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SUMMARY

MHC-I molecules expose the intracellular protein
content on the cell surface, allowing T cells to detect
foreign or mutated peptides. The combination of six
MHC-I alleles each individual carries defines the
sub-peptidome that can be effectively presented.
We applied this concept to human cancer, hypothe-
sizing that oncogenic mutations could arise in gaps
in personal MHC-I presentation. To validate this hy-
pothesis, we developed and applied a residue-
centric patient presentation score to 9,176 cancer
patients across 1,018 recurrent oncogenic muta-
tions. We found that patient MHC-I genotype-based
scores could predict which mutations were more
likely to emerge in their tumor. Accordingly, poor pre-
sentation of a mutation across patients was cor-
related with higher frequency among tumors. These
results support that MHC-I genotype-restricted im-
munoediting during tumor formation shapes the
landscape of oncogenic mutations observed in
clinically diagnosed tumors and paves the way for
predicting personal cancer susceptibilities from
knowledge of MHC-I genotype.

INTRODUCTION

Avoiding immune destruction is a hallmark of cancer (Hanahan

and Weinberg, 2011), suggesting that the ability of the immune

system to detect and eliminate neoplastic cells is a major

deterrent to tumor progression. Indeed, recent studies have

demonstrated that the immune system is capable of elimi-
nating tumors when the mechanisms that tumor cells employ

to evade detection are countered (Brahmer et al., 2012; Hodi

et al., 2010; Topalian et al., 2012). This discovery has moti-

vated new efforts to identify the characteristics of tumors

that render them susceptible to immunotherapy (Rizvi et al.,

2015; Rooney et al., 2015). Less attention has been directed

toward the role of the immune system in shaping the tumor

genome prior to immune evasion; however, such early interac-

tions may have important implications for the characteristics of

the developing tumor.

The theory of cancer immunosurveillance dictates that the

immune system should exert a negative selective pressure

on tumor cell populations through elimination of tumor cells

that harbor antigenic mutations or aberrations. Under this

model, tumor precursor cells with antigenic variants would

be at higher risk for immune elimination and, conversely, tu-

mor cell populations that continue to expand should be biased

toward cells that avoid producing neoantigens. In model

organisms, there is accumulating experimental evidence

supporting that immunosurveillance sculpts the genomes of

tumors through detection and elimination of cancer cells

early in tumor progression (DuPage et al., 2012; Kaplan

et al., 1998; Koebel et al., 2007; Matsushita et al., 2012;

Shankaran et al., 2001). In humans, the observed frequency

of neoantigens has been reported to be unexpectedly low in

some tumor types (Rooney et al., 2015), suggesting that im-

munoediting could be taking place. However, this phenome-

non has been challenging to study systematically because

of the temporality of tumor-immune interactions as well as

the difficulty accounting for individual differences in antigen

presentation.

The binding affinity of theMHC-I complex for peptides is ama-

jor determinant of antigenicity and depends predominantly on

three genes encoded at the human leukocyte antigen (HLA)
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locus on chromosome 6: HLA-A, HLA-B, and HLA-C (Sidney

et al., 2008). The HLA locus is highly polymorphic, with over

10,000 distinct alleles for the three genes documented to date

(Robinson et al., 2015). This diversity raises the possibility that

the set of oncogenic mutations that create neoantigens may

differ substantially among individuals. Indeed, neoantigens

found to drive tumor regression in response to immunotherapy

were almost always unique to the responding tumor (Lu and

Robbins, 2016). Several studies have also reported that nonsy-

nonymous mutation burden, rather than the presence of any

particular mutation, is the common factor among responsive

tumors (Rizvi et al., 2015). The paucity of recurrent oncogenic

mutations driving effective responses to immunotherapy is sug-

gestive that these mutations may less frequently be antigenic,

possibly as a result of selective pressure by the immune system

during tumor development.

These observations led us to hypothesize that antigenic onco-

genic mutations are eliminated during the early stages of tumor

development in a manner that is dependent on the subset of

the oncogenic peptidome that can be presented by an individ-

ual’s MHC-I. To find evidence in support of our hypothesis, we

set out to systematically characterize the interactions between

patient MHC-I allele combinations and recurrent cancer muta-

tions for thousands of tumors from The Cancer Genome Atlas

(TCGA). Currently, existing state-of-the-art in silico tools allow

prediction of HLA-specific MHC-I peptide binding affinities. We

thus needed to first devise a score capable of estimating the

qualitative likelihood of MHC-I-based presentation of sequences

containing specific mutations based on peptide binding affinities

while accounting for each individual’s 6 MHC alleles. We then

used this score to study interactions between patient HLA alleles

and the corresponding MHC-I binding affinities for over a thou-

sand recurrent mutations in known oncogenes and tumor sup-

pressors, which are likely to be enriched for driver mutations

and other early events in cancer development (Bozic et al.,

2010; McGranahan et al., 2015). This analysis revealed that pa-

tient MHC-I genotypes directly influence the probability that their

tumor will acquire a recurrent oncogenic mutation, providing

new evidence that immunoediting of oncogenic mutations oc-

curs in humans and setting the stage for HLA-based precision

strategies in cancer prevention and immunotherapy.

RESULTS

MHC-I Affinity-Based Scoring Scheme for Mutated
Residues
To study the influence of MHC-I genotype in shaping the ge-

nomes of tumors, we developed a qualitative residue-centric

presentation score and evaluated its potential to predict whether

a sequence containing a residue will be presented on the cell

surface. The score relies on aggregating MHC-I binding affinities

across possible peptides that include the residue of interest.

MHC-I peptide binding affinity predictions were obtained using

the NetMHCPan3.0 tool (Vita et al., 2015), and following pub-

lished recommendations (Nielsen and Andreatta, 2016), pep-

tides receiving a rank threshold <2 and <0.5 were designated

MHC-I binders and strong binders respectively. For evaluation

of missense mutations, we based our score on the affinities of
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all 38 possible peptides of length 8–11 that incorporate the

amino acid position of interest (Figure 1A), while for insertions

and deletions, any resulting novel peptides of length 8–11 were

considered (Figure S1A).

We evaluated several strategies for combining peptide affin-

ities to approximate presentation of a specific residue on the

cell surface using an existing dataset of peptides bound to

MHC-I molecules encoded by 16 different HLA alleles in mono-

allelic lymphoblastoid cell lines determined using mass spec-

trometry (MS) (Abelin et al., 2017), the most comprehensive

database of cell surface presented peptides currently available.

These strategies included assigning the best rank among pep-

tides, the total number of peptides with rank <2, the total number

of peptides with rank <0.5, and the best rank weighted by pre-

dicted proteasomal cleavage (Figures S1B–S1K). We then

compared the ability of these scores to discriminate these MS-

derived residues from a size-matched set of randomly selected

residues (STAR Methods). The best rank score (Figure 1B)

provided themost reliable prediction that a particular residue po-

sition would be included in a sequence presented by the MHC-I

on the cell surface (Figure 1C); thus, this score was used for all

subsequent analysis.

Finally, to test the best rank score’s ability to assess the

presentation of cancer-related mutations, we scored the set

of expressed mutations in 5 cancer cell lines to predict

which would be presented by an HLA-A*02:01-derived MHC-I

(Tables S1A–S1E). Unless a mutation affects an anchor position,

a peptide harboring a single amino acid change has a modest

impact on peptide binding affinity and should be presented on

the cell surface provided that the corresponding native sequence

is presented (Tables S1F–S1J). Indeed, analyzing a database of

native peptides found in complex with an HLA-A*02:01 MHC-I

in these 5 cell lines, we found that across cell lines, 9.8% of mu-

tations predicted to strongly bind and 4.0% of mutations pre-

dicted to bind an HLA-A*02:01 MHC-I at any strength were also

supported by MS-derived peptides (Figure 1D). These experi-

mental results validate the ability of a score derived from MHC-I

binding affinities to identify mutations with a higher likelihood of

generating neoantigens and support the application of this score

to evaluateMHC-I genotype as a determinant of the antigenic po-

tential of recurrent mutations in tumors.

