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SUMMARY

An emerging therapeutic strategy for cancer is to
induce selective lethality in a tumor by exploiting in-
teractions between its driving mutations and specific
drug targets. Here we use a multi-species approach
to develop a resource of synthetic lethal interactions
relevant to cancer therapy. First, we screen in yeast
�169,000 potential interactions among orthologs of
human tumor suppressor genes (TSG) and genes
encoding drug targets across multiple genotoxic en-
vironments. Guided by the strongest signal, we eval-
uate thousands of TSG-drug combinations in HeLa
cells, resulting in networks of conserved synthetic
lethal interactions. Analysis of these networks re-
veals that interaction stability across environments
and shared gene function increase the likelihood of
observing an interaction in human cancer cells.
Using these rules, we prioritize �105 human TSG-
drug combinations for future follow-up. We validate
interactions based on cell and/or patient survival,
including topoisomerases with RAD17 and check-
point kinases with BLM.

INTRODUCTION

Alterations to the tumor genome fall broadly into two classes:

gain-of-function mutations in growth-enhancing genes (onco-

genes) and loss-of-functionmutations in growth-inhibitory genes

(tumor suppressor genes or TSGs). Although targeting onco-

genes with chemical inhibitors or therapeutic antibodies has
proven to be effective for cancer therapy (Sawyers, 2004), it is

not currently feasible to restore the function of mutated or

deleted TSGs in the clinical setting (Morris and Chan, 2015).

Rather than targeting a TSG directly, an emerging strategy is

to identify ‘‘synthetic lethal’’ genetic interactions between the

TSG and other genes so that simultaneous disruption of both

gene functions causes rapid and selective cell death (Brody,

2005). For example, cells deficient for BRCA1 have a reduced

capacity for repairing double-stranded DNA breaks and are

especially vulnerable to further perturbations in DNA repair path-

ways (Fong et al., 2009). Olaparib, a Food and Drug Administra-

tion (FDA)-approved drug, exploits this principle by targeting

a component of single-stranded DNA break repair, PARP1,

thus causing selective cell death inBRCA1�/� orBRCA2�/� cells

(Lord et al., 2015).

Recent efforts to map synthetic lethal interactions in cancer

typically fall into one of several categories. First, populations of

tumor genomes may be analyzed statistically to detect pairs of

genes that are seldom co-mutated or co-altered in the same tu-

mor (Jerby-Arnon et al., 2014), with one interpretation being that

loss of function of both genes is synthetically lethal (Ciriello et al.,

2012). This approach has the advantage of directly examining

patient populations, although it is much better powered to test

interactions between alterations that are very common than in-

teractions in which one or both alterations is rare (Supplemental

Experimental Procedures; Figure S1A).

Second, synthetic lethal interactions may be mapped by

directed combinatorial disruptions in human cell lines. Such dis-

ruptions use pairwise small interfering RNA (siRNA) knockdowns

(Roguev et al., 2013), combinations of siRNA and drug treat-

ments (Chan and Giaccia, 2011), or the CRISPR (clustered regu-

larly interspaced short palindromic repeats)-Cas9 system to

systematically test relevant interactions in an unbiased manner

(Wong et al., 2016). However, the three largest screens in human
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cells performed to date (Bassik et al., 2013; Martins et al., 2015;

Wong et al., 2016), which screened approximately 4,500, 3,600,

and 2,500 interactions, respectively, fall short of the required

throughput to interrogate the potential interaction space of all

gene pairs involving a TSG; they also have uncharacterized off-

target effects (Jackson and Linsley, 2010; Tsai et al., 2015). A

hybrid of the above approaches is to screen a population of can-

cer cell lines against directed gene knockdowns or drugs, with

the aim of identifying cell line mutations that interact with partic-

ular targets (Basu et al., 2013; Cowley et al., 2014). Such hybrid

methods face the challenges already mentioned, including bias

toward the most commonly mutated genes.

A complementary strategy for mapping synthetic lethal inter-

actions in cancer is to leverage conservation with genetic inter-

actions identified more tractably in model species (Hartwell

et al., 1997). In the yeasts S. cerevisiae and S. pombe, tech-

niques such as synthetic genetic arrays (SGAs) and Pombe Epis-

tasis Mapper (PEM) enable genetic interactions to be measured

in an unbiased manner and at a very large scale, with minimal

off-target effects, because the genes are disrupted by complete

and specific knockout of the open reading frame (Roguev et al.,

2007; Tong and Boone, 2006). Although the model organism

approach is inherently limited to testing interactions of genes

that are evolutionarily conserved, numerous such interactions

have been observed, especially in the core conserved pathways

in which TSGs are known to operate, such as cell cycle, genome

maintenance, and metabolic growth (Roguev et al., 2008; Ryan

et al., 2012). A number of TSGs important for human cancer

were first identified and studied in yeast (Deshpande et al.,

2013; Huang et al., 2003), which also provides an accessible

model system in which to study mechanism of action (Simon

et al., 2000). Nonetheless, it remains unclear to what extent syn-

thetic lethal interactions observed in a model species can be

ultimately translated for clinical application. Multiple factors

have been postulated to influence whether an interaction will

be translatable, including the genetic, epigenetic, and environ-

mental context (Nijman and Friend, 2013). A proper study of

such factors would require a large cross-species dataset of ge-

netic interactions relevant to cancer genes and functions.

