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Although artificial neural networks are powerful classifiers, 
their internal structures are hard to interpret. In the life 
sciences, extensive knowledge of cell biology provides an 
opportunity to design visible neural networks (VNNs) that 
couple the model’s inner workings to those of real systems. 
Here we develop DCell, a VNN embedded in the hierarchical 
structure of 2,526 subsystems comprising a eukaryotic 
cell (http://d-cell.ucsd.edu/). Trained on several million 
genotypes, DCell simulates cellular growth nearly as accurately 
as laboratory observations. During simulation, genotypes 
induce patterns of subsystem activities, enabling in silico 
investigations of the molecular mechanisms underlying 
genotype–phenotype associations. These mechanisms can be 
validated, and many are unexpected; some are governed by 
Boolean logic. Cumulatively, 80% of the importance for growth 
prediction is captured by 484 subsystems (21%), reflecting the 
emergence of a complex phenotype. DCell provides a foundation 
for decoding the genetics of disease, drug resistance and 
synthetic life.

Deep learning has revolutionized the field of artificial intelli-
gence by enabling machines to perform human activities like 
seeing, listening and speaking1–6. Such systems are constructed 
from many-layered, ‘deep’, artificial neural networks (ANNs) 
inspired by actual neural networks in the brain and how they 
process patterns. The function of the ANN is created during a 
training phase, in which the model learns to capture as accu-
rately as possible the correct answer, or output, that should be 
returned for each example input pattern. In this way, machine 
vision learns to recognize objects like dogs, people and faces, 
and machine players learn to distinguish good from bad moves 
in games like chess and Go7.

In modern ANN architectures, the connections between neu-
rons as well as their strengths are subject to extensive mathemati-
cal optimization, leading to densely entangled network structures 
that are neither tied to an actual physical system nor based on 
human reasoning. Consequently, it is typically difficult to grasp 
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how any particular set of neurons relates to system function. 
For instance, AlphaGo beats top human players7, but examina-
tion of its underlying network yields little insight into the rules 
behind its moves or how these are encoded by neurons. These are  
so-called black boxes8, in which the input–output function  
accurately models an actual system, but the internal structure 
does not (Fig. 1a). Such models, while undoubtedly useful, are 
insufficient in cases where simulation is needed not only of system 
function but also of system structure. In particular, many appli-
cations in biology and medicine seek to model both functional  
outcome and the mechanisms leading to that outcome so that 
these can be understood and manipulated through drugs, genes 
or environment.

Here we report DCell, an interpretable or ‘visible’ neural net-
work (VNN) simulating a basic eukaryotic cell. The structure of 
this model is formulated from extensive prior knowledge of the 
cell’s hierarchy of subsystems documented for the budding yeast 
Saccharomyces cerevisiae. This knowledge is drawn from either 
of two sources: the Gene Ontology (GO), a literature-curated  
reference database from which we extracted 2,526 cellular subsys-
tems (intracellular components, processes or functions)9; or the 
Clique-eXtracted Ontology (CliXO), an alternative ontology of 
similar size inferred from large-scale molecular data sets rather 
than literature curation10,11. While CliXO and GO overlap in 
38% of subsystems, some in CliXO are apparent in large-scale 
data sets but not yet characterized in literature, whereas some in 
GO are documented in the literature but difficult to identify in 
big data. Subsystems in these ontologies are interrelated through 
hierarchical parent–child relationships of membership or con-
tainment. Such hierarchies form a natural bridge from variations 
in genotype, at the scale of nucleotides and genes, to variations in 
phenotype, at the scale of cells and organisms12,13.

The function of DCell is learned during a training phase, in 
which perturbations to genes propagate through the hierarchy 
to impact parent subsystems that contain them, giving rise to 
functional changes in protein complexes, biological processes, 
organelles and, ultimately, a predicted response at the level of a cell 
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growth phenotype (Fig. 1b). Previously, we saw that hierarchical 
groups of genes in an ontology could be used to formulate input 
features for such phenotypic predictions12,13. However, these fea-
tures were provided to standard black-box machine-learning mod-
els, which could not be interpreted biologically. Here, we embed 
the structure of the deep neural network directly in the biological 
hierarchy, enabling transparent biological interpretation.