Quantifying Individual Variation in Presentation of
Recurrent Oncogenic Mutations
To determine whether individual variation in MHC-I genotypes

results in patient-level differences in the presentation of muta-

tions in a large human cancer cohort, we called HLA alleles for

patients in the TCGA. We successfully assigned HLA-A, -B,

and -C allele pairs to 9,176 of 9,839 cancer patients using three

algorithms (Figure S2A) (Jia et al., 2013; Shukla et al., 2015; Szo-

lek et al., 2014). Most alleles were called from the consensus of

Optitype and Polysolver, allowing only 1 disagreement out of 6

alleles (Figure S2B), and a minority of patients without exome

sequencing data were called based on genotype data using

SNP2HLA (STAR Methods; Figure S2C). The remaining patients

were successfully called by either Optitype or Polysolver

(Figure S2D; Table S2). Only 245 of the known HLA alleles

were observed in TCGA patients, and few alleles were present
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Figure 1. Development of a Residue-Centric Presentation Score

(A) A graphical representation of calculating the presentation score for a particular residue. Each residue can be presented in 38 different peptides of differing

lengths between 8 and 11.

(B) Single-allele MS data from Abelin et al. (2017) was compared to a random background of peptides to determine the best residue-centric score for quantifying

of extracellular presentation (best rank score shown).

(C) A ROC curve showing the accuracy of the best rank residue presentation score for classifying the extracellular presentation of a residue by anMHC allele. The

aggregated presentation scores for MS data from 16 different alleles was compared to a random set of residues with the same 16 alleles.

(D) The fraction of native residues found for the list of mutations identified in five different cancer cell lines for strong (rank <0.5) and weak (0.5% rank <2) binders.

The mutated version of the residue is assumed to be presented if the mutation does not disrupt the binding motif.

See also Figure S1 and Table S1.
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in more than 10%patients (Figures S2E–S2G). Allele frequencies

were highly correlated with reported frequencies among healthy

individuals of matched ancestry but weakly to allele frequencies

of other populations (Figures S2H–S2J). We did not observe any

unexpected bias in allele frequencies among cancer patients

relative to matched healthy populations.

To represent a patient’s ability to present a particular mutation,

we devised a score for aggregating the Best Rank scores across

the patient’s six MHC-I alleles (Figure 2A). We selected the

harmonic mean to combine the six best rank scores across the

6 alleles because it has the desirable property that it is domi-

nated by the minimal value. Thus, the Patient Harmonic-mean

Best Rank (PHBR) score is highly influenced by the best allele

but also integrates information about presentation by the other
alleles. To determine the performance of the PHBR score for pre-

dicting actual presentation, an independent MS data was used

including 5 cell lines expressing 6 HLA alleles typed to the fourth

digit (Bassani-Sternberg et al., 2015; Figure 2B). Receiver oper-

ating characteristic (ROC) curves were constructed from the

PHBR scores for each cell line as well as the aggregated scores

across the cell lines (Figure 2C) and demonstrated that the PHBR

score was indeed predictive of peptide presentation in a multi-

allelic setting.

We identified a set of 1,018 likely driver mutations based on

the criteria that these mutations occur in known oncogenes

and tumor suppressors (Davoli et al., 2013) and are observed

in at least 3 tumors in TCGA (STAR Methods; Tables S3A–

S3E). We then constructed a matrix of PHBR scores for patients
Cell 171, 1–12, November 30, 2017 3



Patient
MHC 
alleles

Mutation

A

B

C

A

B

C

Predicted
binding

Peptide best rank (BR)
per allele

0.3

1.2

2.9

3.3

6.4

7.1

A

C

Patient Harmonic 
Best Rank (PHBR)

C2

C1

B2

B1

A2

A1

1.174

Fraction of random residues recovered

F
ra

ct
io

n 
of

 M
S

-b
as

ed
 r

es
id

ue
s 

re
co

ve
re

d

+
6

1      1      1      1      1      1+ + + + +
6.4 1.2 2.9 3.3 0.3 7.1

∑
i = 1

6

BRi

1

6

=

Multi-allele
cell line

B

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Combined: 0.75

Fib: 0.75

HCT116: 0.76

HCC1143: 0.73

HCC1937: 0.74

JY: 0.78

Cell line: AUC

m/z

Figure 2. Development of a Patient Specific

Residue-Centric Score

(A) A graphical representation of calculating the

patient presentation score for a particular residue.

Each patient has six MHC alleles. The Patient

Harmonic-mean Best Rank (PHBR) presentation

score is the harmonic mean of the best rank score

of a residue across a patient’s six alleles.

(B) An experimental schematic of the MS data

collection used in the score validation.

(C) A ROC curve showing the accuracy of the

PHBR for classifying the extracellular presentation

of a residue by a patient’s six MHC alleles for 5

different cell lines (colors) and for peptides from all

cell lines combined (black). The aggregated PHBR

presentation scores for 5 cell lines expressing 6

MHC alleles was compared to a random set of

residues for the same MHC alleles.

See also Figure S2 and Table S2.
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(Figure 3; rows) versus the 1,018 recurrent oncogenic mutations

(Figure 3, columns). This matrix provides a high-level view of in-

dividual differences in presentation of functional mutations caus-

ally implicated in tumorigenesis.

Inspection of the PHBR score matrix highlights that some

recurrent oncogenic mutations are universally poorly presented

by theMHC-I, while others appear to have a high likelihood of be-

ing presented in general (Tables S3F and S3G). Over 95 muta-

tions were predicted to have PHBR scores <4 for all patients,

but no mutations had PHBR scores <1 across the entire popula-

tion (Figures S3A and S3B). There was no obvious clustering of

mutations according to functional consequence (missense

versus indel or loss of function versus gain of function; Figure 3;

columns), although distinct amino acid substitutions affecting

the same residue tended to be grouped. We also compared

patients based on the fraction of the 1,018 recurrent oncogenic

mutations that their MHC-I genotype could potentially present.

Patients’ mutation coverage ranged from as high as >86% of

mutations with PHBR <4 (>39% at PHBR <1) to <54% of muta-

tions receiving a PHBR <4 (<18% at PHBR <1) (Figures S3C

and S3D).

Patient MHC-I Genotypes Are Predictive of the
Oncogenic Mutations that Emerge in Their Tumor
If MHC-I genotype restricts the oncogenic peptidome exposed

to immune surveillance, exposed mutations should be less

frequently observed than masked mutations in individual tumors

(Figure 4A). As an initial approach, we mapped patient mutation

status onto the PHBR score matrix (Figure 3) and divided

PHBR scores into two groups: those that corresponded to

observedmutations and those that corresponded to unobserved
4 Cell 171, 1–12, November 30, 2017
mutations. Comparing PHBR scores be-

tween these groups uncovered a bias

for observed mutations to have higher

PHBR scores (Figure 4B), with the

largest differences apparent for PHBR

scores <0.5 (Figure 4C). We took two ap-

proaches to quantifying the effect of
MHC-I genotype on the probability of acquiring mutations,

comparing the relationship between PHBR and mutation proba-

bility within patients (rows of Figure 3) and across patients (col-

umns of Figure 3). As the logscale PHBR score was approxi-

mately linearly related to the logit probability of a mutation

(Figures S4A and S4B), wemodeled their relationship with an ad-

ditive logistic regression model with non-linear effects to control

for variation in mutation rates among mutations and patients.

When we analyzed the relationship between log-PHBR and

the logit mutation probability within patients, we found that the

log-PHBR was positively associated with a significant increase

in the odds of a patient acquiring a mutation, supporting that pa-

tients have a higher probability of acquiring mutations less effec-

tively presented by their MHC-I (within-patient model; mutation

frequency R5; odds ratio [OR] = 1.28; 95% confidence interval

[CI] [1.25, 1.31]; p < 2e-16) (Table 1). For each unit increase in

log-PHBR, the odds of a mutation increases by 28%. The influ-

ence of PHBR tended to be stronger for mutations that were

observed more frequently, for example, for mutations observed

at least 20 times each unit increase in log-PHBR resulted in an

odds increase of 54.5% (Table S4). These results demonstrate

that the PHBR score is predictive of which recurrent oncogenic

mutations are likely to drive an individual’s tumor during the early

stages of tumor development pan-cancer.