Here we generate such a comprehensive resource of

conserved synthetic lethal interactions for the study of cancer

cell biology and the design of targeted therapy. This network in-

cludes quantitative tests for interaction among many TSGs in

yeast and genes that are currently targetable by selective inhib-

itors (‘‘druggable’’ targets or DTs). Strong interactions in this da-

taset are used to design a matched screen for lethal TSG-DT

combinations in human cancer cells. This process results in a

cross-species network of conserved interactions between hu-

man and yeast, allowing us to study features that best predict

conservation and to extrapolate this knowledge to evaluate

many potential tumor suppressor-drug interactions.

RESULTS

Selection of Conserved Tumor Suppressor and
Druggable Genes
Our overall aim was to generate a broad network of synthetic

lethal interactions connecting TSGs to DTs using the high-
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throughput capacity of yeast as a springboard into human

screens. To define a set of TSGs, we compiled a list of 129 genes

known or suspected to harbor loss-of-function cancer driver mu-

tations for which there were also orthologs in yeast (Figure 1A;

Tables S1 and S2; Experimental Procedures). We examined

evidence that these 129 genes were clinically relevant. On

average, 73% and 36%of >6,000 tumors analyzed in the Cancer

Genome Atlas (TCGA) were found to contain either a somatic

mutation or homozygous copy number loss, respectively, in at

least one of these TSGs (Figure 1B; Supplemental Experimental

Procedures). This incidence was significantly higher than that

observed for the average human gene (p < 0.001 based on

1,000 random samples; Figure 1B, inset). As expected based

on sequence similarity, we found that the 111 yeast orthologs

of these human TSGs were enriched for functional roles similar

to their human counterparts, such as maintenance of genome

integrity or coordination of cell cycle arrest (Figure 1C), indicating

the relevance of these genes for studying conserved oncogenic

processes.

To define a set of DTs, we beganwith an inclusive list of human

genes either known or predicted to be druggable based on fea-

tures including the presence/absence of certain protein domains

and the presence/absence of binding pockets in the three-

dimensional structure (Russ and Lampel, 2005). Of these, we

prioritized 956 genes, mapping to 433 yeast orthologs, chosen

to provide broad functional representation (Figure 1A; Tables

S1 and S2; Experimental Procedures). Approximately one-third

of these genes were known targets of small-molecule com-

pounds (Wishart et al., 2008), including 189 genes that were tar-

gets of a compound currently approved for use in humans by the

FDA (Figure 1A).

A TSG-DT Genetic Interaction Map in Yeast
Next we used SGA technology in the yeast S. cerevisiae (Tong

and Boone, 2006) to systematically test for genetic interactions

among all possible TSG and DT orthologs. SGA uses high-

throughput robotic colony pinning on agar to create and score

growth of large numbers of double gene deletion strains in par-

allel, here yielding tests for interaction among 43,505 gene-

gene pairs. Despite the numerous previous genetic interaction

studies in yeast, the majority of this space had not yet been

tested (Figure 1D; Ryan et al., 2012). In addition to untreated con-

ditions, interactions were assayed in three environmental con-

texts: bleomycin, which causes single- and double-stranded

DNA breaks; hydroxyurea, a ribonucleotide reductase inhibitor

that interferes with DNA synthesis; and hydrogen peroxide,

which causes cellular oxidation damage. Across all four environ-

ments, this dataset represented�169,000 distinct tests of gene-

gene interaction.

The resulting growth measurements were analyzed using an

established computational workflow (Collins et al., 2006) to

assign quantitative S scores to all interaction measurements.

Positive S scores indicate an epistatic or suppressive interac-

tion, whereas negative S scores indicate a synthetic sick or

lethal relationship (Table S2). For interaction measurements

that had also been made in previous studies (untreated condi-

tions), consistency between the new and previous scores was

high (r = 0.50 ± 0.1) and on par with the consistency of these



Figure 1. Study Design and Quantitative Ge-

netic Interaction Mapping in S. cerevisiae

(A) Schematic illustrating the selection of TSGs

and DTs in S. cerevisiae.

(B) Percent of patients in TCGA harboring either

a somatic mutation (n = 6,911) or homozygous

deletion (n = 7,462) in any of the TSGs chosen for

screening. The incidence of both somatic mutation

and homozygous deletion is higher for the TSGs

with yeast orthologs included in this study relative

to a random set of genes (inset). The p value was

calculated via 1,000 random samples. Error bars

indicate ± 1 SD.

