
Systems biology

cyNeo4j: connecting Neo4j and Cytoscape

Georg Summer1,2,*, Thomas Kelder3, Keiichiro Ono4,

Marijana Radonjic3, Stephane Heymans1 and Barry Demchak4

1Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital

Maastricht, Maastricht, The Netherlands, 2TNO, Zeist, The Netherlands, 3EdgeLeap B.V., Utrecht, The Netherlands

and 4Department of Medicine, University of California, San Diego, La Jolla, CA, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on March 2, 2015; revised on July 13, 2015; accepted on July 30, 2015

Abstract

Summary: We developed cyNeo4j, a Cytoscape App to link Cytoscape and Neo4j databases to util-

ize the performance and storage capacities Neo4j offers. We implemented a Neo4j

NetworkAnalyzer, ForceAtlas2 layout and Cypher component to demonstrate the possibilities a dis-

tributed setup of Cytoscape and Neo4j have.

Availability and implementation: The app is available from the Cytoscape App Store at http://apps.

cytoscape.org/apps/cyneo4j, the Neo4j plugins at www.github.com/gsummer/cyneo4j-parent and

the community and commercial editions of Neo4j can be found at http://www.neo4j.com.

Contact: georg.summer@gmail.com

1 Introduction

Network biology facilitates the understanding of complex biological

systems by organizing, analyzing and visualizing knowledge and

experimental data in networks. Built upon the field of graph theory,

network biology provides researchers decades worth of research in

the form of sophisticated graph algorithms. Software applications

like Cytoscape (Saito et al., 2012; Shannon et al., 2003) and Gephi

(Bastian et al., 2009) are developed to provide visualization and ana-

lysis methods to data scientists, with Cytoscape being widely used in

life sciences. As networks are becoming larger and more complex,

the computational performance necessary to analyze them increases

drastically. Moving the computation from desktop environments

like Cytoscape and Gephi to powerful servers is a common method

used to cope with the increasing demand for computation. We pre-

sent cyNeo4j, a Cytoscape app to link Cytoscape on the desktop to

a server environment using a Neo4j database. Neo4j (www.neo4j.

com) is a Java-based database designed to store and query graphs.

Neo4j falls in the category of NoSQL databases as it departs from

the relational model used in traditional databases. Neo4j ensures

transaction reliability through ACID compliance, provides a SQL-

inspired query language called Cypher and its community edition is

free to use and open source. Additionally, Neo4j servers can be

extended using plugins to add more complex algorithms than the

ones built in. CyNeo4j supports two such plugins which showcase

the performance increase that can be achieved using a Neo4j and

powerful computational backend. As of version 1.1, cyNeo4j sup-

ports a plugin that provides a set of network layout algorithms and

a plugin that implements the Cytoscape NetworkAnalyzer. We will

briefly explain how Cytoscape users can enrich their workflows

with cyNeo4j and how app and algorithm developers can benefit

from it.

2 cyNeo4j for Cytoscape users

A prerequisite for cyNeo4j is a running Neo4j server. Neo4j pro-

vides thorough documentation to setup the server, additionally

tutorials are available on the cyNeo4j website. The server can be run

on the same computer or ideally on a computationally more power-

ful one. The first task for a Cytoscape user is to connect to a Neo4j

database. After the connection is established and validated by

cyNeo4j, the app discovers all algorithms available on the server

and supported by the app itself. There are two typical use-cases for

cyNeo4j: the network to be analyzed is available locally in

Cytoscape or a network is stored in the running Neo4j server. In the

first case the user can upload a network from Cytoscape to

the Neo4j server and then run algorithms on it both locally and

VC The Author 2015. Published by Oxford University Press. 1
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2015, 1–2

doi: 10.1093/bioinformatics/btv460

Advance Access Publication Date: 12 August 2015

Applications Note

 Bioinformatics Advance Access published August 25, 2015
 at U

niversity of C
alifornia, San D

iego on N
ovem

ber 2, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://apps.cytoscape.org/apps/cyneo4j
http://apps.cytoscape.org/apps/cyneo4j
www.github.com/gsummer/cyneo4j-parent
http://www.neo4j.com
organising, analysing
s
), (
s
www.neo4j.com
www.neo4j.com
http://www.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


on the Neo4j server. This allows for an interactive workflow that

uses the computational strength of the Neo4j server without inter-

rupting the normal workflow in Cytoscape. Figure 1 shows the re-

sults of a benchmark for the NetworkAnalyzer (Assenov et al.,

2008) functionality present in Cytoscape. The Neo4j implementa-

tion cuts the waiting time for the network statistics by a factor of 4

in a subset of the STRING network (Szklarczyk et al., 2014) with

4436 nodes and 93 286 edges if run on the same computer, produc-

ing the same statistical results (disregarding rounding behaviour).