RESULTS
DCell design
In DCell, the functional state of each subsystem is represented 
by a bank of neurons (Fig. 1c). Connectivity of these neurons 
is set to mirror the biological hierarchy, so that they take inputs 
only from neurons of child subsystems and send outputs only 
to neurons of parent subsystems, with weights determined dur-
ing training. The use of multiple neurons (ranging from 20 to 
1,075 per system; see Online Methods) acknowledges that cel-
lular components are often multifunctional, with states that are 
too complex to be captured by a single neuron14. The input layer 

of the hierarchy comprises the genes, whereas the output layer, 
or root, is a single neuron representing cell phenotype. By this 
design, the VNN embedded in GO includes 97,181 neurons; the 
corresponding model for CliXO includes 22,167 neurons. The 
depth of both networks is 12 layers, on par with deep neural  
networks in other fields7.

Performance in genotype–phenotype translation
Given this architecture, we taught DCell to predict phenotypes 
related to cellular fitness, a model genotype-to-phenotype trans-
lation task (see Online Methods). Extensive training was made 
possible by an existing compendium of yeast growth phenotypes 
measured for single- and double-gene-deletion genotypes, com-
prising several million genotype–phenotype training exam-
ples15,16. We considered two related phenotypes: (i) capacity for 
growth measured by colony size relative to wild-type cells, and 
(ii) for double gene deletions, genetic interaction score meas-
ured as the difference in colony size from that expected from the  
corresponding single-gene deletions. Predicting genetic interaction  
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without knowledge of system structure. (b) In a visible neural network, input–output translation is based on prior knowledge. In DCell, gene-disruption 
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represents a harder task than predicting absolute growth, as it 
requires learning of nonlinear effects beyond superposition of 
single-gene-deletion genotypes. Based on the training examples, 
the weights of input connections to each neuron were optimized 
by stochastic gradient descent computed by backpropagation. 
For execution and inspection of this DCell model, we created an 
interactive website at http://d-cell.ucsd.edu/ (Fig. 1d).

We found that DCell could make accurate phenotypic predic-
tions for both growth (Fig. 2a) and genetic interaction (Fig. 2b). It 
outperformed previous predictors, including those based on met-
abolic models17 and protein–protein interaction networks18,19, 
as well as a hierarchical method not related to deep learning  
(Fig. 2c and Supplementary Fig. 1)13. We also compared perform-
ance to black-box ANNs of several types. First, we constructed 
ANNs with matching structure to DCell but permuting the assign-
ment of genes to subsystems. Predictive performance decreased 
substantially (Fig. 2c) and was restored only after the number 
of neurons was increased by an order of magnitude (Fig. 2d).  
Thus, the biological hierarchy provides important information 
not found in randomized versions. Second, we constructed a fully 

connected ANN with the same number of layers and neurons as 
DCell but unlimited connectivity between adjacent layers. Despite 
these extra parameters, performance of this fully connected model 
was not substantially better (Fig. 2c).

From prediction to mechanistic interpretation
Unlike standard ANNs, DCell’s simulations were tied to an 
extensive hierarchy of internal biological subsystems with states 
that could be queried. This ‘visible’ aspect raised the possibility 
that, unlike black-box neural networks, DCell could be used for  
in silico studies of biological mechanism. We focus on four major 
types of such studies in the next sections.