(C) Deletions of yeast TSG orthologs cause defects

in cellular functions and phenotypes associated

with human cancer. Significance was assessed

using a Fisher’s exact test. DDC, DNA damage

checkpoint; taken from gene ontology (Ashburner

et al., 2000). GCR Supp, gross chromosomal re-

arrangement suppression; lists 1 and 2 were both

taken from Putnam et al. (2012). Mutator supp,

mutator suppression; taken from Huang et al.

(2003). Short lived, taken from Fabrizio et al. (2010).

(D) For each TSG (x axis), the plot shows the

fraction of druggable genes screened for synthetic

lethal interactions in prior studies in yeast (Ryan

et al., 2012) (y axis). For approximately 50% of

TSGs, fewer than half of the relevant interactions

had been tested prior to this study (dotted lines).

(E) Number of SL hits per gene for both DTs and

TSGs.

See also Figure S1 and Tables S1 and S2.
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studies in comparison with one another (r = 0.58 ± 0.2) (Bandyo-

padhyay et al., 2010; Collins et al., 2007; Costanzo et al., 2010;

Fiedler et al., 2009; Guénolé et al., 2013; Srivas et al., 2013;

Wilmes et al., 2008). In total 1,420 synthetic sick/lethal interac-

tions (S % �2.5) and 996 epistatic interactions (S R 2.0) were

identified under untreated conditions, with an average of 14

and 11 synthetic lethal/sick interactions per TSG and DT,

respectively (Figure 1E). In addition, a pan-cancer analysis of

The Cancer Genome Atlas (Cancer Genome Atlas Research

Network et al., 2013) identified 16 TSGs that, whenmutated in tu-

mors, are associated with coordinate upregulation in genes

(false discovery rate [FDR] < 0.1) for which a negative TSG-

gene interaction is found in yeast (Figures S1B and S1C;Supple-

mental Experimental Procedures).
Chemo-genetic Interaction
Mapping in Human Cancer Cells
Guided by the yeast network, we next

performed a tumor suppressor-drug

interaction screen in human cancer cells.

Recognizing that no single cancer cell

line can represent all of human cancer,

the HeLa cervical cancer cell line was

selected given its favorable cell culture

characteristics and extensive molecular

characterization (Adey et al., 2013). We

prioritized 21 drugs for which the yeast

DTs were involved in the greatest
numbers of synthetic lethal interactions (interaction ‘‘hubs’’) (Fig-

ure 2A; Experimental Procedures). Dose-response curves of

each drug were established so that the proper inhibitory concen-

trations could be determined (inhibitory concentration [IC]20 and

IC40; Figure 2B; Table S3A). Yeast synthetic sick/lethal interac-

tions with these DTs had implicated a total of 82 TSGs. To this

number we added another 30 human TSGs commonly mutated

in human cancers but without orthologous yeast genes.

Within this 21 drug 3 112 TSG matrix (Table S3B), each drug

was screened at both IC20 and IC40 doses in combination with

each TSG knockdown. We observed minimal batch effects and

high reproducibility with an average coefficient of variance (CV)

of 3.8% per plate and 92% of plates having CV < 5.0% (Fig-

ure S2A). Average replicate correlation across the entire screen
Molecular Cell 63, 1–12, August 4, 2016 3



Figure 2. Chemo-genetic Interaction Mapping in a Human Cancer Cell Line

(A) Design of the human screen based on the yeast network.

(B) Representative dose-response curve for the drug vorinostat. Such a curve was created for each drug to establish IC20 and IC40 doses for screening. Error bars

represent ± SD.

(C) Heatmap of chemical-gene interactions. Blue represents synthetic sick/lethal (negative) interaction, and yellow represents epistatic (positive) interaction.

Interactions highlighted in red are discussed in greater detail in the text.

(D) Cumulative number of interactions identified as a function of the interaction score threshold, highlighting numbers of interactions at 3 and 5 SDs (z) below the

mean. Recovery of gold-standard interactions of olaparib with BRCA1 and BRCA2 is also shown.

See also Figures S2 and S4 and Tables S3 and S4.
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was 0.95, which we found meets or exceeds the quality of previ-

ous genetic interaction screens in human cell lines (Figure S2B).

IC20 and IC40 measurements were also significantly correlated

(Figure S2C). To score chemical-gene interactions, the viability

of each gene knockdown in the presence of drug was compared

to the viability of non-targeting siRNA also in the presence of

drug (Figure 2C; Experimental Procedures).

Applying a standard threshold of 3 SDs below the mean

(z < �3) (Birmingham et al., 2009), a total of 127 synthetic sick/

lethal genetic interactions were identified (Figure 2D; Table S4).