The second approach analyzes the relationship between the

log-PHBR and logit mutation probability across patients with

the same mutation. This formulation evaluates whether the

log-PHBR of a mutation has predictive power to determine

which patients are at higher risk when the probability of the

mutation occurring among patients is already known. This

analysis revealed that PHBR was not a significant predictor of
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which patients would obtain a specific mutation (within-mutation

model; mutation frequency R5; OR = 1.03; 95% CI [0.99, 1.06];

p < 0.17). The negligible effect of log-PHBR in this setting sug-

gests that its influence is generally already captured by the

random effect that models variation in mutation frequency and

that incorporates the PHBR influence demonstrated by the

within patients analysis.

To determine whether PHBR score predictive power is

distributed equally among different cancer types, we repeated

the analysis within groups of at least 100 patients with a

common tumor type (Figures 4D and 4E; all tumor types shown

in Figures S4C and S4D). Once again, the within-mutation

analysis mostly returned ORs with 95% CIs that included 1, indi-

cating a lack of predictive power (Figure 4D, Table S5A). In clear

contrast, the within-patient analysis returned multiple tumor

types forwhich theORwas significantly greater than 1 (Figure 4E;

Table S5B). While PHBR was predictive of mutation occurrence
within-patient in more than 50% of the tumor types evaluated,

there were clear differences in the magnitudes of the ORs, sug-

gesting that PHBR could bemore predictive in some tumor types

than others. The strongest effects were observed in thyroid can-

cer (OR = 2.51; 95% CI [2.25, 2.8]), while no association was

observed in acute myeloid leukemia, lung squamous cell carci-

noma, sarcoma, or clear cell renal carcinoma. Notably, effect

sizes were even larger when we considered only mutations

observed >20 times across tumors (Figures S4E and S4F; Tables

S5C and S5D). We observed that tumor types with fewer sam-

ples or harboring fewer recurrent mutations had larger 95%

CIs, and tumors with larger ORs tended to have high-frequency

mutations associated with them. For example, 58% of thyroid

cancers had a BRAF V600E mutation and 70% of low-grade gli-

omas had an IDH1 R132H mutation (Tables S5E–BB). Interest-

ingly, PHBR was associated with the probability of mutation

in both low-grade glioma and glioblastoma, suggesting that
Cell 171, 1–12, November 30, 2017 5
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Figure 4. PHBR Predictive Power for Mutation Probability

(A) A schematic showing the fundamental hypothesis by which an individual’s MHC allele-specific coverage of the oncogenic mutational space influences the

probability of occurrence of oncogenic mutations.

(B) A boxplot denoting the difference in PHBR scores for the 1,018 oncogenic mutations and 9,176 patients split by mutation occurrence. Error bars denote the

1.5 IQR range.

(C) Histograms of PHBR scores associated with the presence or absence of mutations.

(D and E) The ORs (black boxes) and 95%CIs associated with a 1-unit increase in PHBR score for different cancer types using (D) the within-mutation model and

(E) the within-patient model.

(F) Boxplots for the PHBR scores grouped according to presence or absence for passenger mutations and germline variants. Error bars denote the 1.5 IQR range.

(G) A boxplot denoting the difference in patient-specific presentation scores for acquired mutations when divided into driver mutations and passenger mutations.

Error bars denote the 1.5 IQR range.

(H) Boxplots showing the total number of mutations acquired for patients who acquired amutation in one of their HLA genes versus those that did not. Patients are

divided by tumor type and only the tumor types with at least five HLA-mutated patients are shown. Error bars denote the 1.5 IQR range.

See also Figure S4, Table S5, and Table S6.
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immune surveillance during tumor development in the brain is

not impeded by immune privilege.

Importantly, when we repeated our analysis with a subset

of common germline variants in the same patients, we found

no relationship between PHBR score and variant carrier status

(Figure 4F; Table 1). We also controlled for other factors that

could potentially confound our results, including different thresh-

olds on mutation frequency, the specific method used to assign

patient genotypes, and inclusion of HLA-C, which is typically ex-
6 Cell 171, 1–12, November 30, 2017
pressed at much lower levels that HLA-A and HLA-B (Zemmour

and Parham, 1992). The association between PHBR score and

mutation status was robust to all of these factors (Table S4).

Finally, we compared the results obtained by the PHBR score

to a simpler Patient Best Rank (PBR) score that assigns the min-

imum rank across all 6 HLA alleles. Interestingly, although the

PBR performed identically on the multi-allelic cell line-based

MS benchmark (Figure S4G), when we analyzed the relationship

of PBR and mutation probability, we found that PBR had less



Table 1. Quantitative Estimate of the Association between PHBR Score and Mutation Occurrence

Within Residue Within Patient

OR 95% CI p Value OR 95% CI p Value

R5 mutations 1.03 0.997,1.06 0.17 1.28 1.25, 1.31 <2 3 10�16

Passenger mutations 1 0.97,1.03 0.95 1 0.96, 1.03 0.97

Germline variants 0.997 0.994,0.999 0.15 0.995 0.993, 0.996 5.8 3 10�10

ORs, 95% CIs, and p values are shown for within-mutation and within-patient models relating PHBR score to mutations observed R5 times across

tumors. Models relating PHBR score to a set of 1,000 passenger mutations and 1,000 germline variants serve as controls. See also Table S4.
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predictive power than the PHBR (Table S6). These results indi-

cate that, while the highest-affinity peptide may be more likely

to be detected on the cell surface, presentation by multiple

MHC-I alleles appears to have a positive impact on the likelihood

of T cell activation and therefore on whether a tumor will acquire

a particular recurrent mutation.

MHC-I-based restriction of oncogenic mutations is likely to be

active predominantly during the early stages of tumorigenesis

when tumors have not yet evolved widespread immunosuppres-

sive strategies. This suggests amodel wherebymutation-related

phenotypes could differ according to the effectiveness of im-

mune surveillance throughout tumorigenesis. According to this

model, mutations should accumulate more quickly when tumor

cell populations are expanding rapidly in under conditions of tu-

mor driven immune suppression, and themajority of thesemuta-

tions should be passenger mutations that provide no fitness

advantage to tumor cells. Indeed, consistent with this concept

and previous reports, passenger mutations tended to have

much lower PHBR scores than driver mutations (Figure 4G),

and PHBR scores were not predictive of passenger-like muta-

tions observed in cancer patients (Table 1) indicating that

presentation of passenger mutations does not subject them to

selective pressure. We also noted that patients with HLA muta-

tions had significantly higher numbers of mutations (p < 0.05)

for 9 out of 10 tumor types that includemore than 5HLA-mutated

patients (Figure 4H). Shukla et al. previously demonstrated that

the majority of somatic HLA mutations in TCGA impair MHC-I

peptide binding, suggesting that the positive correlation be-

tween HLA mutation status and mutation burden is unlikely to

be explained by elevated mutation rates (Shukla et al., 2015).

This evidence further supports the concept that, upon immune

evasion, MHC-I-based immune surveillance weakens or is elim-

inated altogether, paving the way for increased mutation rates

and emergence of antigenic mutations.

Our results support MHC-I as the gatekeeper of early immu-

noediting and MHC-I genotype-specific binding affinity as a

determinant of the oncogenic mutations that are subject to im-

mune surveillance by T cells. Most importantly, these results

imply that MHC-I genotype provides predictive information

about the oncogenic mutations that are likely to occur should a

tumor arise in a particular person.

MHC-I Presentation Influences Oncogenic Mutational
Frequencies in Human Cancer
We next re-examined the TCGA population as a whole to eval-

uate the consequences of MHC-I genotype-based restriction

for the frequencies of somatic mutations among tumors. There
was a significant correlation between population ability to pre-

sent a mutation and that mutation’s frequency among tumors

(Spearman rho = 0.61, p = 1.63 10�6) (Figure 5). This correlation

was robust when the analysis was restricted to HLA-A and -B

alleles (Spearman rho = 0.52, p = 8.2 3 10�5) (Figure S5A)

and when accounting for tumor type (Spearman rho = 0.49,

p = 6.93 10�4) (Figure S5B). The relationship between mutation

frequency and patient MHC-I binding affinity suggests that the

frequency of an oncogenic mutation among tumors is not deter-

mined by themagnitude of the fitness advantage provided by the

mutation alone. Mutation frequency also depends on the visibil-

ity of that mutation to the immune system across patients. Thus,

patient-level MHC-I genotype-based restriction of the landscape

of oncogenic mutations contributes to shaping the mutation fre-

quencies observable in cancer populations.