Explaining a genotype–phenotype association
A fundamental goal of genetics is to explain the molecular mecha-
nisms linking changes in genotype to changes in phenotype. To 
generate such explanations automatically, we used DCell to simu-
late the impact of a genotypic change, relative to wild type, on 
the states of all cellular subsystems in the model. We considered 
subsystems with substantial changes to be candidate explanations 
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Figure 2 | Prediction of cell viability and genetic interaction phenotypes. (a) Measured versus predicted cell viability relative to wild type (WT = 1) on 
the Costanzo et al.16 data set. (b) Measured versus predicted genetic interaction scores for each double-gene-disruption genotype; genetic interactions 
between the disrupted genes can be positive (epistasis), zero (noninteraction), or negative (synthetic sickness or lethality). (c) Model performance 
expressed as the correlation between measured and predicted genetic interaction scores. Performance of DCell (blue) is compared to that of previous 
methods for predicting genetic interactions (green): FBA, Flux Balance Analysis17; GBA, Guilt By Association18; MNMC, Multi-Network Multi-Classifier19; 
and Ontotype13. Performance is also shown for matched black-box structures in which gene-to-subsystem mappings are randomly permuted (orange, 
average of ten randomizations) or for fully connected neural networks with the same number of layers as DCell (yellow). Correlations were calculated 
across gene pairs that met an interaction significance criterion of P < 0.05. DCell based on GO hierarchy; for DCell based on CliXO, see Supplementary 
Figure 1. (d) Predictive performance versus number of neurons per subsystem. Performance measure and two structural hierarchies as in c.
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in translation of genotype to phenotype, whereas those without 
state changes—typically the vast majority—were excluded from 
consideration. For example, to explain the severe growth defect 
caused by pmt1∆ire1∆, disrupting the genes PMT1 and IRE1, 
we simulated this genotype with DCell and examined the 243 
subsystems incorporating PMT1 or IRE1 at any level of the GO 
hierarchy (subsystems that are ancestors of one or both genes). 
These subsystems encompassed functions of PMT1 or IRE1 in the 
endoplasmic reticulum unfolded protein response (ER-UPR)20,21, 
cell wall organization and integrity22,23, and many other proc-
esses (Fig. 3a). Examining the simulated states of these candi-
date subsystems (values of their neurons), we found that ER-UPR 
output was substantially reduced compared to that in the wild 
type, whereas cell-wall organization and other subsystems were  
relatively unaffected (Fig. 3a).

To validate this simulated decrease, we examined a data set 
measuring abundance of green fluorescent protein (GFP) driven 
by a promoter responsive to Hac1, a key transcriptional activator 
of ER-UPR, over numerous pairwise gene disruptions24. Hac1 
activity was decreased in the pmt1∆ire1∆ genotype compared 
with that in the wild type, consistent with model simulations  
(Fig. 3b). Moreover, we found that the simulated state of ER-UPR 

was well correlated with experimental Hac1 activity, not only for 
this genotype but across all relevant gene disruptions in the data 
set (Fig. 3b). To address the concern that Hac1 activity might 
associate nonspecifically with state changes in many subsystems, 
not just those related to ER, we examined its correlation with 
the simulated states of every subsystem in DCell. High correla-
tion was observed only for ER-UPR and supersystems (Fig. 3c),  
demonstrating specific validation. In this way, DCell was used to 
test among competing mechanistic hypotheses for a genotype–
phenotype relationship.

In explaining genotype–phenotype associations, a key require-
ment is that the state of a subsystem in silico approximate its true 
state in vivo. To further validate this capability, we examined the 
subsystem of DNA repair (Fig. 3d) which, like ER-UPR, had been 
experimentally interrogated over many double gene deletions25. 
In particular, DNA repair status had been characterized by resist-
ance to ultraviolet radiation (UV), a model DNA-damaging  
agent26. Once again we saw good agreement between model 
and experiment; the simulated state of DNA repair significantly 
tracked experimental UV resistance across genotypes (Fig. 3e; 
Mann—Whitney U test, P = 0.002), in a manner highly specific to 
this subsystem (Fig. 3f; Mann—Whitney U test, P < 0.01).
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Prioritizing important systems that determine a phenotype
Beyond individual explanations for genotype–phenotype associa-
tions, a critical question is whether a complex phenotype such as 
growth depends on equal contributions from many subsystems 
or is dominated by a few. To address this question, we reasoned 
that the overall importance of a subsystem can be computed 
quantitatively as the degree to which its state is more predictive 
of phenotype than the states of its children—a metric we called  
relative local improvement in predictive power (RLIPP; see 
Online Methods). We observed that RLIPP approximately fol-
lowed a Pareto (power-law) distribution, in which a few subsys-
tems are important for model predictions, with a long tail of less 
important systems (Fig. 4a). In particular, 80% of the cumulative 
importance was captured by 21% of subsystems (the Pareto 80/20 
rule27), while >88% of subsystems retained some improvement 
in phenotypic prediction over their children (RLIPP > 0). The 
GO subsystem of greatest individual importance in cell growth 
was ‘negative regulation of cellular macromolecule biosynthesis’, 
which organizes cellular circuits that inhibit biosynthesis and, 
as evidenced by DCell simulations, can lead to strong increases 
in growth when disrupted. Other subsystems important for 
growth related to the proper function of organelles, biomolecular  
transport, stress response, protein modification, and assembly of 
complexes (Fig. 4b–j).