This threshold identified the well characterized interactions of

the poly ADP ribose polymerase (PARP) inhibitor olaparib with

both BRCA1 and BRCA2 (Lord et al., 2015; Figure S2D). In

contrast, 10-fold fewer epistatic/positive interactions were found

(12 at z > 3), consistent with the design of the human test space

based on yeast synthetic lethal interactions. Examining the entire

interaction score profile of each drug, we found that drugs

targeting similar proteins had similar profiles (e.g., the histone

deacetylase [HDAC] inhibitors vorinostat and rocilinostat;

Figure S2E).

A Conserved Synthetic Lethal Interaction Network
Having generated network resources in both yeast and human

cancer cells, we were immediately interested in evidence of con-
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servation between the two species. First, we found that gene

pairs determined to interact negatively in humans had corre-

sponding scores in yeast that were significantly more negative

than the yeast scores for all remaining gene pairs. This result

held true across a range of stringent cutoffs used to call human

interactions but not more lenient ones (all p values are shown in

Table S5A and the Supplemental Experimental Procedures). We

also computed a likelihood score (LS) of human synthetic sick-

ness/lethality provided the interaction had been first observed

in yeast (Supplemental Experimental Procedures). Prior obser-

vation in yeast (i.e., gene pairs among the top 10% ranked by

S score) increased the likelihood of human genetic interaction

by approximately 3-fold (p < 0.031; Figure 3A; Table S5A). We

note that this is less conservation than observed previously in

a smaller-scale synthetic lethal screen centered around the

gene FEN1 (van Pel et al., 2013).

Based on this general conservation, we next sought to identify

the specific interactions with evidence of synthetic lethality in

both species. To this end, we defined two conserved cancer net-

works (CoCaNets) of synthetic sick/lethal interactions at both

lenient (10%) and stringent (2%) cutoffs: CoCaNet10 (172 inter-

actions, top 10% based on the rank product of human and yeast

scores; Supplemental Experimental Procedures) and the more

stringent CoCaNet2 (36 interactions, top 2%; Figure 3B; Table



Figure 3. Conservation between Human and Yeast

(A) Evidence of synthetic lethality in yeast, as well as context stability, increases the likelihood of observing a human synthetic sick/lethal interaction. Gene pairs

are ranked (x axis) by each type of evidence (colored curves). The likelihood score (y axis) is computed using synthetic lethal gene pairs identified in the human

chemo-genetic screen as a gold standard (Supplemental Experimental Procedures).

(B) Venn diagram showing the number of interactions in CoCaNet (at two stringencies) relative to the number of interactions tested in both species.

(C) Network diagram of the top 10% strongest synthetic sick/lethal interactions (CoCaNet10). Square nodes on the outside ring represent DTs, and circular nodes

represent TSGs. S. cerevisiae gene names are below human gene names in parentheses. Red edges represent interactions reported previously in the literature,

and gray edges are first reported in this study.

(D) Network diagram of the top 2% strongest synthetic sick/lethal interactions (CoCaNet2) organized by gene function. The thickness of the edge represents the

strength of the interaction conservation score. Arrows indicate the direction of the edge (DT to TSG).

(E) Likelihood score (for the top 10% of yeast gene pairs) for various lines of evidence.

See also Table S5.
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S5B). CoCaNet10 included conserved interactions among

59 TSGs and 23 drug targets (Figure 3C). The more stringent

CoCaNet2 captured the strongest conserved interactions,

including those among DNA damage checkpoint, cell cycle

checkpoint, topoisomerase, and chromatin remodeling genes

(Figure 3D). Inspection of these networks revealed 13 inter-

actions that had been characterized previously in humans

and one in yeast, including synthetic sick relationships between

CHEK1 or CHEK2 and WEE1 (Carrassa et al., 2012; Chilà et al.,

2015), which we recovered in both orientations (CHEK1/2 inhib-

itor with WEE1 knockdown and WEE1 inhibitor with CHEK1/2

knockdown). All remaining conserved interactions, representing

the vast majority, were observed for the first time in either spe-
cies (Figures 3C and 3D). The conserved networks, along with

the complete human and yeast interaction data, are available

in Tables S2, S4, and S5B and have also been made available

on the Network Data Exchange (NDEx, http://www.ndexbio.

org; Supplemental Experimental Procedures), a database and

online community for sharing and collaborative development of

network models we recently launched as part of the Cytoscape

Cyberinfrastructure (Pratt et al., 2015).

Incidence of Human Interaction Is Informed by Context
Stability and Co-function
We next investigated whether certain network features, or

rules of thumb, could increase the likelihood of observing an
Molecular Cell 63, 1–12, August 4, 2016 5
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interaction in HeLa cells. To this end, we annotated human gene

pairs with a variety of data, including not only whether we had

observed the interaction in yeast but the number of experimental

contexts in which the interaction was observed (interaction sta-

bility Supplemental Experimental Procedures) and whether the

genes are known to co-function in the same gene ontology

(GO) biological process in either species.