The general low presentation of highly recurrent oncogenic

mutations across cancer patients led us to question whether

poor presentation of such mutations was a general feature of

human MHC-I. In order to gain a complete perspective, we

compared MHC-I-based presentation of recurrent oncogenic

mutations to other classes of variation that would not be ex-

pected to show evidence of purifying selection by MHC-I-based

immune surveillance, including 3,000 random mutations, 1,000

common polymorphisms, and 1,000 viral and 1,000 bacterial

residues (Table S7A; STARMethods). In total, we calculated pre-

sentation scores for 1,000 recurrent cancer missense mutations

and 6,000 variant sequences against 2,915 MHC-I alleles in

immune epitope database (IEDB) (Figures S6A and S6B).

Comparing overall best rank score distributions, we observed

a bias toward higher presentation scores (worse presentation)

among highly recurrent mutations (R10) affecting oncogenes

but not tumor suppressors relative to the other classes of varia-

tion (Figure 6A). However, a significantly smaller fraction of mu-

tations in both oncogenes and tumor suppressors were pre-

sented at both best rank <2 and rank <0.5 binding thresholds

(Figure 6B). In contrast, viral and bacterial residues generally

had smaller presentation scores and higher binding fractions

than common germline polymorphisms and random mutations,

consistent with the MHC evolving to present foreign sequences

more effectively than endogenous sequences. We determined

that the difference in presentation between highly recurrent

oncogenic and random mutations could not have resulted from

a biased sample of random mutations (p = 0.008; 1,000 sub-

sampled random mutation sets) (Figure S6C).

We next evaluated other factors that might result in a biased

profile of MHC binding for recurrent oncogenic mutations.

Possible sources of bias include residue location inside versus
Cell 171, 1–12, November 30, 2017 7
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Figure 5. Population Median Presentation of Recurrent Oncogenic Mutations Determines Their Frequency among Tumors

Heatmap showing PHBR presentation scores for all 9,176 patients of the 1,018 recurrent cancer mutations (observed in at least three patients) grouped by their

mutation count in TCGA and displayed as a median. The median PHBR score across the population for each mutation group is plotted above the heatmap. The

number of times the mutation group is observed in TCGA is plotted below the heatmap. The correlation between the mutation count in TCGA and the median

PHBR score is calculated with a Spearman test. See also Figure S5.
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outside of functional protein domains, higher expression of

HLA-A and HLA-B than HLA-C, differences in MHC-I affinity

for different peptide lengths, inclusion of lower-frequency recur-

rent mutations and population-specific allele frequencies

(González-Galarza et al., 2015). Even when controlling for each

of these factors, oncogenic mutations still showed a significant

bias for poorer presentation and lower fractions being presented

(Figures S6D–S6I) with one exception. When lower frequency

recurrent mutations (R3) were included, we observed that only

oncogenes but not tumor suppressor mutations were signifi-

cantly different from random mutations.

Finally, we sought to determine whether lower predicted pre-

sentation of cancer mutations resulted from impaired MHC-I

binding affinity due to the amino acid change. We first compared

the presentation scores of the random set of mutations to the

scores received by the corresponding native (wild-type) se-

quences and found that native residues tended to be slightly

better presented than mutated residues (Figures 6C and 6D).

Next, we determined the presentation scores for the native

residues corresponding to the subset of 144 highly recurrent

oncogenic mutations (observed R10 times; STAR Methods).

The presentation scores for the native residues corresponding

to oncogenic mutations, like the oncogenic mutations them-

selves, were significantly poorer than those of the set of

randomly generated mutations (Mann-Whitney U test, p <

2e-16). Surprisingly, MHC-I-based presentation of the native
8 Cell 171, 1–12, November 30, 2017
residues in cancer genes was even poorer than presentation of

the mutated residues (Mann-Whitney U test, p < 2e-16 for both

oncogenes and tumor suppressor genes) (Figures 6C and 6D).

This trend remained significant when analysis was restricted to

HLA-A and HLA-B, extended to all recurrent oncogenic muta-

tions, and specifically applied to 9-mer (Figures S6J–S6L).

Thus, we conclude that recurrent oncogenic mutations are

biased toward residues residing in peptides that are particularly

poorly presented by the majority of human MHC-I alleles.
DISCUSSION

Here, we demonstrate that a person’s MHC-I genotype consti-

tutes a barrier that partially constrains the possible oncogenicmu-

tations thatadeveloping tumorcansampleon itsway tobecoming

clinically detectable disease. Using in silico approaches, we sys-

tematically assignedMHC-I allele combinations tocancerpatients

and determined their presentable oncogenic sub-peptidome,

converting peptide affinities into personalized mutation-centric

presentation scores. These scores were positively associated

with the incidence of recurrent cancer mutations, demonstrating

their potential to provide predictive information about individual

susceptibility to develop tumors harboring particular oncogenic

mutations. Used in combination with other known risk factors,

this information could enable improved identificationof individuals



Figure 6. Recurrent Oncogenic Mutations Are Universally Poorly Presented by the Human MHC-I

(A) Boxplots denoting the distribution of residue presentation scores for 6 different classes of residue including 2,915 MHC-I alleles. Error bars denote the 1.5

IQR range.

(B) The fraction of residue presentation scores in (A) that fall below the 0.5 threshold of strong binding and the 2 threshold of binding.

(C) Boxplots denoting the distribution of residue presentation scores for mutated residues in oncogenes, tumor suppressor genes, and random genes as

compared to the native versions of the same residues with 2,915 MHC-I alleles. Outliers are excluded for visualization purposes. Error bars denote the 1.5

IQR range.

(D) The fraction of residue presentation scores in (C) that fall below the 0.5 threshold of strong affinity and the 2 threshold of any affinity. See also Figure S6.
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at risk for developing certain types of cancer, potentially enabling

MHC-I genotype-guided screening.

Analysis of thousands of TCGA patient genomes and approx-

imately one billion MHC-I binding predictions uncovered a

strong link between the MHC-I genotype-derived PHBR score

and the probability of acquiring specificmutations by a particular

patient, with an estimated 54.5% increase in odds of acquiring

specific mutations (>20 observations in TCGA) for every unit in-

crease of log-PHBR. We observed reduced effect sizes at lower

mutation frequency thresholds, possibly due to the inclusion of

more mutations that are not early events in cancer and thus

not subject to immune surveillance-based elimination. When re-

stricting analysis to higher-frequency mutations, fewer muta-

tions were available to fit the model resulting in reduced statisti-

cal power. When analyzed by cancer type, we found even

stronger associations, with some tumor types approaching a

nearly 250% increase in odds of mutation for each unit increase

of log-PHBR.
Across the entire cohort of cancer patients, the frequency of

oncogenic mutations was correlated with the median PHBR

score, suggesting that the individual MHC-I sub-peptidome

coverage aggregates to produce population-scale effects. Inter-

estingly, when considering all possible HLA alleles, we observed

that oncogenic mutant peptides have poor binding affinity for the

human MHC-I in general but an above-average binding affinity

for pathogen-derived peptides. This effect is driven by the native

underlying sequence, which has even worse binding affinity for

MHC-I than the corresponding oncogenic mutant peptide.

These observations imply that in order to become highly recur-

rent, oncogenic mutations not only need to provide a fitness

advantage to tumor cells, but also need to occur within a peptide

sequence that is universally poorly presented across the human

population. Mutations that provide a fitness advantage but are

antigenic would either occur post immune evasion, or early in

select individuals with MHC-I genotypes incapable of presenting

them, and thus never reach high frequency among tumors.
Cell 171, 1–12, November 30, 2017 9
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We note that the ROC curve for our PHBR score formulation

suggests the inclusion of false positives (Figure 2C), potentially

resulting from the assumption that all 38 possible peptides over-

lapping a mutation have equal opportunity to bind the MHC-I.

