioned media was generated by culturing sorted

CD133- or CD133+ KPf/fC cells in spheremedia for 48 hours; media was filtered and assayed immediately. Cell lysate was collected in RIPA buffer and assayed at

2 mg/mL for ELISA. n = 3 per condition.

Data represented as mean ± SEM. *p < 0.05, **p < 0.01 by Student’s t test or One-way ANOVA.



Figure S4. RORg Is Enriched in Epithelial Tumor Stem Cells and Regulates Tumor Propagation in Pancreatic Cancer, Related to Figure 4

(A) Heatmap of transcription factors in KPf/fC stem and non-stem identified as possible pancreatic cancer stem cell dependencies within the network map

(see Figure 2E). Red, over-represented; blue, under-represented; color denotes fold change from median values.

(B) Distribution of RORg consensus binding sites in genomic regions associated with H3K27ac. Down/Down, both gene expression and H3K27ac enriched in

non-stem cells; Up/Up, both gene expression and H3K27ac enriched in stem cells.

(C) Biological replicates showing qPCR analysis of RORg expression in primary KPf/fC stem and non-stem tumor cells isolated from REM2-KPf/fC mice.

(D) Immunofluorescence analysis of RORg in primary KPf/fC EpCAM+ CD133+ and CD133- tumor cells. Three frames were analyzed per slide, and the frequency

of RORg -high cells determined.

(E) KPf/fC tumor single-cell sequencing map of cells expressing RORg within the EpCAM+Msi2+ cell fraction (n = 3 mice represented).

(F) RORg expression within E-Cadherin- stromal cells in patient samples.

(G) IL-1R1 was inhibited by CRISPR-mediated deletion in KPf/fC cells, and impact on Rorc expression assessed by qPCR. Two distinct guide RNAs (sgIL1r1-1

and sgIL1r1-2) were used to knockout IL-1R1; expression was quantified by qPCR and is shown relative to control (non-targeting guide RNA), n = 3 per condition.

(H) Knockdown efficiency of RORg in KPf/fC cells infected with Rorc shRNA determined five days post-transduction. Relative expression in western blots

quantified relative to tubulin loading control.

(I) Impact of shRNA-mediated RORg inhibition on apoptosis and proliferation of in KPf/fC cells in 3D culture n = 3.

(J) Independent replicate of shRNA Rorc impact on KPf/fC tumor propagation as assessed by tracking flank transplants in vivo, n = 4 per condition.

(K–M) Super-enhancer analysis of shRorc KPf/fC cells. KPf/fC cells were infected with shRorc, and used for H3K27ac ChIP-seq and super-enhancer analysis,

schematic (K). H3K27ac peaks were analyzed to assess super-enhancer overlap in shCtrl and shRorc samples (L). Super-enhancers lost in shRorc samples were

crossed to stem-enriched and stem-unique super-enhancers identified in primary Msi2-GFP+ KPf/fC tumors cells, and further restricted to super-enhancers

containing RORg binding motifs (M). Majority of super-enhancer landscape remained unchanged with RORg loss, and landscape changes that did occur were

not enriched in super-enhancers with RORg binding sites. ChIP-seq analysis was conducted in two independent KPf/fC cell lines.

Data represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t test or One-way ANOVA.



Figure S5. RORg Target Engagement In Vivo, Related to Figure 5

(A) Size of flank KPf/fC tumors in immunocompetent mice prior to enrollment into RORg targeted therapy. Group 1, vehicle; group 2, SR2211; group 3, vehicle +

gemcitabine; group 4, SR2211 + gemcitabine.

(B) Target engagement following acute RORg inhibition in vivo. 9.5 wk tumor-bearing KPf/fC mice were treated with vehicle or SR2211 for two weeks (midpoint),

after which tumorswere isolated, fixed, and analyzed for target engagement of Hmga2 in epithelial cells by immunofluorescence. Representative images (left) and

quantification (right) of Hmga2+ Keratin+ epithelial cells in vehicle or SR2211 treated tumors. Four frames were analyzed per mouse, n = 2-4 mice per condition,

Hmga2 (red), Keratin (green), scale = 25um.

(C) Target engagement in endpoint tumors following continuous RORg inhibition in vivo. 8 wk tumor-bearing KPf/fC mice were treated till endpoint with either

vehicle or SR2211, after which tumors were isolated, fixed, and analyzed for target engagement of Hmga2 in epithelial cells by immunofluorescence. Repre-

sentative images (left) and quantification (right) of Hmga2+ Keratin+ epithelial cells in vehicle or SR2211 treated tumors. Four frames were analyzed per mouse,

n = 2-4 mice per condition, Hmga2 (red), Keratin (green).

Data represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t test or One-way ANOVA. Grubb’s test (p = 0.1) was used to remove an outlier

from the midpoint SR2211 treated group, scale = 25um.



Figure S6. Impact of RORg Inhibition on Neoplastic Cells, Related to Figure 6

(A and B) Analysis of T cell subsets in KPf/fC tumors transplanted into wild-type or Rorc-knockout recipient mice (vehicle-treated groups shown). Absolute cell

numbers of the following populations were evaluated: (A) CD45+/CD3+/CD8+ or CD8+ T cells, (B) CD45+/CD3+/CD4+ or CD4+ T cells.

(C–L) FACS analysis of non-neoplastic cell populations in autochthonous tumors from KPf/fC mice treated with vehicle or SR2211 for 1 week. Schematic (C).

Absolute cell numbers of the following populations were evaluated: CD45+ cells (D), CD11b+/F480+ cells (macrophage) (E), CD11b+/Gr-1+ cells (MDSC) (F),

CD11c+ cells (dendritic) (G), CD45+/CD3+ T cells (H), CD3+/CD8+ T cells (I), CD3+/CD4+ T cells (J), CD4+/IL-17+ Th17 cells (K), CD31+ cells (endothelial) (L).

(n = 3 per condition).

(M) In vivo imaging of tumor vasculature of KPf/fC mice treated with vehicle or SR2211. Vasculature is marked by in vivo delivery of anti-VE-Cadherin (magenta),

scale = 75um.

Data represented as mean ± SEM. *p < 0.05 by Student’s t test or One-way ANOVA.



Figure S7. Analysis of Downstream Targets of RORg in Murine and Human Pancreatic Cancer Cells Identifies Shared Pro-tumorigenic

Cytokine Pathways, Related to Figure 7

(A–D) Gene ontology and gene set enrichment analysis of RNA-seq in human and mouse pancreatic cancer cells to identify common genes and pathways

regulated by RORg. Gene ontology analysis of KPf/fC RNA-seq showing genes downregulated with shRorc were enriched for cytokine-mediated signaling

pathway GO term (A). Differentially expressed genes in KPf/fC within cytokine-mediated signaling pathway (B) were crossed with differentially expressed genes

identified by RNA-seq analysis of human pancreatic cancer cells (FG) where RORC was knocked out using CRISPR. Gene set enrichment analysis of mouse and

human RNA-seq shows common cytokine gene sets regulated by Rorc across species (D).

(E) Analysis of CRISPR guide depletion in stem cell conditions for super-enhancer-associated genes expressed in stem or non-stem cells.

Data represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by Student’s t test or One-way ANOVA.
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