Knowledge that the interaction not only occurs in yeast but is

stable across environmental contexts led to an increase in the

likelihood of human interaction up to 9-fold from baseline (Fig-

ure 3A). On top of this information, knowledge that a gene pair

functions in the same biological process (yeast and human GO

terms) increased the likelihood of human interaction to 19-fold

(Figure 3E). As a negative control, we found that random permu-

tation of features led to significantly decreased predictive capa-

bility (Table S5A; Supplemental Experimental Procedures).

Using the integrated LS score from all informative features

(yeast interaction, context stability, yeast co-function, and hu-

man co-function), we then extrapolated the likelihoods of inter-

action to as many human gene pairs as possible, including those

that were outside of our chemo-genetic screen. For this purpose,

we used data from the chemo-genetic screen to train a regres-

sion model against all four features (Supplemental Experimental

Procedures). In total, we assigned LSs to >100,000 human gene

pairs for which all feature types were available, creating an

extended CoCaNet (CoCaNetX; Table S6). CoCaNetX provides

an extended set of prioritized human interactions including

nearly all human TSGs and DTs for which cross-species data

can be drawn by orthology to yeast. We anticipate that it will

be useful for identifying potential synthetic lethal interactions in

a human gene space orders of magnitude larger than that what

can be experimentally tested with current technology.

Validation of Novel Interactions in Cell Survival Assays
A systematic resource of tumor suppressor interactions moti-

vates many future studies of the feasibility of repurposing an

already approved drug for selective killing of tumor cells based

on specific genetic alterations. We first explored this principle

in cultured tumor cells using the CoCaNet interaction neighbor-

hoods of RAD17 and XRCC3, two tumor suppressor genes

involved in the repair of DNA damage.RAD17 has a homozygous

deletion in approximately 5% of prostate and ovarian cancers

and mutations in approximately 5% of pancreas and stomach

cancers, with sporadic alterations observed in tumors of other

types. XRCC3 is deleted in approximately 4% of bladder and

pancreatic cancers (Cerami et al., 2012).

CoCaNet10 identified that RAD17 was involved in five

conserved synthetic sick/lethal interactions with topoiso-

merases TOP1 and TOP2A, checkpoint kinases CHEK1 and 2,

andCSNK1G1, the gamma isoform of casein kinase I (Figure 4A).

Of these interactors, TOP1 and TOP2A are targeted by FDA-

approved drugs, whereas CHEK1 and 2 are targeted by mole-

cules in clinical development (Ashour et al., 2015; Thompson

and Eastman, 2013). CSNK1G1 is known to play a role in tumor-

igenesis, but its specific inhibitors have not yet entered clinical

trials (Schittek and Sinnberg, 2014). Investigations in yeast had

previously identified one of these interactions between the ortho-

logs of RAD17 and TOP1 (Vance and Wilson, 2002), but this
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interaction was identified in humans for the first time. We there-

fore examined the combination of chemical inhibitors targeting

each of the five RAD17 interactors with RAD17 knockdown

in clonogenic assays to ascertain whether the reduction in cell

growth observed in the chemo-genetic screen, a cell population

measurement, translates to a reduction in survival of individual

tumor cell clones. We indeed observed that topoisomerase inhi-

bition with irinotecan (anti-TOP1) or etoposide (anti-TOP2A) as

well as casein kinase I inhibition with D4476 (anti-CSNK1G1) re-

sulted in significantly reduced colony formation in the setting of

RAD17 knockdown relative to non-targeting control (Figures

4B–4D; Figure S3A). We also observed severe detrimental ef-

fects on colony formation when combining RAD17 knockdown

with AZD7762, a dual inhibitor of CHEK1 and 2; this interaction

is explored in more detail by Shen et al. (2015).

Turning attention to the tumor suppressorXRCC3, CoCaNet10

showed involvement of this gene in seven conserved synthetic

sick/lethal interactions (Figure 4E). Each of these interactions

was interrogated by clonogenic assays of the relevant drug in

combination with XRCC3 knockdown. To determine whether

the CoCaNet interactions would generalize to human cell lines

other than HeLa, for the XRCC3 neighborhood we elected to

examine whether the interactions could be recovered in a

different cellular background, the LN428 glioblastoma cell line

(Tang et al., 2011). Five of the seven combinations were found

to be associatedwith a negative effect on LN428 survival in a clo-

nogenic assay, including interactions of XRCC3 with mycophe-

nolate mofetil (MMF, anti-IMPDH1) and vorinostat (a pan-HDAC

inhibitor), both of which are FDA-approved, as well as tipifarnib

(anti-RABGGTB), rocilinostat (anti-HDAC6), and entinostat

(anti-HDAC1 and 2), which are in clinical development (Figures

4F and 4G; Figures S3B and S3C). The remaining two combina-

tions, PD0325901 (anti-MAP2K1) and disulfiram (anti-ALDH2),

showed no detectable survival effects. Additionally, the synthetic

lethal interaction between the yeast orthologs RPD3 and RAD57

was confirmed in both a synthetic growth array and spot dilution

assays in yeast (Figure 4H; Figure S3D). Together, these studies

show that, of 12 interactions examined in a follow-up clonogenic

assay, 10 could be readily associated with a specific decrease in

tumor cell clonal survival, spanning two cell line backgrounds.

