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ABSTRACT

Summary: PiNGO is a tool to screen biological networks for
candidate genes, i.e. genes predicted to be involved in a biological
process of interest. The user can narrow the search to genes
with particular known functions or exclude genes belonging to
particular functional classes. PiNGO provides support for a wide
range of organisms and Gene Ontology classification schemes, and
it can easily be customized for other organisms and functional
classifications. PiNGO is implemented as a plugin for Cytoscape,
a popular network visualization platform.
Availability: PiNGO is distributed as an open-source Java package
under the GNU General Public License (http://www.gnu.org/), and
can be downloaded via the Cytoscape plugin manager. A detailed
user guide and tutorial are available on the PiNGO website
(http://www.psb.ugent.be/esb/PiNGO).
Contact: steven.maere@psb.vib-ugent.be
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1 INTRODUCTION
A key problem for many molecular biologists is the identification
of candidate genes to advance the study of a process or pathway
of interest. A variety of strategies have been developed over
the years to identify such candidate genes, mostly based on the
guilt-by-association principle. Two broad classes of methods can
be distinguished (Sharan et al., 2007): network-based methods
(or direct methods) and module-based methods. In module-
based methods, the data, for instance gene expression datasets
or interaction networks, are clustered into modules which are
functionally annotated using Gene Ontology (GO; Ashburner et al.,
2000) or another functional categorization scheme. The functional
annotation of a module is then transferred to its member genes.
Some evidence however indicates that the module-based approach
to predicting gene function may not be optimal. Wu et al. (2002)
for example established that simply taking the top-10 correlated
expression partners to predict the function of genes works better than
traditional clustering methods. Similarly, Sharan et al. (2007) found
indications that network-based methods outperform module-based
methods, although a comprehensive comparison was not performed.

Among the network-based methods, simple first-neighbor based
methods like the majority vote algorithm (Schwikowski et al., 2000),
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where the function of a gene is predicted to be the most frequently
occurring function among the gene’s direct network neighbors, often
yield surprisingly good results compared with more sophisticated
methods involving propagation of functional information through
the network (Chua et al., 2006; Murali et al., 2006; Nabieva et al.,
2005). Lossless propagation of functional annotations through the
network, e.g. by considering the n-neighborhood of a gene with
n>1, generally gives rise to decreased performance, indicating
that direct neighbors are the most relevant for predicting a gene’s
function (Nabieva et al., 2005; Sharan et al., 2007). A range of
network-based function prediction methods have been developed
that employ more sophisticated machine learning techniques (Sharan
et al., 2007 and references therein). These outperform naive methods
but are computationally expensive, and because of this most of
them have not been implemented as GUI-based tools (Sharan et al.,
2007). A couple of web-based tools, for instance AraNet (Lee et al.,
2009), ENDEAVOUR (Aerts et al., 2006) and GeneMania (Warde-
Farley et al., 2010), allow users to prioritize candidate genes using
probabilistic integrated networks. Although very useful, these tools
are focused on one or a few organisms and, with the exception of
GeneMania, do not allow users to upload their own datasets.

Despite the importance of candidate gene discovery for molecular
biology research, only a limited number of flexible tools have been
developed for this purpose. Here we present PiNGO, a user-friendly
tool that answers questions of the type: ‘Are there genes of class A in
the network that are significantly connected to known class B genes
but have no known role in process C ?’. The main use for PiNGO is to
screen networks for novel genes that could be involved in a particular
process. For instance, if one would be interested in discovering novel
transcriptional regulators of conjugation in yeast, the above sentence
would read: ‘Are there transcriptional regulators in the network that
are significantly connected to known conjugation genes but have no
known role in conjugation ?’ (see Figure 1). PiNGO is implemented
as a plugin for Cytoscape, an open-source software platform to
visualize, analyze and integrate molecular networks (Shannon et al.,
2003).

2 METHODS AND IMPLEMENTATION
PiNGO implements a simple network-based method to find genes associated
with processes or pathways of interest. The network to be analyzed can be
loaded through Cytoscape or from a text file. Input networks may be gene
coexpression networks, protein or genetic interaction networks, or integrated
networks. Edge weights are not taken into account. Given one or more
target GO categories, PiNGO screens the network for genes whose direct
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Fig. 1. A sample PiNGO analysis on an ENIGMA (Maere et al., 2008) co-
differential expression network learned from the budding yeast microarray
compendium of Hughes et al. (2000). ‘Conjugation’ (GO:0000746) was
specified as the only filter and target GO category, and ‘transcription regulator
activity’ (GO:0030528) as the start GO category. Darker nodes are more
significantly associated with (a subcategory of) conjugation. White nodes
are known conjugation genes. The area of a colored node is proportional to
the number of neighboring conjugation genes.

neighbors are enriched for those functional categories at a chosen significance
level. Subcategories of the target categories are also screened. PiNGO uses
hypergeometric or binomial tests to calculate enrichment statistics, and
Bonferroni or Benjamini–Hochberg FDR corrections to adjust the resulting
P-values for multiple testing (Maere et al., 2005).

The results are summarized in the PiNGO output window. The candidate
genes for each target category are listed along with P-values and associated
raw counts that give a good indication of the prominence of the target
category in the candidate gene’s neighborhood. When available, gene
descriptions and known GO annotations of the candidate genes are reported
to facilitate interpretation of the results and prioritization. In addition, an
output network containing the candidate genes and their target GO annotated
neighbors is extracted from the input network and displayed in Cytoscape.
The output network reveals which genes contributed to the discovery of
particular candidate genes. Output networks may contain denser areas or
clusters of several candidate genes connected to the same neighbors. For
Cytoscape input networks, all node and edge attributes and their visual
mappings are preserved in the output networks. For networks imported from
text, the adjusted P-values of the candidate genes and the numbers of target
GO annotated neighbors are mapped to the node color and size in the output
network, respectively (see Figure 1).

A unique feature of PiNGO is the capability to exclude genes with certain
functional properties from the analysis, or to focus on genes with particular
functions. Users are typically not interested in rediscovering genes that are
already known to be involved in the target process or closely associated
processes. These processes can be excluded by specifying them as ‘filter
categories’. People may also be interested primarily in discovering potential
regulators of a given process, rather than effectors. In this case, categories like
‘transcription factor activity’ and ‘protein kinase activity’ can be specified
as ‘start categories’, causing only genes annotated to these categories to be

screened. Even when using filter categories, some not-so-novel genes may
pop up in the candidate gene list, in the sense that their involvement in the
chosen target process may already be known but not annotated in GO.

PiNGO offers unparalleled flexibility in the use of ontologies and
annotations through its sister tool BiNGO (Maere et al., 2005), which has
been refactored for this purpose and has to be installed separately. BiNGO
provides default GO and GOSlim ontologies and annotations for a wide range
of organisms, from bacteria to plants and animals. PiNGO also supports the
use of custom ontologies, both in OBO format and flat text format, and
annotations. This allows the user to use non-GO classification schemes or to
use PiNGO on non-model organisms. Multiple identifier types and synonyms
are supported when using built-in annotations or annotation files from the
GO Consortium. PiNGO also features GO evidence code filtering, automated
remapping of annotations to GOSlim type sub-ontologies, and the possibility
to specify custom reference gene sets against which functional enrichment
is to be tested.

3 CONCLUSION
PiNGO implements a simple but efficient algorithm to find candidate
genes in biological networks. PiNGO’s main strengths are its user-
friendliness and flexibility.
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