A Dell XPS 2015 (8 GB RAM, SSD, Intel Core i7-5500U 2.4 GHz)

was used to compute both the Cytoscape and cyNeo4j

NetworkAnalyzer results. The second use case envisions a network

already stored on the Neo4j server. This network can be larger than

one that is feasible to work with in Cytoscape. While it might not be

possible to have the whole network locally, Neo4j is a fully fledged

database and parts can be extracted using the Cypher query lan-

guage for targeted analysis. Algorithms in Neo4j can still be exe-

cuted on the larger network and the results then studied in smaller

chunks accessed through Cypher. Currently two example algorithms

are implemented as Neo4j plugins to showcase the cyNeo4j app.

1. The NetworkAnalyzer plugin for Neo4j calculates network stat-

istics (e.g. betweenness centrality, average shortest paths, etc.)

similar to the one shipped in Cytoscape. The resulting statistics

are added as properties to the local Cytoscape network and can

be used for visualization using the standard Cytoscape

VizMapper functionality. Additionally, the statistics can be

saved in the Neo4j network.

2. The ForceAtlas2 (Jacomy et al., 2014) plugin brings a layout

algorithm for large graphs from Gephi to Cytoscape via Neo4j.

CyNeo4j allows the user to execute this layout with the same

parameters as in Gephi and in a similar iterative and interactive

fashion.

3 cyNeo4j for Developers

This section will give a short overview on how to implement algo-

rithms as Neo4j plugins and how to integrate them in cyNeo4j.

3.1 Implementation of algorithms in Neo4j
On the server side, plugins have access to the complete Neo4j Java

API including a set of graph algorithms tailored for Neo4j and the

query language Cypher. These plugins can vary widely in how

Neo4j capabilities are utilized: The Neo4j NetworkAnalyzer plugin

heavily depends on the shortest path and centralities algorithms of

Neo4j, whereas the ForceAtlas2 algorithm only uses the nodes and

edges retrieval functionality of the API. Third party libraries can

also be used to add functionality. The standard plugin interface of

Neo4j allows plugins to return sets of basic variable types (numerics

and strings).

3.2 Extension of cyNeo4j with new algorithms
CyNeo4j uses the Cypher and Plugin REST API through HTTP

to communicate with Neo4j. New algorithms can be added to

Neo4j as plugins which can be accessed through the REST API of

the server making them easy to reuse in web applications or data

analysis environments like R. New Neo4j plugins need to be

added to cyNeo4j to allow proper discovery upon connecting to the

Neo4j server, integration into the Cytoscape UI and interpretation

of the algorithm results. The integration into cyNeo4j also allows

for an iterative execution of an algorithm by sending multiple re-

quests to the server enabling the user to interrupt the execution or

observe intermediate results as shown with the ForceAtlas2 plugin.

Algorithms can be executed asynchronously to not block Cytoscape

during long running calculations. In this case the user has to deter-

mine when the calculation is done and has to retrieve the results

manually.

4 Conclusion

We developed cyNeo4j to connect Cytoscape and Neo4j allowing us

to speed up the performance of network analysis algorithms and use

the Cypher query language to navigate and explore networks too

large for typical desktop computers.

Funding

The project was supported through the Google Summer of Code 2014 and the

European Union (FP7-HEALTH-2010), MEDIA, large-scale integrating pro-

ject grants.

Conflict of Interest: none declared.

References

Assenov,Y. et al. (2008) Computing topological parameters of biological net-

works. Bioinformatics, 24, 282–284.

Bastian,M. et al. (2009) Gephi: an open source software for exploring and

manipulating networks. ICWSM, 8, 361–362.

Jacomy,M. et al. (2014) Forceatlas2, a continuous graph layout algorithm for

handy network visualization designed for the gephi software. PLoS one, 9,

e98679.

Saito,R. et al. (2012) A travel guide to cytoscape plugins. Nat. Methods, 9,

1069–1076.

Shannon,P. et al. (2003) Cytoscape: a software environment for

integrated models of biomolecular interaction networks. Genome Res., 13,

2498–2504.

Szklarczyk,D. et al. (2014) String v10: protein–protein interaction networks,

integrated over the tree of life. Nucleic Acids Res., 43, D447–D452.

Fig. 1. Network Analyzer Benchmark: The NetworkAnalyzer plugin imple-

mented in Neo4j and called from cyNeo4j reduces the computation time by a

factor of 4 compared to the implementation in Cytoscape. Multiple threads

allow for a further decline in computation time needed. We extracted a subset

of STRING with 4436 nodes and 93 286 edges

2 G.Summer et al.

 at U
niversity of C

alifornia, San D
iego on N

ovem
ber 2, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

93286
8GB
:
:
http://bioinformatics.oxfordjournals.org/

