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Abstract

Motivation: Modern biological experiments often produce candidate lists of genes presumably

related to the studied phenotype. One can ask if the gene list as a whole makes sense in the context

of existing knowledge: Are the genes in the list reasonably related to each other or do they look like

a random assembly? There are also situations when one wants to know if two or more gene sets

are closely related. Gene enrichment tests based on counting the number of genes two sets have

in common are adequate if we presume that two genes are related only when they are in fact iden-

tical. If by related we mean well connected in the interaction network space, we need a new meas-

ure of relatedness for gene sets.

Results: We derive entropy, interaction information and mutual information for gene sets on inter-

action networks, starting from a simple phenomenological model of a living cell. Formally, the

model describes a set of interacting linear harmonic oscillators in thermal equilibrium. Because the

energy function is a quadratic form of the degrees of freedom, entropy and all other derived infor-

mation quantities can be calculated exactly. We apply these concepts to estimate the probability

that genes from several independent genome-wide association studies are not mutually inform-

ative; to estimate the probability that two disjoint canonical metabolic pathways are not mutually

informative; and to infer relationships among human diseases based on their gene signatures. We

show that the present approach is able to predict observationally validated relationships not detect-

able by gene enrichment methods. The converse is also true; the two methods are therefore

complementary.

Availability and implementation: The functions defined in this paper are available in an R package,

gsia, available for download at https://github.com/ucsd-ccbb/gsia.

Contact: rsasik@ucsd.edu

1 Introduction

Gene expression studies based on microarrays (Schena et al., 1995)

and RNA sequencing technologies (Morin et al., 2008) typically

produce lists of genes related to the studied biological phenotype.

Other genomic-scale experiments, even though not necessarily gene

centric, such as genome-wide association studies (Klein et al., 2005),

chromatin immunoprecipitation studies (Robertson et al., 2007) or

DNA methylation studies (Cokus et al., 2008), also frequently sum-

marize their findings as gene lists. The gene list usually has a meas-

ure of statistical significance assigned to it, such as the false

discovery rate fdr (Benjamini and Hochberg, 1995). Each gene on

the list may also have an individual measure of statistical
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significance, either a P-value, a q-value (Storey and Tibshirani,

2003) or local false discovery rate lfdr (Efron, 2008). Gene lists can

be interrogated biologically by performing gene set enrichment anal-

yses against curated gene sets, such as KEGG (Kanehisa et al.,

2004), Gene Ontology (Harris et al., 2004) and others, all found

conveniently under one roof in MSigDB (Subramanian et al., 2005).

Gene set enrichment methods depend on exact gene matching; i.e.

two gene sets are considered significantly related when they have

enough genes in common. A logical extension is that two genes are

related only when they are in fact identical.

A different kind of relationship can be defined in the context of a

gene interaction network: two genes, represented by nodes of the

network, are related when they are closely connected by edges of the

network, preferably along multiple paths. This relationship can be

quantified using physical models of the network and their proper-

ties. Two examples are the heat diffusion model (Köhler et al.,

2008) and the electrical conduction model (Klein and Randi�c,

1993). In the heat diffusion model, heat propagates along the edges

of the network. Two nodes are considered related if enough heat

reaches one node from the other. A very popular variant of this

model is the network propagation model [for review see Cowen

et al. (2017)], which shares some qualitative properties with heat

diffusion but does not conserve energy. In the electrical conduction

model, the edges of the network are modeled as electrical resistors.

Two genes are related when the effective resistance between the cor-

responding nodes is small. Electrical resistance between two nodes is

also a true distance, which is a very attractive property.

There is a deep connection between resistance distance on a net-

work and statistical mechanics of a set of interacting one-

dimensional harmonic oscillators (Estrada and Hatano, 2010). The

energy function of the oscillator system has translational symmetry

(does not depend on the position of the center of mass). This model

is directly applicable to vibrations of complex organic molecules

moving freely in a solution, in which case the molecule’s atoms

themselves are the oscillators. Electrical resistance between two

nodes in a corresponding resistor network can be written as the ther-

mal average of the relative square displacement of the two corre-

sponding oscillators. However, the resistor model is pathological in

the sense that the entropy of the system diverges. This fact is intim-

ately tied to the translational symmetry of the model.