This assumption could overestimate the presentation of residues

and explain in part why we observed a small subset of recurrent

oncogenic mutations with very low PHBRs (i.e., well presented)

across cancer patients (Figure 3). In general, recurrent mutations

that can be presented across many patients (Figure 5; Tables

S3F and S3G) could provide an attractive target for design of im-

munotherapies, although presentation alone is not sufficient to

induce T cell activation. The existence of recurrent oncogenic

mutations that are easily visible to the immune system could indi-

cate failure of other determinants of immunogenicity required to

render these mutations antigenic. Further investigation may

reveal whether well-presented oncogenic mutations evade im-

mune detection through alternative biological mechanisms. We

also observed some recurrent mutations with very high PHBR

scores (i.e., poorly presented) indicating the existence of muta-

tions that are unlikely to ever be detected via MHC-I-based an-

tigen presentation.

In conclusion, this is the first study to provide compelling

evidence that common oncogenes and tumor suppressors

across human cancers are subject to immunoediting. The

observed mutational driver landscape in established tumors

thus reflects constraints imposed by individual variation at

the HLA locus. The perspective gained from our analysis is

based on a score that predicts presentation, but not antigenic-

ity and depends on the existing state of the art for predicting

peptide binding affinity. Thus, as computational algorithms

continue to improve, we will be able to more accurately esti-

mate the impact of the immune system on the emergence of

mutations in tumors. We anticipate that this study will catalyze

future efforts to understand the links between HLA genotype

and cancer susceptibility.
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PEAKS Studio Zhang et al., 2012 http://www.bioinfor.com/peaks-studio/
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polysolver

Optitype Szolek et al., 2014 https://github.com/FRED-2/OptiType

Snp2HLA Jia et al., 2013 http://software.broadinstitute.org/mpg/snp2hla/

NetMHCPan-3.0 Nielsen and Andreatta, 2016 http://www.cbs.dtu.dk/services/NetMHCpan/

Data analysis was done using Python 2.7 Python

Seaborn Python library https://seaborn.pydata.org/

Pandas Python library http://pandas.pydata.org/

Biopython Python library http://biopython.org/wiki/Seq

Other

Multi-allelic MS data Bassani-Sternberg et al., 2015

MS MHC-I data Abelin et al., 2017

MS MHC-I data (HLA alleles: HLA-A*01:01,

HLA-A*02:01, HLA-A*24:02, HLA-B*07:02,

and HLAB*51:01, eluted from HeLa cell line)

Trolle et al., 2016 http://www.iedb.org/subID/1000685

accession # 1000685.

Ensembl data Yates et al., 2016 http://www.ensembl.org/index.html

GDC TCGA data N/A https://portal.gdc.cancer.gov/

Exome Variant Server N/A http://evs.gs.washington.edu/EVS/

UniProt N/A http://www.uniprot.org/
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Font-Burgada (joan.font-burgada@fccc.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
SKOV3 and HeLa cells were purchased from the ATCC and grown in DMEM/F12K medium with 10% FBS. A2780 cells were

purchased from Sigma and grown in RPMI with 10% FBS. OV90 cells (ATCC) were received as kind gifts from Dr. Patricia Kruk,
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University of South Florida (Tampa, FL), and were grown in 1:1 Medium 199/MCDB 105 with 15% FBS(Patterson et al., 2016). A375

cell line (ATCC) was a kind gift from Dr. Beatriz Carreno, Washington University (St. Louis, MO) and was grown in DMEM/F12K me-

dium with 10% FBS (Carreno et al., 2015). All cells were maintained in a humidified CO2 incubator (5% CO2, 37
�C). All cell lines were

subjected to high-resolution sequence-based HLA typing (HLA-A, -B, -C, and -DRB1) immediately upon receipt and growth in our

laboratory, and then again after stable transfection to ensure authentication prior to use in data collection.

METHOD DETAILS

Production and Isolation of soluble HLA/ Peptide Complexes
The soluble HLA-A*02:01 was transfected into different cell lines (HeLa, A375, SKOV3, A2780 and OV90). Transfected cells were

single cell sorted (subcloned) to identify a high expressing clone. Soluble HLA constructs are truncated at the 30 end of exon 4,

deleting the transmembrane and cytoplasmic domains, and include a C-terminal VLDLr epitope purification tag (SVVSTDDDLA)

that is recognized by the anti-VLDLr mAb (ATCC CRL-2197). This antibody was used both for purification of soluble HLA from cells

supernatant and for quantification of sHLA production as the capture antibody in a sandwich ELISA, with an antibody directed against

b2-microglobulin (Dako A0072) as the detector antibody. After transfection, cells were grown at high density in hollow-fiber bioreac-

tors (AcuSyst-Maximizer, C3 Cell Culture Company) and sHLA/peptide complexes were purified from supernatants by affinity chro-

matography with the anti-VLDLr antibody. Eluate fractions containing sHLA/peptide complexeswere pooled, brought to a final acetic

acid concentration of 10%, and heated to 78�C in a water bath to denature HLA. Peptides were purified and isolated from alpha

chain and B2m using an Ultracel 3 kDa cutoff cellulose membrane (EMD Millipore, PLBC06210) and lyophilized (Carreno et al.,

2015; Patterson et al., 2016).

LC/MS Analysis
Separation and sequencing of peptides purified from each cell line were carried out by two-dimensional liquid chromatography,

followed by information dependent acquisition (IDA) generated tandem MS (MS/MS). For the first dimension, the peptide sample

was loaded on a reverse-phase C18 column (110 Å pore size; 5 mm particle size, 2 mm [i.d.] 3 150 mm long Gemini column; Phe-

nomenex) with a Michrom BioResources Paradigm MG4 HPLC and UV detection at 215 nm wavelength. Elution was at pH 10 using

solvent A (10 mM ammonium formate, 2% acetonitrile, 98% water) and solvent B (10 mM ammonium formate, 95% acetonitrile, 5%

water). The peptide sample was loaded at a flow rate of �120 ml/min over an 18 min period. Then a two segment gradient was per-

formed at 160 ml/min; the 1st segment was a 40min linear gradient (4 - 40%B), followed by an 8min linear gradient (40 - 80%B). Forty

peptide-rich fractions were collected and dried by vacuum centrifugation.

For the second dimension chromatography, each fraction was resuspended in 10% acetic acid and subjected to nano-scale RP-

HPLC (Eksigent ekspert nanoLC 415 system, AB Sciex). The second dimension nano-HPLC setup included a C18 trap column

(350 mm [i.d.] 3 0.5 mm long; ChromXP) with 3 mm particles and 120Å pores and a ChromXP, C18 separation column (75 mm [i.d.]

3 150 mm long) packed with the same medium. A two-solvent system was utilized, where solvent A is 0.1% formic acid in water

and solvent B contains 0.1% formic acid in 95%acetonitrile/5%water. Samples were loaded at 5 mL/min flow rate on the trap column

and at 300 nL/min flow rate on the separation column. The separation was performed by a two linear gradients program: 10 - 40%

solvent B for 70 min and then 40 - 80% solvent B for 7 min. The column effluent was ionized using a NanoSpray III ion source (AB

Sciex), and MS and MS/MS fragments spectra were obtained in IDA mode using an AB Sciex TripleTOF 5600 System, as described

previously (Carreno et al., 2015).

Peptide Identification and Source Protein Information
Peptide sequences were assigned to resulting fragment spectra using PEAKS Studio, Premium License, v.7.0 (Bioinformatics

Solutions, Ontario, Canada). UniProt and NCBI non redundant database with Homo sapiens taxonomy were used for database

search by PEAKS.

The parameters used for database search were the following: 50 ppm precursor mass error tolerance and a product ion tolerance

of 0.05 Da. Post-translational modifications (PTM) consisting of N-terminal acetylation, deamidation of Asn andGln, oxidation of Met,

His, Trp, sodium adducts of Asp, Glu, C terminus, and the pyroglutamate derivative of glutamic acid were set as variable modifica-

tions. All peptides identified at 1% False Discovery Rate (FDR) were exported from PEAKS along with their protein identifications.

Gene symbols for source proteins were extracted from the online UniProt Knowledgebase (UniProt Consortium, 2015) using the

UniProt protein accession numbers provided by PEAKS upon peptide identification. Peptides were additionally screened for their

predicted binding to the HLA-A*02:01 allele.