Characterization of genetic logic underlying a process
A third application of DCell relates to the mathematical func-
tions by which the neurons representing each subsystem integrate 
information. We investigated whether these functions could be 
reduced to simple forms, such as Boolean logic gates, which are 
easily interpreted (see Online Methods). This analysis found 1,119 
subsystems at least partly governed by Boolean logic (44% of GO; 

Supplementary Table 1). For instance, the state of mitochondrial 
respiratory chain (Fig. 5a), while relatively high in wild-type cells, 
was driven low by disruptions in any of the several enzymatic 
complexes involved in electron transport, such as complexes III  
and IV (Fig. 5b). Thus the mechanism underlying the functions 
encompassed by mitochondrial respiratory chain resembles 
a logical AND gate (Fig. 5c). We also observed many cases of 
OR, XOR, and (A not B), although the AND configuration arose 
most frequently. The remaining subsystems did not map clearly 
to Boolean functions, suggesting machinery that is more complex 
than an on–off switch.

Discovery of new biological processes and states
Finally, we investigated the extent to which DCell simulations 
rely on new cellular subsystems not previously reported in the 
biological literature. For this purpose, we examined the version 
of DCell for which the subsystem hierarchy had been structured 
from large-scale molecular data sets (CliXO) rather than previous 
literature (GO). This CliXO hierarchy was based on detection 
of nested community structures within a large gene-interaction 
network summarizing numerous types of experimental data, 
including protein–protein binding, gene coexpression, gene 
coevolution, genetic linkage, and so on (see Online Methods). 
While some of the network communities corresponded to cel-
lular subsystems that were already well known, many others 
were previously undocumented, suggesting subsystems that are 
potentially new.

Indeed, when CliXO was used as the structure for DCell’s deep 
neural network, we found 236 subsystems that were previously 
undocumented and also had high RLIPP importance scores for 
genotype–phenotype translation (Supplementary Table 2). One 
example was CliXO:10651, a previously undocumented process 
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ranking among the top ten systems important for growth predic-
tion. We found that CliXO had inferred this system based on the 
elevated density of protein–protein interactions observed among 
its 154 genes (Fig. 5d, nine-fold enrichment, P < 10−200). These 
interactions interconnected two subsystems that are individually 
much better understood, relating to actin filaments and ion home-
ostasis (five-fold enrichment between subsystems, P = 0.00029). 
The simulated state of CliXO:10651 was governed approximately 
by a Boolean AND of the states of its two subsystems, both being 
required to maintain wild-type status. These findings are sup-
ported by previous reports that homeostasis of ions, such as iron, 
regulates the level of oxidative stress, which in turn disrupts actin 
cytoskeletal organization28,29.

As a second example we considered CliXO:10582, a novel 
subsystem of 71 genes (Fig. 6a). Although many of these genes 
had known roles in DNA repair, this grouping had not been 
previously recognized. Examination of the hierarchical model 
structure revealed that CliXO:10582 interconnects components 
of three known DNA repair subsystems, postreplication repair, 
mismatch repair, and nonrecombinational repair, based on a very 
high density of protein–protein interactions among these com-
ponents (Fig. 6a). Revisiting the experimental data on resistance 
to UV-induced DNA damage25 (Fig. 3e,f), we saw that the simu-
lated state of CliXO:10582 strongly correlated with experimen-
tal UV resistance across genotypes (Fig. 6b). This association  
was stronger than for any child and, in fact, for any other CliXO 
subsystem interrogated by the experimental data (Fig. 6c). 

Mathematically, the state of CliXO:10582 was not well captured 
by Boolean logic but by a weighted linear summation of the states 
of the three child systems, with postreplication repair having the 
greatest single contribution (Fig. 6d). Thus, DCell has identified 
a novel organization of subsystems which specifically coordinate 
the response to UV damage. For the eight genes in this system 
not previously known to function in DNA repair (green nodes, 
Fig. 6a), the evidence summarized by the model—that these gene 
products physically interact within a larger cluster of known DNA 
repair factors, and that they functionally manifest with the same 
UV sensitivity phenotype when disrupted—creates a compelling 
case for further studies.