Here we show, starting from some very basic assumptions, that

gene expression levels in a cell can also be represented by a formally

similar set of interacting one-dimensional harmonic oscillators. In

this case, however, translational symmetry is broken and individual

fluctuations remain finite as demanded by everyday experience. As a

consequence, entropy of any set of these oscillators is finite. We use

this entropy to derive interaction information for a single gene set,

as well as mutual information between two gene sets. The utility of

mutual information as a network-based similarity measure between

gene sets has been recognized earlier by Chuang et al. (2007) These

authors define mutual information heuristically; here it follows nat-

urally from the statistical properties of the associated harmonic os-

cillator model. We say that genes or gene sets are related in the

network sense when they are mutually informative.

To formalize our task, we will give quantitative answers to these

questions:

1. [Interaction information] Are genes in set A significantly mutual-

ly informative? Could genes in set A have been generated by ran-

dom selection?

2. [Mutual information] Given two gene sets A and B, is gene set B
significantly informative of A? Could genes in set B have

been generated randomly and independently from genes in

set A?

2 Materials and methods

We begin with a simplified physical model of a cell in its microenvir-

onment. The state of the cell is simplistically described by the set ex-

pression levels of all biomolecules (mRNA, proteins, lipids, metabolic

intermediaries, etc.) fei; i 2 Ng, where N is the set of all expressed

molecular species. Let us denote these collectively by a vector e. The

microenvironment is described by a set of external fields, such as tem-

perature, pH, mechanical stress, concentration of nutrients and other

molecules such as electrolytes, receptor ligands or man-made mole-

cules (drugs). These will be referred to collectively as h. We assume

that h is such that homeostasis is possible and therefore a stable steady

state e0 exists. It is a dynamical equilibrium state, possible only for as

long as the flow of energy, nutrients and other molecules is main-

tained. Consequently, a small transient deviation of e from equilib-

rium is followed by restoration of equilibrium. We postulate therefore

that the equilibrium is a local minimum of some multivariate ‘poten-

tial energy’ function Vðe;hÞ. Since different cell types express a differ-

ent set of biomolecules, V must be cell type specific. Close to this

minimum, with h fixed, we can write

VðeÞ ¼ Vðe0Þ þ 1

2

X
i;j

@2V

@ei@ej

��
e0 ðei � e0

i Þðej � e0
j Þ þ � � � (1)

Defining normalized expression levels as yi � ei=e
0
i , dropping the

constant (it is irrelevant for our purposes) and neglecting the higher-

order terms, Equation (1) becomes

VðyÞ ¼ 1

2

X
i

Aiiðyi � 1Þ2 þ
X
i< j

Aijðyi � 1Þðyj � 1Þ (2)

The off-diagonal elements Aij are non-zero only when genes i

and j interact, and are positive when i inhibits expression of j and

negative when i induces expression of j. We only consider Aij < 0 in

the following. We anticipate A to be a sparse matrix with structure

corresponding to the topology of the gene-gene interaction network.

In the absence of quantitative knowledge, we set Aij � �A1 < 0

(for i, j interacting, 0 otherwise). Equation 2 becomes

VðxÞ ¼ 1

2

X
i

ðAii �A1diÞx2
i þ

A1

2

X
i< j

ðxi � xjÞ2: (3)

where x � y� 1 are deviations from equilibrium and di is the degree

of node i in the network. Since the expansion (1) was away from

equilibrium, the quadratic form VðxÞ must be positive definite. The

form (3) makes it explicit that it will be so if Aii � A1di > 0 for all i.

In the absence of specific knowledge, we adopt a simple prescription

Aii � A1di ¼ A0 > 0. We now write

VðxÞ ¼ 1

2
xTAx; (4)

where

A ¼ A0Iþ A1L; (5)

with I the identity matrix and L the network Laplacian. Equation

(4) represents the system of interacting one-dimensional harmonic

oscillators, in which the oscillator coordinates are deviations of nor-

malized gene expression levels from their steady-state values.

We would like to know which genes respond to perturbations in

a coordinated manner. These will likely be genes who are directly
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interacting, but also genes who are not directly interacting, as long

as there are paths of physical interactions that connect them in the

network. Note that (4) formally represents a system of interacting

harmonic oscillators. We can investigate all possible perturbations

within the framework of statistical mechanics, by immersing the sys-

tem in a heat bath of temperature 1=b (this temperature is a theoret-

ical device and is not related to the actual temperature of the cell).