QUANTIFICATION AND STATISTICAL ANALYSIS

Peptide Binding Affinity
Peptide binding affinity predictions for peptides of length 8-11 were obtained for various HLA alleles using the NetMHCPan-3.0 tool,

downloaded from the Center for Biological Sequence Analysis on March 21, 2016. (Nielsen and Andreatta, 2016). NetMHCPan-3.0
e2 Cell 171, 1–12.e1–e6, November 30, 2017
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returns IC50 scores and corresponding allele-based ranks, and peptides with rank < 2 and < 0.5 are considered to beweak and strong

binders respectively (Nielsen and Andreatta, 2016). Allele-based ranks were used to represent peptide binding affinity.

Residue Presentation Scoring Schemes
To create a residue-centric presentation score, we evaluated allele-based ranks for the set of kmers of length 8-11 incorporating the

residue of interest, resulting in 38 peptides for single amino acid positions (Figure 1A). Insertion and deletionmutations weremodeled

by the total number of 8-11-mer peptides differing from the native sequence (Figure S1J). We evaluated several approaches to

combine the HLA allele-specific ranks for residue/mutation-derived peptides into a single score representing the likelihood of being

presented by MHC-I:

d Summation (rank < 2): The summation score is the total number out of 38 possible peptides that had rank < 2. This scoring sys-

tem results in an integer value from 0 to 38, with residues of 0 being very unlikely to be presented and higher numbers being

more likely to be presented.

d Summation (rank < 0.5): The summation score is the total number out of 38 possible peptides that had rank < 0.5. This scoring

system results in an integer value from 0 to 38, with residues of 0 being very unlikely to be presented and higher numbers being

more likely to be presented.

d Best Rank: The best rank score is the lowest rank of all of the 38 peptides.

d Best Rank with cleavage:Wemodified the best rank score by first filtering the 38 possible peptides to remove those unlikely to

be generated by proteasomal cleavage as predicted by the NetChop tool (Kesxmir et al., 2002). Netchop relies on a neural

network trained on observed MHC-I ligands cleaved by the human proteasome and returns a cleavage score ranging between

0 and 1 for theC terminus of each amino acid. A threshold of 0.5 is recommended by theNetChop softwaremanual to designate

peptides as likely to be generated by proteasomal cleavage. Thus we retained only the peptides receiving a cleavage score

greater than 0.5 just prior to the first residue and just after the last residue. The best rank with cleavage score is the lowest

rank of the remaining peptides.
MS-based Presentation Score Validation
We acquiredMS data fromAbelin et al. (Abelin et al., 2017)that catalogs peptides observed in complex withMHC-I on the cell surface

across 16 HLA alleles, with between 923 and 3609 peptides observed bound to each. These data were combined with a set of

random peptides to construct a benchmark for evaluating the performance of scoring schemes for identifying residues presented

on the cell surface as follows:

d Converting MS peptide data to residues: The Abelin et al. MS data provides peptide observed in complex with the MHC-I,

whereas our presentation score is residue-centric. For each peptide in the MS data, we selected the residue at the center

(or one residue before the center in the case of peptides of even length) as the residue for calculating the residue-centric pre-

sentation score.

d Selection of background peptides:We selected 3000 residues at random from the Ensembl human protein database (Release

89) (Aken et al., 2017) to ensure balanced representation of MS-bound and random residues. Since the majority of residues are

expected not be be presented by theMHC (Nielsen and Andreatta, 2016), we expect that the randomly selected residues repre-

sent a reasonable approximation of a true negative set of residues that would not be presented on the cell surface.

d Scoring benchmark set residues: We calculated presentation scores with each scoring scheme for all of the selected residues

from the Abelin et al. data and the 3000 random residues against each of the 16 HLA alleles.

d Evaluating scoring scheme performance using the benchmark: For each scoring scheme, scores were pooled across the 16

alleles. The distribution of scores for the MS-observed residues was compared to the distribution of scores for the random res-

idues for each score formulation (Figure S1). For the best rank, residues were grouped at score intervals of 0.25 and for the

summation, residues were grouped at integer values between 0 and 38. At each scoring interval, we divided the fraction of

MS-observed residues falling into the interval by the fraction of random residues falling into that interval.

d Visualizing score performance with Receiver Operating Characteristic (ROC) Curves: We plotted and compared ROC curves

(Figures S1J and S1K) for each score formulation by calculating the True Positive Rate (% of observed MS residues predicted

to bind at a given threshold) and the False Positive Rate (% of random residues predicted to bind at a given threshold) across a

range of thresholds as follows:

d Summation (rank < 2): 0 through 38 by increments of 1

d Summation (rank < 0.5): 0 through 38 by increments of 1

d Best Rank: 0 through 100 by increments of 0.1

d Best Rank with Cleavage: 0 through 100 by increments of 0.1

We assessed overall score performance using the area under the curve (AUC) statistic. The best rank presentation score was

selected for all subsequent analyses.
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MS-based Evaluation of the Presentation of Mutated Residues Present in Cancer Cell Lines
We acquired the list of somatic mutations present in the genomes of five cancer cell lines (SKOV3, A2780, OV90, HeLa and A375)

from the Cosmic Cell Lines Project (Forbes et al., 2015). We restricted the mutations to the missense mutations observed in genes

present in the Ensembl protein database and removed all known common germline variants reported by the Exome Variant Server.

Furthermore, we used the cell line expression data from the Genomics of Drug Sensitivity Center to exclude mutations observed in

genes that are expressed in the lowest quantile of the specific cell line. For each of these mutated residues, we calculated the pre-

sentation score for HLA-A*02:01, an allele which had previously been studied in these cell lines (Method Details). We then searched

the database of MS-derived peptides from each cell line to determine whether themutation was observed in complex with theMHC-I

on the cell surface. Since the database only contains peptides mapping to the consensus human proteome reference, we searched

for the native versions of the peptides (Tables S1A–S1E). As long as the mutation does not disrupt the peptide binding motif,

the mutated version should still be presented by the MHC allele which can be determined using MHC binding predictions in IEDB

(Tables S1F–S1J) (Marsh et al., 1999). For each cell line, we evaluated the fraction of mutations predicted to be strong and

weak binders that should be presented based on the corresponding native sequences observed in the MS data (Figure 1D;

Tables S1F–S1J).

HLA Typing
HLA genotypingwas performed for genesHLA-A,HLA-B andHLA-C, which encode the protein determinants of MHC-I peptide bind-

ing specificity. All TCGA samples available as of Dec 6, 2016 were typed with PolySolver, Optitype and snp2HLA (Jia et al., 2013;

Shukla et al., 2015; Szolek et al., 2014), using default parameters for all tools (Figure S2A). PolySolver and Optitype require germline

(whole blood or tissue matched) whole exome sequenced samples. Snp2HLA requires germline genotype data (SNP-6.0 Affymetrix)

and can only accurately predict caucasian patients, thus we performed a PCA on the genotype data to identify the patients that could

be evaluated with this tool (Figure S2C). If Optitype and PolySolver disagreed onmore than one of the six HLA alleles the sample was

excluded from further analyses (Figure S2B). If either Optitype or PolySolver failed to type a particular patient, the typing by the other

tool was used. For a minority of samples that could not be typed by Optitype or PolySolver, snp2HLA was used (Figure S2D; Table

S2).HLA-A, -B and -C types were predicted for a total of 9176 samples and allele frequencies (Figures S2F and S2H) were compared

to representative populations in the HLA Frequency Net Database: USA NMDP African, USA NMDP European Caucasian, and USA

NMDP Japanese (Figures S2I–S2K; Tables S7B, S7D, and S7F).

Patient Presentation Scores
We define two patient presentation scores to represent a particular patient’s ability to present a residue given their distinct set of 6

HLA alleles (2 each of HLA-A, HLA-B and HLA-C). First, the Patient Best Rank (PBR) score was assigned as the best residue pre-

sentation score (corresponding to the lowest rank) across all 6 HLA alleles. Second, the Patient Harmonic-mean Best Rank

(PHBR) score was assigned as the harmonic mean of the best residue presentation scores for each of the 6 HLA alleles. For both

scores, a lower patient presentation score indicates that the patient’s HLA-alleles are more likely to present a residue on the cell sur-

face. In order to test the performance of the two scores in predicting actual presentation, we used published MS data for 5 cell lines

expressing 6 HLA alleles typed to the fourth digit (Bassani-Sternberg et al., 2015).