DISCUSSION
A direct route to interpretable neural networks is to encode 
not only function but form. Here, we have explored such vis-
ible learning in the context of cell biology, by incorporating an 
unprecedented collection of knowledge10,11,30 and data15,16,31 to 
simultaneously simulate cell hierarchical structure and function. 
DCell captured nearly all phenotypic variation in cellular growth, 
a classic complex phenotype, including much of the less under-
stood nonadditive portion due to genetic interactions (Fig. 2a–c).  
Armed with this explanatory power, the model simulated the 
intermediate functional states of thousands of cellular subsys-
tems. Knowledge of these states enables in silico studies of molec-
ular mechanism, including dissection of subsystems important 
to growth phenotype, identification of new subsystems, and 
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reduction of subsystem functions, where possible, to Boolean  
logic (Figs. 3–6).

Methodologically, our approach works toward a synthesis of 
statistical genetics and systems biology. State-of-the-art meth-
ods in statistical genetics32,33 are based on linear regression of 
phenotype against the independent effects of genetic polymor-
phisms, without modeling the underlying molecular mechanisms 
that give rise to nonlinearity and genetic interaction. Separately, 
studies in systems biology capture molecular mechanisms using 
mathematical models34,35, but such models typically do not have 
the breadth for large-scale genetic dissection of phenotype. DCell 

bridges these two avenues—its neural network encodes a com-
plex nonlinear regression, an extension of statistical genetics, 
in which the additional complexity is enabled by a hierarchical 
mechanistic model, an extension of systems biology. In contrast 
to other mechanistic models that have attempted large-scale geno-
type–phenotype prediction13,36, the framework of hierarchical 
neural networks is very general and expressive, such that a large 
class of biological structures and functions can be represented. 
For example, our earlier approach13 used hierarchical knowledge 
of subsystems to create new features based on the number of gene 
disruptions in a subsystem, but these features were predetermined 
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before modeling, and thus nothing was learned about the real 
functions encoded by subsystems.

It is also instructive to view DCell in the context of previ-
ous research in interpretable machine learning, in which the 
notion of interpretability has been defined in different ways37. 
One direction has been to perform a post hoc examination of an 
ANN that has already been trained, by inspecting neurons and 
rationalizing their decisions. A model trained to identify images 
of dogs might, upon later inspection, be seen to have neurons 
capturing interpretable properties like ‘tail’ or ‘furry’38–40. A 
limitation of post hoc interpretation is that it is disconnected 
from training, leaving no guarantees as to what level of human 
understanding can be achieved41. Therefore, in attention-based 
neural networks42,43, a separate module preselects key ‘inter-
pretable’ features for input to a black-box model. For example, 
in a model predicting emotional attitude of a blog author (posi-
tive or negative, angry or calm), the key interpretable feature 
might come from a key phrase preselected from text (LOL, I’m 
so upset). While DCell has some similarity to these attention-
based approaches, its deep hierarchical structure captures many 
different clusters of features at multiple scales, pushing interpre-
tation from the model input to internal features representing  
biological subsystems.

In several case studies involving genotypes impacting ER-UPR 
and DNA-repair subsystems, the subsystem states learned by 
DCell could be directly confirmed by molecular measurements. 
Notably, no information about subsystem states was provided 
during model training. These states emerged from translation 
of genotypes (model inputs) to growth phenotypes (model out-
puts) under the structural constraints of the subsystem hierarchy; 
together, the input–output data and hierarchical structure were 
sufficient to guide subsystem neurons to learn a biologically cor-
rect function. In the future, one might directly supervise a VNN 
to learn potentially multiple subsystem states and/or complex 
phenotypes, in which case training data could be provided at any 
level: genotype, phenotype or points in between.