The probability of finding the system in a state x is given by the

Boltzmann factor PðxÞ ¼ 1
Z exp ½�bVðxÞ�, where Z is a normaliza-

tion constant (partition sum). As the energy is a quadratic form of

the degrees of freedom, PðxÞ is a multivariate Gaussian distribution

and the model is exactly soluble. All thermodynamic expectation

values (such as covariance) can be expressed in terms of matrix A.

Our goal is to calculate the entropy of a subset of oscillators, from

which we can derive other quantities such as mutual information

and variation of information between sets of oscillators. To

that end, we take advantage of the fact that in a multivariate

Gaussian ensemble with probability density of the form

PðxÞ / exp � 1
2 xTR�1x

� �
, the covariance matrix of variables x is

simply R. Explicitly,

hxixji �

Ð
xixj exp � 1

2 xTR�1x
� �

dx

Ð
exp � 1

2 xTR�1x
� �

dx
¼ Rij: (6)

Another useful property of the multivariate Gaussian ensemble is

that the marginal covariance matrix of a subset of variables A; RA,

is obtained from R simply by removing all rows and columns corre-

sponding to the marginalized variables (i.e. coordinates not in A).

The entropy of any subset of oscillators can then be written in terms

of their marginal covariance matrix as

HðAÞ ¼ 1

2
kBln detð2peRAÞ: (7)

Entropy is a thermodynamic quantity, which does not depend on

the expression values, only on temperature via matrix R. From now

on, we will measure entropy in multiples of kB. We also set A1 ¼ A0

for simplicity. The covariance matrix becomes

R ¼ 1

bA0
ðIþ LÞ�1: (8)

Matrix R exists because A is positive definite. We know from ex-

perience that for as long as the interaction network is connected, R
is a full matrix, and by Eq. (6) this means that pairwise correlations

exists between all pairs of oscillators, not just those who interact dir-

ectly. This reinforces the old adage ‘correlation does not imply caus-

ation.’ In this way, physical interactions among some oscillators

generate correlations among all (of varying magnitude). We note

that if the covariance matrix of all genes were known, one could in

principle find the raw interaction matrix A by inversion.

It is convenient to define the matrix G � ðIþ LÞ�1, which

depends only on the topological properties of the network. In terms

of G,

HðAÞ ¼ jAj
2

ln
2pe

bA0
þ 1

2
ln det GA; (9)

Entropy of a single gene i is

Hi ¼
1

2
ln

2pe

bA0
þ 1

2
ln Gii; (10)

where we use the short notation Hi � HðfigÞ. Single-gene entropy is

not uniform, because interactions have renormalized the

fluctuations. Small diagonal elements Gii imply low entropy, which

is a measure of high information centrality characteristic of highly

connected genes in the network.

Let us now define a diagonal matrix formed from the diagonal

entries of G; G0 � diagðGÞ. The system whose covariance matrix is

G0 is special. In this diagonal system, individual genes have the same

entropy as in the fully interacting system, yet their oscillations are

statistically independent. This means that physically distinct har-

monic oscillators share no information. In this sense, the diagonal

system is a most suitable reference. Let us denote the entropy of a

gene set in the diagonal model as H0ðAÞ.
We define interaction information as

~IðAÞ � H0ðAÞ �HðAÞ; (11)

i.e. as the reduction of entropy of set A due to interactions. This

quantity is always non-negative as interactions decrease the entropy,

and does not depend on temperature. By construction, ~Ii ¼ 0. In

terms of G,

~IðAÞ ¼ 1

2

X
i2A

lnGii �
1

2
ln det GA: (12)

Mathematically, this is equal to interaction information of a sys-

tem described by the ‘normalized’ covariance matrix ~R ¼ 1
bA0

~G,

where

~G ¼ G
�1=2
0 GG

�1=2
0 : (13)

Formally,

~IðAÞ ¼ �1

2
ln det ~GA: (14)

This is our central result. ~G has a straightforward interpretation

as the Pearson correlation matrix,

~Gij ¼
Gijffiffiffiffiffiffiffiffiffiffiffiffiffi
GiiGjj

p ¼ .ij: (15)