Implications for Clinical Translation of Synthetic Lethal
Interactions
To gauge the clinical relevance of CoCaNet, we explored the as-

sociation of these interactions with differences in clinical out-

comes of cancer patients. Although co-mutation of both genes

of a synthetic lethal pair is too rare of an event to power survival

analysis, it has been shown that patients with tumors for which

both genes of a synthetic sick interaction are under-expressed

tend toward longer survival times (Jerby-Arnon et al., 2014).

This finding is consistent with the idea that decreased function

of both genes promotes synthetic sickness, causing the tumor

to be less robust and leading to improved patient outcomes.

We explored evidence for this principle in the CoCaNet

resource using the Jerby-Arnon et al. (2014) scoring method.

Each of �2,000 breast cancer patients profiled in the Molec-

ular Taxonomy of Breast Cancer International Consortium

(METABRIC) database (Curtis et al., 2012) was scored by



Figure 4. Validation of Cross-Species Interaction Networks for RAD17 and XRCC3

(A) Network map of all conserved synthetic sick/lethal interactions in CoCaNet10 for the TSG RAD17. Square nodes represent druggable genes, and oval nodes

represent drugs used to inhibit these genes. Green edges indicate validation by clonogenic assay.

(B) Sample plate images from the clonogenic assay.

(C) Clonogenic assay with TOP1 inhibitor irinotecan in HeLa cells with either stable knockdown of RAD17 or non-targeting (scramble [SCR]) control. Error bars

represent ± SD.

(D) Similar clonogenic assay with the TOP2 inhibitor etoposide in HeLa cells.

(E) Network map of all conserved synthetic sick/lethal interactions in CoCaNet10 for the TSG XRCC3 with annotations as in (A).

(F) Clonogenic assay with the HDAC inhibitor entinostat in LN428 cells with either stable knockdown of XRCC3 or non-targeting (SCR) control.

(G) Similar clonogenic assay with the HDAC inhibitor vorinostat in LN428 cells.

(H) Synthetic genetic array in S. cerevisiae for rpd3D, rad57D, and rpd3Drad57D. p Values are indicated.

In (D), (F), and (G), *p < 0.05 (t test) at that dose. See also Figure S3.
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counting the number of synthetic sick/lethal interactions in Co-

CaNet10 for which both genes were under-expressed in the pa-

tient’s tumor versus their normal tissue. The 10% of cases with

the highest scores were marked as having potential ‘‘induced

synthetic lethality’’ (ISL). The survival curve of these ISL cases
was then compared to the 10% of patients with the lowest

scores (non-ISL patients).

Indeed, we found that ISL patients had significantly longer sur-

vival times relative to non-ISL patients (Figure 5A; p = 63 10�4).

Median survival had not yet been reached in this cohort;
Molecular Cell 63, 1–12, August 4, 2016 7



Figure 5. Clinical Potential of Deeply Conserved Interactions

(A) Kaplan-Meier plot of overall survival, selecting the highest 10% (ISL) or lowest 10% (non-ISL) of patients in METABRIC ranked by CoCaNet score.

(B) Upper-quartile survival for METABRIC cohort stratified by the indicated genetic interaction networks.

(C) Histogram of CoCaNet interactions binned by the number of patients in the ISL group in (A) whose tumors under-express both of the genes involved in the

interaction.

(D) For those TSGs interacting with the target of an FDA-approved drug, the number of mutations or deletions seen per patient in the TCGA cohort.

See also Table S6.
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however, the upper-quartile survival time for ISL patients was

6 years greater (9.1 years versus 3.1 years; Figure 5B). The

greatest contribution to increased survival was from SL interac-

tion of BLM and CHEK1, which were under-expressed in 162 of

196 ISL cases, followed by BLM and CHEK2 (Figure 5C; Table

S5B lists the contribution to patient survival of all CoCaNet

interactions). Survival stratification similar to CoCaNet10 was

observed when defining ISL patients purely by human chemo-

genetic interactions independent of evolutionary conservation

(CoCaNetHuman) and with the extended network predicted

from the integrated LS score (CoCaNetX). These survival differ-

ences were also similar to those that had been observed by

the original developers of this scoring approach for a different

set of computationally derived synthetic lethal interactions

(Jerby-Arnon et al., 2014; Figure 5B). Thus, the synthetic sick/

lethal interactions in CoCaNet appear relevant to the clinical

response of human tumors by this type of survival analysis.