In some applications of machine learning, predictive perform-
ance is all that matters. Indeed, in these cases it is often pos-
sible to build a large number of alternative models that, while  
different in structure, all make excellent near-optimal functional 
predictions. In biology, however, prediction is not enough. The 
key additional question is which of the many excellent predictive 
models is the one actually used by the living system, as optimized 
not by computation but by evolution. DCell provides proof-of-
concept of a system that, while optimizing functional predic-
tion, respects biological structure. Such models are of immediate 
interest in genome-wide association studies of human disease44, 
in which different patient genotypes can influence disease out-
comes by complex mechanisms hidden from black-box statisti-
cal approaches. Once trained on sufficient data, these models 
could be applied in personalized therapy by analyzing a patient’s 
genotype in combination with potential points of intervention 
targeted by drugs. We also see compelling uses in design of syn-
thetic organisms, in which candidate genotypes can be efficiently 
evaluated in silico before validation in vivo. Finally, beyond the 
architecture of the cell, biological systems at other scales may 
benefit from this type of constrained learning, including mod-
eling of neural connections in the brain.

Methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Preparation of ontologies. We guided the deep neural network 
structure using a biological ontology consisting of terms repre-
senting cellular subsystems, child–parent relations representing 
containment of one term by another, and gene-to-term anno-
tations. The first ontology considered was the Gene Ontology 
(GO), in which all three branches of GO (biological process, 
cellular component, and molecular function) were joined under 
a single root. We used the following criteria to filter (remove) 
terms from GO:

  1. Terms with the evidence code ‘inferred by genetic inter-
action’ (IGI), to avoid potential circularity in predicting genetic 
interactions in the genotype–phenotype samples.

  2. Terms containing fewer than six yeast genes disrupted in 
the available genotypes (with ‘containment’ defined as all genes 
annotated to that term or its descendants).

  3. Terms that are redundant with respect to their children 
terms in the ontology.

When a term was removed, all children were connected directly 
to all parent terms to maintain the hierarchical structure. The 
remaining 2,526 terms were used to define the hierarchy of DCell 
subsystems.

To complement the GO structure, we constructed a data-
driven gene ontology using the hierarchical community-
detection method of Clique Extracted Ontologies (CliXO) as 
previously described11. Briefly, data on gene pairs were sourced 
from YeastNet v3 (ref. 31), which lists 68 experimental studies 
measuring eight different types of molecular interactions (pro-
tein–protein interaction, gene coexpression, gene cocitation 
frequency, and so on), excluding genetic interactions to avoid 
circularity similar to criterion 1 above. All features were inte-
grated to create a single gene–gene similarity network following 
a previously described procedure11, in which each gene–gene 
pair is assigned a weighted similarity based on a combination 
of the YeastNet data. This network was subsequently analyzed 
with the CliXO algorithm, which identifies nested cliques as the 
threshold gene–gene similarity becomes progressively less strin-
gent. This process yields a hierarchy (directed acyclic graph) of 
parent–child relations among 4,805 cliques at different similarity 
thresholds, with each clique representing a cellular subsystem. 
By performing an ontology alignment10 between the CliXO and 
GO hierarchies, we found that 1,811 (38%) of the CliXO sub-
systems contained a significantly overlapping (FDR < 0.1) set of 
genes with GO terms. We further filtered the CliXO hierarchy 
using the same procedure for filtering GO (removing subsystems 
containing fewer than six yeast genes disrupted in the available 
genotypes). The remaining 713 subsystems were used to define 
the DCell hierarchy.

DCell architecture and training algorithm. DCell trains a deep 
neural network to predict phenotype from genotype, with archi-
tecture that exactly mirrors the hierarchical structure of an ontol-
ogy of cellular subsystems. Each cellular subsystem is represented 
by a group of hidden variables (neurons) in the neural network, 
and each parent–child relation is represented by a set of edges that 
fully connect these groups of hidden variables. The depth of this 
architecture (12 layers) presents two challenges for training: (i) 
There is no guarantee that each subsystem will learn new patterns 
instead of copying those of its child subsystems; and (ii) gradients 

tend to vanish lower in the hierarchy. To tackle these challenges, 
we borrow ideas from two previous systems, GoogLeNet45 and 
Deeply-Supervised Net46, which improve the transparency and 
discriminative power of hidden variables and reduce the effect of 
vanishing gradients.