We now define mutual information between gene sets A and B
as IðA : BÞ ¼ ~IðA [ BÞ � ~IðAnBÞ � ~IðBnAÞ, and variation of infor-

mation as VIðA : BÞ ¼ ~IðAnBÞ þ ~IðBnAÞ; confer Figure 1. It is

understood that ~Ið1Þ ¼ 0. Naturally, IðA : AÞ ¼ ~IðAÞ.
Mutual information is the amount of information one can learn

Fig. 1. Definition of mutual information I and variation of information VI in

terms of interaction information of sets of harmonic oscillators A and B
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about set A from only knowing set B and vice versa. Variation of

information is the amount of extra information contained within

A[ B that is not shared by A and B. This extra information can be

considered unwanted in some contexts. When sets A and B contain

single genes i and j 6¼ i, we obtain

Iij ¼ �
1

2
lnð1� .ij

2Þ; (16)

where we used the shorthand notation Iij � Iðfig : fjgÞ. This is the

well-known Gel’fand-Yaglom formula (Gel’fand and Yaglom,

1957) for mutual information of two harmonic oscillators.

It is possible to obtain approximate formulas in what we call the

two-body approximation, which is appropriate when no three genes

in the set are very correlated, i.e. .ij � 1 for at least two of the three

possible pairs made from of any triple of genes from the set. This ap-

proximation holds well for random sets of small size (jAj � N),

where triple collisions are rare. In this approximation, interaction

information becomes

~IðAÞ ¼
X

i; j 2 A
i < j

Iij: (17)

This formula is of course exact when jAj ¼ 2. This approxima-

tion can be derived using Laplace’s expansion of the determinant in

Eq. (14), using the stated assumption and the fact that ~Gii ¼ 1.

Mutual information between disjoint sets A and B then becomes

IðA : BÞ ¼
X
i 2 A
j 2 B

Iij; (18)

which makes sense intuitively. This equation makes it explicit that

mutual information has a size bias: it is reasonable to expect that

IðA : BÞ / jAj � jBj as there are jAj � jBj terms in the sum. This is not

a concern when we are comparing only two sets of fixed sizes, or

when all sets to be compared have the same size. When one needs to

compare gene sets of varying sizes and be free of the size bias, a use-

ful quantity that largely removes this bias is information quality

ratio (Wijaya et al., 2017):

IQRðA : BÞ ¼ IðA : BÞ
~IðA [ BÞ

: (19)

It is the fraction of the total interaction information within two

sets that is mutual. It is always between 0 and 1.

Functions that calculate matrix ~G for an arbitrary undirected

graph as well as functions that calculate ~IðAÞ; IðA : BÞ; VIðA : BÞ
and IQRðA : BÞ, and also perform rudimentary statistical testing

can be found in the R package gsia at https://github.com/ucsd-ccbb/

gsia.

3 Results and discussion

We now return to interaction information and mutual information

problems defined in the Introduction.

The first question is answered by comparing interaction informa-

tion of a given set, ~IðAÞ, with that of a random set R of the same

size as A but drawn from the null distribution. The null distribution

is highly context specific and should reflect the process that gener-

ated set A. If for example the null experiment can produce any

expressed gene with equal probability, then the null distribution

contains all gene sets of size jAj drawn uniformly randomly from the

expressed gene set. We define P-value of ~IðAÞ as the probability

P½~IðRÞ � ~IðAÞ� in the context of the corresponding null model.

This probability can be estimated numerically, either exactly using

Eq. f(14) or approximately using Eq. (17).

The second question is answered by comparing mutual informa-

tion of the two gene sets, IðA : BÞ, with that of sets A and a random

set R of the same size as B but drawn from the null distribution. We

define the P-value as the probability P½IðA : RÞ � IðA : BÞ�. Note

that this probability may be significant even when A and B are dis-

joint. Again, the null model is very context dependent and should re-

flect the process that generated set B. For instance, sets R and A
may be allowed to overlap if B and A can overlap in principle. This

definition of significance is explicitly asymmetric as A has a position

of the reference set. It is therefore possible for a set B to be signifi-

cantly related to A, while A is not significantly related to B. A sym-

metric definition follows readily.