DISCUSSION

Synthetic lethality has been of increasing interest as a strategy

for cancer therapy, supported by major research investment

and recent clinical success (Lord et al., 2015). Here we have real-

ized an original proposal of Hartwell et al. (1997) in which

comprehensive synthetic lethal interaction maps in yeast serve

as a central resource for identifying therapeutic combinations

of gene mutations and drugs in humans. Although this proposal
8 Molecular Cell 63, 1–12, August 4, 2016
was advanced nearly 20 years ago, the majority of the relevant

tumor suppressor interactions in either yeast or humans are be-

ing made available here for the first time. In particular, five

network maps are included as part of the resource: the complete

network of genetic interactions between TSGs and DTs in yeast

(Table S2), the corresponding orthologous network of chemo-

genetic interactions in humans (CoCaNetHuman; Figure 2;

Table S4), the intersection of these datasets to derive networks

of conserved interactions at two stringencies (CoCaNet2,

CoCaNet10; Figure 3; Table S5B), and an extended network of

predicted interactions among all human TSGs and DTs based

on rules learned from study of the first four networks (CoCaNetX;

Table S6).

Armed with a systematic map of tumor suppressor-drug inter-

actions, one can begin to functionally interpret the catalog ofmu-

tations identified in cancer genome sequencing studies and to

suggest therapies that might be repurposed against mutations

identified in a newpatient. For instance, the inhibitor of type I top-

oisomerases irinotecan is currently only indicated by the FDA for

use in colon cancer. The conserved network resource developed

here suggests that topoisomerase inhibitors should be evaluated

for efficacy in cancers harboring loss-of-function alterations in

RAD17 (Figures 3C and 4A). Similarly, HDAC inhibitors such as

vorinostat are currently approved for the treatment of cutaneous

T cell lymphoma. Our results suggest that these drugs should

also be evaluated for efficacy against tumors with XRCC3 loss

of function (Figures 3D and 4E). As clinical genomic sequencing
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becomes more common, the synthetic-lethal maps provided by

CoCaNetHuman, CoCaNet2/10, and CoCaNetX may become

increasingly valuable tools to understand exceptional responses

to therapy (Al-Ahmadie et al., 2014). In addition, these networks

can continue to be curated as they are used to guide further

in vitro and in vivo investigation and, ultimately, by molecular tu-

mor boards to help identify targeted therapy for individual cancer

patients (Schwaederle et al., 2014). Communal sharing, revision,

and evolution of networks is a key feature of the NDEx database

in which these networks are deposited (Pratt et al., 2015). The

potential effect of CoCaNet on precision cancer therapy is large

because more than 40% of TCGA patients have loss of function

in at least one TSGwith a synthetic lethal interaction involving the

target of a currently FDA-approved drug (Supplemental Experi-

mental Procedures; Figure 5D).

A specific example of how CoCaNet might be used to derive

clinically actionable information involves a synthetic-sick/le-

thal interaction identified between irinotecan and ATM. In

metastatic colorectal cancer (mCRC), treatment with either

FOLFIRI (5-flourouracil plus irinotecan) or FOLFOX (5-flourour-

acil plus oxaliplatin) is indicated, with a response rate to either

regimen of approximately 40%. However, diagnostic tests to

determine which regimen will be most likely to induce a

response for an individual patient are lacking (Choueiri et al.,

2015). Because irinotecan is synthetic sick/lethal with ATM,

FOLFIRI may be the preferred regimen in the 7% of mCRC tu-

mors for which ATM has an inactivating mutation (Cancer

Genome Atlas Network, 2012). Examination of TCGA mCRC

cohort identifies 16 ATM-mutated patients, of which 6 were

initially treated with irinotecan. In these patients, there is

indeed a 15-month trend toward better survival (44 months

versus 29 months for other regimens). Given the small sample

size, this trend is not presently significant (log-rank p = 0.3),

but it does prompt a follow-up study of ATM as a marker for

irinotecan therapy.

Other examples of potential clinical translation are found in the

genetic interaction profiles of three of the traditional cytotoxic

chemotherapeutic drugs—vinorelbine, methotrexate, and irino-

tecan. Although each of these drugs has a distinct mechanism

of action, all have strong interactions with multiple cancer genes

involved in cell cycle regulation (CDK12, CDC73, CHEK1, and

WEE1) (Figure 2C; Figure S4A). Yet another interaction cluster

of interest combines commonly mutated genes in DNA damage

response pathways (BRCA1, XRCC3, BLM, WRN, and ATAD5)

with multiple chemical inhibitors of the checkpoint kinases

(MK-8776, MK-1775, and AZD7762) (Figure 2C; Figure S4B).