Selection of Recurrent Oncogenic Mutations and Passenger-like Mutations
Somatic mutations were considered to be recurrent and oncogenic if they occurred in one of the 100most highly ranked oncogenes or

tumor suppressors described by Davoli et al. (Davoli et al., 2013) and were observed in at least 3 TCGA samples. Among these, we re-

tained only mutations that would result in predictable protein sequence changes that could generate neoantigens, including missense

mutations and inframe indels. A total 1018 mutations (512 missense mutations from oncogenes, 488 missense mutations from tumor

suppressors, 11 indels from oncogenes and 7 indels from tumor suppressors) were obtained (Tables S3A and S3B). All mutations

observed in TCGA patients that did not fall into the 200 highly ranked cancer genes were designated passenger-like mutations.

Selection of Other Classes of Residues
Peptides from pathogens, common germline human variants and randomly mutated human peptides were assembled for compar-

ison with recurrent oncogenic mutations (Tables S3C and S3D). The proteomes of 10 virus species and 10 bacterial species

(Table S7A) were downloaded from UniProt . One thousand residues were selected at random from both the viral and the bacterial

set. A random set of mutations was generated by sampling 3,000 possible amino acid substitutions across human proteins from

Ensembl (release 89; GRCh37) (Aken et al., 2017). A set of 1,000 common germline variants was sampled from the Exome Variant

Server.

Generating Mutant Peptide Sequences
To allow determination of peptide sequences incorporating missense mutations, protein sequences were obtained from Ensembl

(release 89; GRCh37) (Aken et al., 2017) and updated with the new amino acid. For indels, we modified the corresponding mature

messenger RNA transcript sequences (CDS) by inserting or deleting nucleotides then translated the modified mRNA to protein

sequence.
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Patient Presentation Score-based Clustering
A matrix of PBR scores was constructed with 9176 TCGA samples as rows, 1018 recurrent oncogenic mutations as columns, and

PBR in each cell. The matrix was clustered using hierarchical agglomerative clustering on rows and columns. For convenience of

visualization, a partial matrix is displayed in Figure 2. In order to use the dynamic range in heatmap color to display variation in patient

presentation scores relevant to MHC-I based presentation, PBR > 2 (non-binding) were set to 2. Colorbars provide additional infor-

mation about patients and mutations, including ancestry, tumor type and T cell infiltration levels (patients) and mutation type and

gene category (mutations). T cell infiltration was determined using EPIC (Racle et al., 2017)), an mRNA-based immune infiltration pre-

diction algorithm. Patients were mapped to high, medium-high, medium-low and low T cell infiltration categories if their EPC scores

fell into upper to lower quartiles respectively. Furthermore, we plotted histograms of the fraction of mutations each patient could pre-

sent at baseline (PBR < 2) and strong (PBR < 0.5) thresholds (Figures S3A and S3B) and the fraction of the patients that could present

each mutation (Figures S3C and S3D).

HLA-mutated Patient Analysis
We labeled patients according to HLA mutation status based on whether they were reported to harbor a somatic mutation in HLA-A,

HLA-B orHLA-C by Shukla et al. Patients were excluded from this analysis if an HLAmutation was reported in the TCGAMAF file, but

not in Shukla et al. The remaining patients were then grouped according to HLAmutation status. Within each tumor type, the number

of total observed mutations was compared between patients with and without HLA mutations using a Mann Whitney U test

(Figure 4H).

Predictive power of PBR/PHBR score for mutation probability
Webuilt a 91763 1018 binary mutation matrix yij˛f0; 1g indicating whether patient i has a specific mutation j. We evaluated the rela-

tionship between this binary matrix and our matched 91763 1018 matrix with PBR/PHBR scores xij of patient i and for mutation j. To

determine the functional form of the relationship between xij and yij, (e.g., linear, log or stepwise), we fitted an additive logistic regres-

sion model with non-linear effects for the PBR/PHBR using the GAM function in the mgcv R package (Wood, 2010). This revealed a

linear association between log-PBR and the logit mutation probabilities (Figure S4A). Finally, to estimate the effect of xij on yij we

considered the following random effects models:

1) A within-mutation model relating xij to yij for a given mutation
Logit
�
P
�
yij = 1 j xij

��
= bj +glogðxijÞ (1)
where b � Nð0; qbÞ are random effects capturing mutation specifi
c effects (e.g., different occurrence frequencies amongmutations).

2) A within-patient model relating xij to yij for a given patient
Logit
�
P
�
yij = 1 j xij

��
= hi +glogðxijÞ (2)
where h � Nð0; qhÞ are random effects capturing different muta
i tion propensities among patients.

In these models, g measures the effect of the log-PBR/PHBR on the probability of a mutation being observed. We fitted these

model using the glmer function from the lme4 R package (Bates et al., 2015) and tested the null hypothesis that g = 0.

We repeated the within-mutation analysis (1) with oncogenic mutations present at different frequency thresholds and evaluated

similar models for a set of common 1000 germline variants (limited to 3,657 patients with germline variant calls) and for 1000

passenger mutations. We also repeated the within-patient analysis (2) with oncogenic mutations present at different frequency

thresholds and for high-confidence HLA-typed patients (> = 5 allele agreement among Polysolver and Optitype)). To analyze the

PHBR-mutation relationship in different tumor types, we fit separate models for each tumor type that had at least 100 patients.

PHBR score visualization
To visualize differences in PHBR score distributions for mutations observed versus absent from tumors, PHBR scores in the 1,018

mutation x 9,176 patient matrix were grouped according to mutation status and plotted in side-by-side boxplots (Figure 4B). We

repeated this for using germline variants and passenger mutations across the 9,176 patients (Figure 4F).

Comparing Presentation Scores for Driver and Passenger Mutations
The PHBR scores for driver and passenger mutations were calculated for all patients whose tumor harbored the mutation. Recurrent

oncogenic mutations were further designated drivers if they were observed in at least ten TCGA patients. This resulted in a total of
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5,191 patient-specific presentation scores for 144 highly recurrent oncogenic mutations and 1,584,367 presentation scores for

1,454,396 passenger mutations. Patient presentation score distributions for drivers and passengers were compared using a

Mann-Whitney U test (Figure 4G).

Analysis of Presentation versus Mutation Frequency Among Tumors
Recurrent oncogenic mutations were grouped according to the number of TCGA patients in which they were observed. For each

patient, the median PHBR score was determined for each mutation group (Figure 5 heatmap). The correlation between the median

PHBR score of each group across all patients (median of Figure 5 heatmap columns) and the number of patients harboring the mu-

tation was tested using Spearman correlation. The analysis was repeated considering only HLA-A and HLA-B alleles (Figure S5A).

The analysis was also repeated after removing mutations that were predominantly associated with a single tumor type (i.e., > 50% of

the mutation occurred in the same tumor type; Figure S5B).

Comparison of Presentation Scores for Different Classes of Residue
Presentation scores across all 2,915 HLA-A, HLA-B and HLA-C alleles in IEDB were calculated for different classes of residue

including 1000 recurrent oncogenic missense mutations, 3000 random amino acid substitution, 1000 germline variants, 1000 viral

residues and 1000 bacterial residues (see Selection of Other Classes of Residues). Across categories, this resulted in 20,405,000

million residue scores (oncogenes: 1,492,480, tumor suppressor genes: 1,422,520, random: 8,745,000, common: 2,915,000, viral:

2,915,000, bacterial: 2,915,000). Residue presentation scores were pooled across HLAs, and fractions of weak and strong binders

for all recurrent oncogenic (R3; Figures S6G and S6J) and highly recurrent oncogenic mutations (R10; Figure 6B) were compared

with other categories. To determine whether observed differences in fractional presentation were significant, we compared fractions

with a t test. Random mutations were down-sampled 1000 times at random to match the number of highly recurrent oncogenic mu-

tations, and the fraction of binders across samples was used to construct an empirical distribution for assessing the likelihood that

the observed fraction of binders among oncogenic mutations could occur under the random model (Figure S6C). We repeated the

calculation of presentation scores for the native residues corresponding to recurrent oncogenic and random mutations (Figures 6C

and 6D) and compared fractional binding of native versus mutant residues using the same approach. We revisited our analysis using

population-specific HLA alleles from the Allele Frequency Net Database (Tables S7B–S7H; Figure S6E), excluding HLA-C alleles

(Figures S6F and S6G), evaluating all recurrent cancer mutations (R3; Figures S6H and S6I), and only using NetMHCPan3.0 affinity

estimates for 9mers (Figures S6J and S6K).