To illustrate these concepts, we consider three different bioinfor-

matic applications: genome-wide association studies (GWAS), iden-

tification of related metabolic pathways, and finding related human

diseases based on disease gene signatures. As for the interaction net-

work, we use the InBioMap protein-protein interaction network (Li

et al., 2017), which is an integrative database with more than 17000

proteins and �6	 105 interactions, both direct (physical) and indir-

ect (functional). This database does not contain ‘interactions’

inferred from co-expression nor co-citation evidence and is therefore

ideally suited for our approach. Gene expression correlations

emerge naturally in our model between any two genes that are con-

nected via the network even when they do not interact directly. In

fact, all gene pairs within a connected component of the graph are

correlated to various degree, as shown in Figure 2. InBioMap per-

formed very well in a recent series of gene set recovery tests done by

Huang et al. (2018).

The InBioMap network is not tissue specific but in the context of

GWAS or diseases this is appropriate. After conversion of identifiers

from UNIPROT to Entrez gene and retaining the largest connected

component of the network, we obtained a network of N¼17171

genes with 588 897 edges. This is a sparse network with just 0.40%

of possible interactions. The distribution of the pairwise mutual

Fig. 2. Histogram of Iij for InBioMap interaction network. Inset: continuation

for Iij > 0.007. Large values are extremely rare (Iij � 0:02 for only 0.00017% of

gene pairs), which no doubt stems from the sparsity of the raw interaction

matrix A

4 Z.S.Wallace et al.
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information matrix Iij is drawn in Figure 2. Large values are relative-

ly rare. The sharp local maxima in the Iij distribution are caused by

frequent repetition of local connectivity patterns or graph motifs

throughout the network.

3.1 GWAS studies of alcohol dependency
Alcohol dependency is a complex psychiatric diagnosis for a person

who is either physically or psychologically dependent on alcohol. It

has now been re-classified as alcohol use disorder (AUD) [American

Psychiatric Association (2013)]. To our knowledge, there have been

six successful GWAS studies of AUD since 2009; by success we

mean detection of at least one single nucleotide polymorphism

(SNP) at the level P < 5	 10�8 (Frank et al., 2012; Gelernter et al.,

2014; Park et al., 2013; Quillen et al., 2014; Treutlein et al., 2009;

Zuo et al., 2015). After association of SNP’s to genes, these studies

collectively produced seven candidate genes: PECR, ADH1C,

ADH7, ALDH2, LOC100507053, ADH1B and SERINC2. Only

two studies reproduced the same genetic locus albeit with different

SNP’s. The absence of agreement between studies can be explained

by small power and/or by true genetic differences among the

cohorts. Regardless, if there is a common molecular pathway that is

contributing to the risk of AUD, then we would expect these genes

to be highly mutually informative. Quantitatively speaking, their

interaction information should be unusually large. We test this

hypothesis by calculating the probability that interaction

information of a null gene set will be no smaller than the observed

value. Since GWAS studies can in principle identify any genomic

locus, we define the null set as a set of six genes drawn uniformly

randomly from the network (one gene, LOC100507053, is not

found in InBioMap so it will be ignored; the remaining six are part

of the candidate gene set A). We sampled 106 null sets, with the

result p½~IðRÞ � ~IðAÞ� ¼ 4:1	 10�5, which is highly significant. We

conclude therefore that the candidate genes are significantly

mutually informative and the likelihood that they were selected

uniformly randomly is very small. The null distribution and the

observed value for the set of six candidate genes is in Figure 3. The

distribution of ~IðAÞ resembles that of Iij in Figure 2. This is not a

coincidence: set A is small, and Eq. 17 is a good approximation for

a typical null set. Chances are that a single one of the
6
2

� �
¼15

terms Iij makes a dominant contribution, which explains why the

tail of the distribution in Figure 3 resembles that of Figure 2.

Even though the GWAS studies produced disjoint SNP’s, the

researchers were confident that the candidate genes were mostly

valid because several of them are involved in alcohol metabolism.

This is precisely the point of our work: just as these researchers were

able to use prior knowledge, which increased their confidence in

their results, our method puts a quantitative P-value on that confi-

dence without the need to know anything about alcohol metabolism

specifically, as our method leverages the knowledge of the entire

interaction network. This way, we can in principle uncover relation-

ships between genes even when the underlying pathway is unknown

or unnamed, or lies at the boundary of two canonical pathways, or

is a fraction of a canonical pathway, provided the interaction net-

work is reasonably complete.