We denote our input training data set as D = {(X1, y1), (X2, 
y2),…, (XN, yN)}, where N is the number of samples. For each 
sample i, Xi ∈ RM denotes the genotype, represented as a binary 
vector of states on M genes (1 = disrupted; 0 = wild type), and yi 
∈ R denotes the observed phenotype, which can be either rela-
tive growth rate or genetic interaction value. The multidimen-
sional state of each subsystem t, denoted by the output vector 
Oi

t( ), is defined by a nonlinear function of the states of all of its 
child subsystems and annotated genes, concatenated in the input  
vector Ii

t( ) :

O BatchNorm Tanh Linear Ii
t

i
t( ) ( )( ( ( ))) ( )= 1

Linear Ii
t( )( )  is a linear transformation of Ii

t( )  defined as 
W I bt

i
t t( ) ( ) ( )+ . Let LO

t( ) denote the length of Oi
t( ) , representing 

the number of values in the state of t and determined by

L to
t( ) max , . ( )= ∗ ( )20 0 3 2number of genes contained by

Intuitively, larger subsystems have larger state vectors to capture 
potentially more complex biological responses. Similarly, let LI

t( )  
denote the length of Ii

t( ) . In equation (1), W(t) is a weight matrix 
with dimensions L LO

t
I
t( ) ( )× , and b(t) is a column vector with size 

LO
t( ) . W(t) and b(t) provide the parameters to be learned for sub-

system t. Tanh is the nonlinear transforming hyperbolic tangent 
function. Batch Norm47 is a normalizing function that reduces the 
impact of internal covariate shift caused by different scales of 
weights in W(t). Batch normalization can be viewed as a type of 
regularization of model weights and reduces the need for the tra-
ditional dropout step in deep learning. We perform the  
training process by minimizing the objective function: 

1
1N
Loss Linear O y Loss Linear O yi

r
ii

N
i
t

it( ( ( ), ) ( ( ), ))( ) ( )+ += ≠∑ α rr W∑ λ || || ( )2 3
 

Here, Loss is the squared error loss function, and r is the root of 
the hierarchy. Note that we compare yi with not only the root’s 
output, Oi

r( ) , but also the outputs of all other subsystems, Oi
t( ),  

Linear in equation (3) denotes linear functions transforming mul-
tidimensional vector Oi

t( )  into a scalar. In this way, every subsys-
tem is optimized to serve its parents as features and to predict the 
phenotype itself, as used previously by GoogLeNet45; the param-
eter α (=0.3) balances these two contributions. λ is an l2 norm 
regularization factor determined by four-fold cross-validation. 
To train the DCell model, we initialize all weights uniformly at 
random between −0.001 and 0.001. We optimize the objective 
function using ADAM48, a popular stochastic gradient descent 
algorithm, with mini-batch size of 15,000. Gradients with respect 
to model parameters are computed by standard back propaga-
tion49. Note that while other hyperparameters might influence 
the overall predictive performance, they are unrelated to our 
focus on biological interpretation as long as the same settings are 
applied to both DCell and the black-box models we use as con-
trols (Fig. 2d). We implemented DCell using the Torch7 library 
(https://github.com/torch/torch7) on Tesla K20 GPUs.

(1)(1)

(2)(2)

(3)(3)

https://github.com/torch/torch7
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Training genotype–phenotype data. Several forms of the model 
were employed in this study, trained on either Costanzo et al.16 
(~3 million training examples) or a more recently published 
update in 2016 (~8 million training examples)15. The first model 
was used for all results and figures in the main text to enable 
comparisons against previous approaches to predict genetic 
interactions. The latter model with updated data is provided at 
d-cell.ucsd.edu.

Alternative genotype–phenotype translation methods. We 
compared DCell to three state-of-the-art nonhierarchical 
approaches for predicting genetic interactions: flux balance 
analysis (FBA)35, multinetwork multiclassifier (MNMC)19, and 
guilt-by-association (GBA)18. FBA uses a model of metabolism 
to assess the impact on cell growth of gene deletions in metabolic 
pathways. MNMC is an ensemble supervised learning system that 
uses many different data sets as features to predict genetic inter-
actions. GBA predicts the genetic interaction score of pairwise 
gene deletions based on the phenotypes of their network neigh-
bors. We also compared against our previous prediction method 
(Ontotype)13 which applies prior knowledge from a hierarchy 
like GO or CliXO but does not use deep learning nor simulate 
the internal states of subsystems. Ontotype counts the number 
of genes knocked in every GO term and uses these counts as 
features in a random forest regression.