Of note, interactions with Bloom syndrome protein (BLM) and

the checkpoint kinases CHEK1 and CHEK2 were the strongest

contributors to the survival stratification seen in the METABRIC

cohort (Figure 5C). Both CHEK1 and CHEK2 can phosphorylate

BLM, a RecQ family DNA helicase that participates in homolo-

gous recombination, telomere maintenance, and DNA replica-

tion (Kaur et al., 2010). Such results are consistent with prior

reports of synthetic lethal interactions between checkpoint ki-

nase inhibitors and other DNA repair genes, including TP53,

CDKN1A, andRAD17 andmultiple members of the Fanconi ane-

mia pathway, as well as the fact that checkpoint kinase inhibitors

synergize with radiation (Chen et al., 2009; Origanti et al., 2013;
Shen et al., 2015). The interaction cluster observed here

suggests the existence of a large synthetic lethal network con-

necting DNA repair to cell cycle checkpoints. Given that loss-

of-function events in any individual gene are typically rare in

cancer (Hofree et al., 2013), the ability to identify clusters of

interactions among related TSGs and drugs could allow for

aggregating individual ‘‘N-of-1’’ patients (Collette and Tombal,

2015) into larger cohorts for more robust clinical investigation

of these combinations.

As genetic interaction maps are further developed and

refined in studies of human cancer, a worthy question concerns

the continued value of prior screening in model organisms like

yeast. Our analysis highlights several ways in which cross-spe-

cies data may continue to be quite valuable. First, rapid screens

in model organisms allow for very large interaction test spaces

and multi-condition designs in preparation for more challenging

interaction screens in humans. In this regard, screening the

complete space of human TSG-DT genetic interactions is likely

to remain inaccessible for some time and certainly with the

precision enabled by model organism genetics. Second, an

interaction conserved in yeast anchors the new finding to an

experimentally tractable organism in which follow-up studies

of mechanism of action may be more readily pursued. Finally,

conservation in multiple species, especially those as evolution-

arily divergent as yeast and humans, suggests that these inter-

actions involve core elements of the eukaryotic cell. Might

this mean that these cross-species-conserved interactions

will also be relevant across a wide range of cancer cells with

diverse cell lineages and genetic alterations? Although this

possibility deserves further study, one might take comfort in

synthetic-lethal interactions that not only relate to human cells

but to creatures evolutionary divergent by more than a billion

years (Nei et al., 2001).
EXPERIMENTAL PROCEDURES

Generating the Yeast Genetic Interaction Data

We constructed all possible mutants between yeast orthologs (Table S1B) of

the query and array genes listed in Table S1A using SGA technology (Tong

and Boone, 2006). In the final step, double mutants were pinned on agar plates

containing no drugs (untreated), hydroxyurea (100 mM), bleomycin (5 mg/ml), or

hydrogen peroxide (0.01%) and incubated at 30�C for either 48 hr (untreated)

or 72 hr (hydroxyurea, bleomycin, and hydrogen peroxide). Pictures of the

plates were taken with a Canon charge-coupled device (CCD) camera, and

colony sizes were quantified using HT Colony Grid Analyzer. Finally, data

were normalized, and S scores were computed using the epistatic miniarray

profile (E-MAP) toolbox (Collins et al., 2006). All data are provided in Table

S2. Note that data are provided for 79,184 gene pairs. These include additional

data from queries/arrays screened that had no human ortholog but were

included for quality control purposes.

Generating the Human Chemo-genetic Interaction Map

Starting with the DT with the greatest number of synthetic lethal interactions,

we used the Drug Gene Interaction database (Griffith et al., 2013) to identify

a chemical inhibitor for the first 21 of these genes. When multiple compounds

were available per DT, priority was given to drugs currently approved by

the FDA.

For the chemo-genetic screen, 500 cells were dispensed per well in 384-well

plates and reverse-transfected with siRNAs at a final concentration of 10 nM

using Lipofectamine RNAimax (Life Technologies). The 21 drugs were split

into four batches. For each batch, two plates containing only DMSO solvent
Molecular Cell 63, 1–12, August 4, 2016 9
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were included so that the toxicity of siRNAs alone could be evaluated. Each

TSG was targeted by four different siRNAs (On-Target-Plus Human Genome

Collection, Dharmacon) pooled in the samewell. Three independent replicates

for each TSG were screened on separate assay plates at both IC20 and IC40

doses.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and six tables and can be found with this article online at http://

dx.doi.org/10.1016/j.molcel.2016.06.022.
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Carrassa, L., Chilà, R., Lupi, M., Ricci, F., Celenza, C., Mazzoletti, M., Broggini,

M., and Damia, G. (2012). Combined inhibition of Chk1 andWee1: in vitro syn-

ergistic effect translates to tumor growth inhibition in vivo. Cell Cycle 11, 2507–

2517.

Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A.,

Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio can-

cer genomics portal: an open platform for exploring multidimensional cancer

genomics data. Cancer Discov. 2, 401–404.

Chan, D.A., and Giaccia, A.J. (2011). Harnessing synthetic lethal interactions in

anticancer drug discovery. Nat. Rev. Drug Discov. 10, 351–364.

Chen, C.C., Kennedy, R.D., Sidi, S., Look, A.T., and D’Andrea, A. (2009). CHK1

inhibition as a strategy for targeting Fanconi Anemia (FA) DNA repair pathway

deficient tumors. Mol. Cancer 8, 24.
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