An interesting wrinkle to this story are the genes that did not

achieve the significance threshold of P < 5	 10�8 (Zuo et al.,

2015), yet the authors felt they were ‘significantly or suggestively

associated’ with AUD, and ‘most appropriate for follow-up’ as con-

tributors to risk for AUD. In the European ancestry combined co-

hort, these genes were STK40, KIAA0040 and IPO11. Can we

support their assertion? Let us denote the set of these three added

genes by A0. If these genes were part of the same network neighbor-

hood as the six candidate genes, we would expect ~IðA [ A0Þ to be

unusually large, given A. The conditional probability that three ran-

dom genes R0 when added to the six candidate genes A will have

interaction information no less than the set A [A0 is

p½~IðA [ R0Þ � ~IðA [ A0Þ; jR0j ¼ jA0j� ¼ 0:72. This means that the

three added genes are not significantly informative of the six already

established candidate genes and we cannot support the authors’ as-

sertion that they are suggestively associated with AUD. The null dis-

tribution and the observed value of interaction information for the

set of six candidate genes with three added genes is in Figure 3

(inset).

3.2 Metabolic pathways
We now turn to canonical pathways, specifically A) Glyoxylate and

dicarboxylate metabolism, and B) Nitrogen metabolism [KEGG

pathways 00630 and 00910 (Kanehisa et al., 2004)]. These are

metabolic pathways in plants, which are coupled via a metabolite

formate, but otherwise share no gene products (enzymes). It is not

rare for canonical pathways to be disjoint; in fact, 79% of all KEGG

pathway pairs are. We think this is more a reflection of a human ten-

dency to compartmentalize knowledge rather than the nature’s way

of functioning. Let us denote the set of genes involved in pathway A

by A, and genes of pathway B by B. We have jAj ¼ 16; jBj ¼ 23,

and A \ B ¼1. Activity of these pathways depends on the level of

their common metabolite formate, which suggests that they are

coordinated as parts of a greater metabolic network. In this context

therefore, gene sets A and B are functionally related and should be

mutually informative. Yet, neither pathway is significantly enriched

by the other in terms of genes, because their gene sets are disjoint.

Gene set enrichment methods fail to find a relationship between

these two pathways. Can we detect a relationship using the present

Fig. 3. Null distribution of the interaction information ~I ðAÞ for a set of six uni-

formly randomly selected genes from the network. The vertical line marks the

value of ~I ðAÞ for the set of six candidate genes associated with alcohol de-

pendency. p ¼ 3:4	 10�5. Inset: Null distribution of interaction information

for a set consisting of the six candidate genes and three uniformly randomly

selected genes from the network. The vertical line marks the value of ~I ðA [
A0Þ when A0 is the set of three ‘best’ non-significant genes suggested by Zuo

et al. (2015). P¼0.72
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method? Indeed, the probability that two uniformly randomly

selected gene sets R and R0 such that jRj ¼ jAj; jR0j ¼ jBj and R\
R0 ¼1 will have mutual information no less than the observed

IðA;BÞ is 0.0055, which is highly significant. The null distribution

of mutual information is in Figure 4. We conclude that Glyoxylate

and dicarboxylate metabolism and Nitrogen metabolism are signifi-

cantly mutually informative pathways.

3.3 Human disease set signatures
Human diseases are a set of pathologies that manifest themselves in

distinct ways. In the genomics era, diseases came to be associated

with genes whose altered expression or altered sequence can either

cause or increase the likelihood or severity of the symptoms. These

gene set signatures are catalogued in the DisGeNet database (Pi~nero

et al., 2017). There are 130 821 diseases in DisGeNet, but we con-

sidered only diseases with distinct gene signatures and sizes between

50 and 200 genes. From the resulting 357 diseases, we manually

removed predominantly congenital disorders and abnormalities like

retrognathia and flat face. The final set contains 130 predominantly

metabolic, degenerative, inflammatory and neoplastic diseases.