Relative local improvement in predictive power. The RLIPP 
score was used to quantify and compare the importance of 
DCell’s internal subsystems in prediction of phenotype. To 
calculate the RLIPP score of a subsystem, we compared two 
different linear models for phenotypic prediction. In the first 
model, the subsystem’s neurons were used as features in an l2-
norm penalized linear regression (Supplementary Fig. 3a). 
In the second model, the neurons of the subsystem’s children 
were used as the features instead. Each model was trained sepa-
rately, with the optimal hyperparameter associated with the 
l2-norm penalty determined in five-fold cross-validation. The 
performance of each of these two models was calculated as  
the Spearman correlation between the predicted and measured phe-
notype, here taken as genetic interaction scores (Supplementary  
Fig. 3b,c). The RLIPP score was defined as the performance of 
the parent model relative to that of the children (Supplementary  
Fig. 3d). A positive RLIPP score indicates that the state of the 
parent subsystem is more predictive of phenotype than the states 
of its children. This situation can occur when the parent learns 
complex (nonlinear) patterns from the children, as opposed to 
merely copying or adding their values. The intuition behind the 
RLIPP score is similar to a related ‘linear probe’ technique devel-
oped in a previous study to characterize the utility of each layer 
of a deep neural network50.

Identification of subsystems that mimic Boolean logic gates. 
As one means to interpret the mechanisms by which DCell trans-
lates genotype to phenotype, we evaluated each subsystem for 
the extent to which it approximates Boolean logic. In particular, 
we considered all trios of subsystems, each consisting of a par-
ent subsystem and two of its children, and tested whether their 
binary states (S,C1,C2) were well approximated by nontrivial 
Boolean logic (Supplementary Table 1). For each genotype, 

the binary state of each child subsystem was defined as either 
‘Wild Type’ (True) or ‘Disrupted’ (False) by comparing PC1 to 
the wild-type state. The binary state of each parent subsystem 
was defined as either ‘≤Wild Type’ (True) or ‘>Wild Type’ (False, 
by comparing PC1 to the wild-type state. For each combinatorial 
state (C1,C2) of two child subsystems, the parent state S implied 
by DCell was determined based on the majority parent states of 
genotypes annotated to (C1,C2). For instance, suppose that for 
all the genotypes that induce (C1 = True, C2 = False) in the two 
children, DCell transforms 80% to parent state S = True and 20% 
to state S = False. We conclude the underlying logic for the par-
ent subsystem to translate the signal from children subsystems 
is (True, False)→True. By checking the parent states for all four 
possible (C1,C2) combinations, we can decide whether this trio 
of subsystems exhibits Boolean logic (Supplementary Table 1). 
A trio belongs to none of the logic functions if >50% of all the 
genotypes or <4 genotypes are annotated to any (C1,C2) combina-
torial state, or none of the annotated genotypes yield significant 
genetic interactions (|ε|< = 0.08). For those subsystems exhibiting 
Boolean logic, we excluded ‘trivial’ functions in which the parent 
is always True, always False, or follows one of the children without 
dependence on the other.

DCell server construction. The DCell server (http://d-cell.ucsd.
edu/) comprises several interconnected components working 
in unison to collect user input, run simulations, and transcode 
results to the web interface. On the backend, the DCell neural 
network model runs on the Torch library on a dedicated multi-
GPU machine. On the front end, the web interface is built on 
cytoscape.js51 and an in-house D3 (ref. 52) graph visualizer to 
display a subgraph of the hierarchy, and React53 for agile DOM 
(Document Object Model) editing54. To respond to user input, 
including searching and viewing details of model subsystems, a 
low-latency proxy service translates between plain text fetched 
from the front end and binary data used by the backend. An 
Elasticsearch cluster55 caches and indexes data for fast lookup 
and predictions. All web services run on a Kubernetes-based 
cloud infrastructure (http://kubernetes.io/) that autoscales to 
heavy workloads. The result of these efforts is to allow easy visu-
alization and interactivity of the model.

Life Sciences Reporting Summary. Further information on 
experimental design is available in the Life Sciences Reporting 
Summary.

Data availability. The D-Cell server is available at http://d-cell.
ucsd.edu/. The software implementation and dataset are available 
at https://github.com/idekerlab/DCell/.
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Describe how samples/organisms/participants were 
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5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.
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Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.
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for distribution by a third party.
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b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
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