Comparison of Presentation Scores Inside and Outside of Functional Protein Domains
All functional domain annotations for each of the 200 cancer genes were obtained from UniProt. Patient presentation scores for all

TCGA patients were calculated for every residue position across the length of the proteins. The residues were then divided into those

falling in functional domains and those falling outside of functional domains and the distribution of patient presentation scores in each

category was evaluated with a Mann Whitney U test (Figure S6D).

Additional Statistical Considerations
For all individual tests, a p value of less than 0.05 was considered significant. When multiple comparisons were made, p values were

adjusted using the Bonferroni method unless otherwise specified. For all boxplots, whiskers indicate the 1.5 IQR range and outliers

are not displayed to allow for better visualization of the majority of the data which falls within the 1.5 IQRs.

DATA AND SOFTWARE AVAILABILITY

Data were obtained from publicly available sources including The Cancer Genome Atlas (TCGA) Research Network (https://

cancergenome.nih.gov/), The Allele Frequency Net Database (González-Galarza et al., 2015), Ensembl, Exome Variant Server,

UniProt (UniProt Consortium, 2015), IEDB (accession 1000685; (Trolle et al., 2016) or cited literature (Abelin et al., 2017). TCGA

normal genotype calls were obtained from the data matrix on May 20th, 2014. Specifically TCGA level 2 genotype calls generated

from Affymetrix SNP6.0 array intensities using the BirdSuite software were downloaded (Korn et al., 2008). TCGA normal exome se-

quences and TCGA clinical data were also downloaded from the GDC on April 25-30th, 2017 and April 25th, 2017 respectively.

Furthermore, TCGA somatic mutations were accessed from the NCI Genomic Data Commons (https://portal.gdc.cancer.gov/)

on May 14th, 2017. Population level HLA frequencies were obtained from the Allele Frequency Net Database on October 9th, 2015

(Tables S7B–S7H). Common germline variants were downloaded from the Exome Variant Server NHLBI GO Exome Sequencing

Project (ESP), Seattle,WA on August 13, 2015. Finally, viral and bacterial peptides were obtained fromUniProt onOctober 13th, 2015.
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Supplemental Figures

Figure S1. Scoring Residue Presentation Based on Predicted Binding Affinity, Related to Figure 1

(A) The number of 8-11-mer peptides that differed from the native sequence for recurrent in-frame indels pan-cancer.

(B–E) The distribution of residue-centric presentation scores for MS-observed peptides and randomly selected residues for (B) best rank, (C) summation

(rank < 2), (D) summation (rank <0.5), and (E) best rank with cleavage.

(F–I) The log of the ratio between the fraction of MS-observed residues and the fraction of random residues detected over regular score intervals for (F) best rank,

(G) summation (rank < 2), (H) summation (rank <0.5), and (I) best rank with cleavage.

(J) A ROC curve revealing the accuracy of classification for several different presentation scoring schemes.

(K) A heatmap showing the AUCs for the 16 alleles for each presentation scoring scheme.
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Figure S2. HLA Typing of TCGA Patients, Related to Figure 2

(A) The number of patients in TCGA that were successfully HLA-typed with Optitype, Polysolver and Snp2HLA respectively.

(B) Bar plot depicting the number of patientswith varying agreement of HLA-typing across all six alleles for patients that were successfully typedwithOptitype and

Polysolver.

(legend continued on next page)



(C) Principal Components Analysis of TCGA European ancestry samples with HapMap III to evaluate population substructure. The first two principal components

explained 87% of the variation in genotype among samples. Only samples in the black box were HLA-typed with Snp2HLA.

(D) The combination of HLA-typing methods used for the 9,176 patients included in the analysis.

(E–G) Top 15 alleles by frequency for (E) HLA-A, (F) HLA-B and (G) HLA-C across the TCGA patients used in the analysis.

(H–J) Comparisons of HLA allele frequencies between different populations: (H) TCGA-Caucasian (I) TCGA-African (J) TCGA-Japanese.
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Figure S3. PHBR Scores across Mutations and Patients, Related to Figure 3

(A) A histogram showing the number of mutations presented (PHBR < 4) by different fractions of the patient population.

(B) A histogram showing the number of mutations strongly presented (PHBR < 1) by different fractions of the patient population.

(C) A histogram showing the distributions of patients that can present (PHBR < 4) different fractions of the 1018 recurrent oncogenic mutations from Table S5.

(D) A histogram showing the distributions of patients that can strongly present (PHBR < 1) different fractions of the 1018 recurrent oncogenic mutations from

Table S3.
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Figure S4. Evaluating the Association between PBR Score and Probability of Mutation, Related to Figure 4

(A and B) Non-parametric estimate of the logit-mutation probability as a function of log-PHBR scores considering mutationsR 5 (A) Scatterplot of logit-mutation

probability versus log-PHBR. (B) GAM-estimated logit-mutation probability versus log-PHBR score.

(C–F) ORs (black squares) and their 95% CIs (discontinuous lines) for acquiring a mutation displayed for all cancer types for (C) the within-residue model for

mutations occurring R 5 times in TCGA and for (D) the within-patient model for mutations occurring R 5 times in TCGA (E) within-residue model for mutations

occurring R 20 times in TCGA and (F) within-patient model for mutations occurring R 20 times in TCGA.

(G) A ROC curve showing the accuracy of the PHBR and the PBR for classifying the extracellular presentation of a residue by a patient’s six MHC alleles. The

aggregated PHBR/PBR presentation scores for 5 cell lines expressing 6MHC alleles was compared to the PHBR/PBR scores for a random set of residues based

on the same MHC alleles.

(D) Error bars denote the 1.5 IQR range.
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Figure S5. Robustness of the Relationship between PHBR Score and Mutation Frequency among Tumors, Related to Figure 5
(A) Heatmap showing the PHBR scores considering only HLA-A andHLA-B in all 9,176 patients for the 1018 recurrent cancer mutations grouped by their mutation

count in TCGA and displayed as a median. The median PHBR score across the patient population for each mutation group is plotted above the heatmap. The

number of times the mutation group is observed in TCGA is plotted below the heatmap. The correlation between the mutation count in TCGA and the median

patient presentation score is calculated with a Spearman Test.

(B) A plot showing the relationship between tumor type and mutations used to test correlation between median PHBR score and mutation frequency. Colored

points indicate mutations for which the majority (> 50%) of tumors with that mutation belonged to a specific tumor type.
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Figure S6. Universally Poor Presentation of Recurrent Oncogenic Mutations by HLA Alleles Revisited, Related to Figure 6

(A) Bar graph of the number of alleles per HLA gene for which affinity prediction is supported by NetMHCPan3.0.

(B) Bar graph showing the number of residues for each of the 6 peptide classes for which pan-HLA presentation rates were compared.

(legend continued on next page)



(C) Distribution of the expected fraction of residues generating a strong binding peptide (best rank < 0.5) determined by down-sampling the random set to match

the number of recurrent oncogenic mutations 1000 times. The vertical black line represents the observed fraction of recurrent oncogenic residues that generated

strong binding peptides, corresponding to an empirical p value of 0.006.

(D) Boxplot showing the average PHBR score for residues in functional domains and those outside of functional domains. The analysis was performed across all

residues in 100 randomly selected proteins from the human proteome.

(E) Bar plot shows the fraction of residues in functional domains and out of functional domains.

(F–L) Bar graphs denoting the percentage of residue-MHC pairs with strong binding peptides (best rank < 0.5) for each residue class. (F) Only HLA alleles

observed in different populations (G,J) only HLA-A and -B (H,K) including all mutations at lower frequencies (R3 in TCGA), (I,L) 9-mer peptides only.
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