To illustrate mutual information, we will organize the diseases

based on mutual information of gene signatures and build a network

of significant disease–disease relationships. The central quantity is

mutual information; however, because of the size bias mentioned

above, information quality ratio (19) is more appropriate. We calcu-

late IQR for every pair of diseases. In order to find the appropriate

significance cutoff, we need to define the null model first. The ap-

propriate null ‘disease’ gene set should have all the characteristics of

actual disease gene sets such as size distribution, perhaps also the

interaction information distribution, yet it should be statistically in-

dependent from any other null set. A naive uniformly random null

model used in the above two cases fails, because real disease gene

sets show highly non-uniform gene frequency distribution. This also

means that the observed disease–disease gene overlap is typically

much larger than expected in the uniform random model, and so is

mutual information. After much consideration we decided it would

be best to learn what it means for two diseases to be significantly

related from the diseases themselves. In essence, we assume that

most disease gene sets should be called ‘not significantly related’ on

the basis of them being distinct clinical diagnoses. This means that

the observed distribution of IQRðA;BÞ can be viewed as a mixture

of the actual null distribution and a small fraction of significant val-

ues. The significant values can be found with the empirical Bayesian

approach of Efron (2008) using the R function locfdr (https://cran.r-

project.org/package¼locfdr). We call disease pairs significantly

related if their lfdr < 0.3 (posterior probability better than 70%).

There are 331 significant relationships that define a network of dis-

ease–disease relationships.

To contrast the present method with the established gene enrich-

ment methodology, we also construct the network using a gene en-

richment statistic. The quantity analogous to IQRðA;BÞ is the

Jaccard index

JIðA;BÞ ¼ jA \ BjjA [ Bj : (20)

Like IQR, JI is also normalized to interval [0, 1]. Unfortunately,

the empirical distribution of JI among the 130 diseases is multi-

modal with an isolated peak at JIðA;BÞ ¼ 0 (14.7% of disease–dis-

ease gene set pairs have empty intersection, cf. Fig. 5) and does not

lend itself to straightforward empirical Bayes analysis, so it is not

obvious where to draw the significance threshold for JI based on JI

values alone. For purposes of comparison with the present method,

we draw the threshold at a value that yields the same number of sig-

nificant disease pairs as the information method. This will suffice

for a fair comparison of the two methods.

The entire disease–disease network of 130 diseases can be viewed

interactively at the Network Data Exchange (NDEx) (Pratt et al.,

2015), UUID: 4a7f0c68-69b4-11e8-a4bf-0ac135e8bacf].

Of the 506 disease pairs found significant by at least one method

(6.0% of all disease pairs), 156 were identified by both methods,

Fig. 4. Null distribution of mutual information IðA;BÞ for jAj ¼ 16; jBj ¼ 23

and A [ B ¼1, calculated numerically with 5	 105 random sets. The

observed value for two canonical pathways of this size, Glyoxylate and dicar-

boxylate metabolism and Nitrogen metabolism, is marked by the vertical line

(P¼0.0055). Insert: same as main panel, in linear scale

Fig. 5. Information quality ratio versus Jaccard index for all pairs of diseases.

Pairs found significant by both statistics (
), only by the information statistic

IQR (�) and only by the enrichment statistic JI (h). The horizontal line sepa-

rates the data points at the level lfdr ¼ 0:3; the vertical line into two parts of

the same size as the horizontal line. The annotated disease pairs were chosen

as extreme representatives of what is considered significant by either method

alone
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175 pairs were detected only by the information method, and 175

only by the gene enrichment method. The overlap is highly signifi-

cant, as 47.1% of disease pairs detected by one method are also

detected by the other. However, the complement of 52.9% disease

pairs detected uniquely by either method deserves scrutiny. We

would like to know if one method is clearly ‘better’ at detecting rela-

tionship or are the two methods complementary. To this end we ex-

plore a small part of the disease–disease network centered around

Alzheimer’s Disease (AD) in more detail (Fig. 6). This subnetwork is

also accessible at NDEx, UUID 839b1acb-69b4-11e8-a4bf-

0ac135e8bacf.

Dark edges of this graph represent relationships detected by both

methods. From the perspective of AD, Nerve Degeneration and

Parkinson Disease are certainly relevant relationships. A less obvi-

ous one is Acute Kidney Injury. However, there is epidemiological

evidence that people who had been hospitalized with acute kidney

injury (and recovered) have a significantly increased risk of develop-

ing dementia later in life (Tsai et al., 2017). Hence we conclude that

these three relationships detected by both methods are true. How

about relationships detected by the information statistic alone? Let

us take them in the counter-clockwise order according to Figure 6:

Weight Gain is a major risk factor for developing AD and is prob-

ably causative (Kivipelto et al., 2005). Necrosis is part of the spec-

trum of neuronal cell death seen in neurodegenerative diseases

(Gorman, 2008). Myocardial Infarction seems far removed from

AD, but they share the same pathogenic mechanisms, namely choles-

terol metabolism and inflammation (Licastro et al., 2011). By the

same token, Atherosclerosis is highly relevant to AD and the two

have even been postulated to be one disease with different presenta-

tions (Lathe et al., 2014; Roher et al., 2004). Fatty Liver (non-alco-

holic) induces symptoms of AD (Kim et al., 2016). Finally, Insulin

Resistance is emerging as an important feature of AD and the two

are possibly synergistic rather than coincidental diseases (Arnold

et al., 2018). Now what about relationships detected only by the en-

richment statistic? In the nearest network neighborhood

of AD, there is only one, between Nerve Degeneration and

Parkinson Disease. This is certainly correct. It appears that the pre-

sent method and the gene enrichment method are complementary

rather than exclusive.

Let us now look at the most extreme disease pairs called signifi-

cant by either statistic alone (see Fig. 5). Ulcerative Colitis and

Contact Dermatitis seem unrelated at first sight. We note however

that ulcerative colitis can affect any organ system in the body, and

skin is the most commonly affected one, with dermatitis ulcerosa

(pyoderma gangrenosum) being the most common type of dermatitis

(Huang et al., 2012). While this is not the same as contact derma-

titis, we do not rule this connection to be false positive. Ulcerative

Colitis and Contact Dermatitis is a special disease pair in the sense

that it was the only one detected by the information method in the

complete absence of gene intersection (A \ B ¼1; JIðA;BÞ ¼ 0).

On the other side of the spectrum, the relationship between

Movement Disorders and Muscle Spasticity is certainly real as spas-

ticity is a type of movement disorder. Again, it appears that the in-

formation statistic and enrichment statistic are complementary.

We now describe, in qualitative terms, the kinds of gene set

pairs whose relationship can be detected by only one or by both

methods. Figure 7 has cartoon representations of them. Panel a)

contains two disjoint gene sets that are highly interconnected in

the network. In the harmonic oscillator representation, the oscilla-

tors are strongly coupled, which means that they will be highly

correlated. From the information point of view, these gene sets are

highly mutually informative, therefore they can be detected by the

information method. Enrichment methods will not detect a rela-

tionship. Panel b) has two highly interconnected gene sets with a

significant number of genes in common (probability that two gene

sets of size 5 and 6 chosen independently and uniformly randomly

from a set of 104 genes will have at least one gene in common is

0.0030). These gene sets can be recognized by both information

and enrichment methods. Finally, panel c) has two sets who are

mutually uninformative except for a small yet significant number

of genes in common. Gene sets like these can be detected only by

enrichment methods.

Fig. 6. Network of diseases in the nearest neighborhood of Alzheimer’s dis-

ease. Node area is proportional to the size of the corresponding disease gene

set and ranges from 52 (Necrosis) to 119 (Nerve Degeneration). The numbers

along the edges are numbers of genes shared by the two connected diseases.

Black edges were found significant by both the information (IQR) and the en-

richment (JI) statistics; solid grey edges were detected only by the informa-

tion statistic, and the dashed grey edges were detected only by the

enrichment statistic

Fig. 7. Illustration of three cases relevant to the comparison of the information

method and gene set enrichment methods: (a) Two gene sets (black and

white) have no genes in common but they are proximal in the network sense

(are highly mutually informative), (b) Two gene sets are highly mutually in-

formative and at the same time have a significant number of genes in com-

mon (grey) and (c) two gene sets are far removed from each other in the

network sense (are mutually uninformative) but have a significant number of

genes in common (grey nodes)
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4 Conclusions

We derived mathematically simple information measures for gene sets

in the context of an underlying gene interaction network. These infor-

mation measures follow from very few biological assumptions, chief

among them being the assumed existence of a stable steady state, and

from established methods of statistical physics. We applied these in-

formation concepts to the problems of interaction information and

mutual information for disease gene signatures. Our results indicate

that these information measures are able to recapitulate known dis-

ease relationships; in some cases even when established gene enrich-

ment methods fail. We find that the information methods presented

here and the established gene enrichment methods are complementary

rather than exclusive. The utility of each depends on the kind of gene

set similarity a researcher is looking for. We expect that the present

methodology will be used in other contexts, such as drug repurposing

based on drug and disease signature gene sets, and to relate experi-

mentally relevant gene sets to curated pathways.
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