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Typing tumors using pathways selected by somatic
evolution
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Many recent efforts to analyze cancer genomes involve aggregation of mutations within
reference maps of molecular pathways and protein networks. Here, we find these pathway
studies are impeded by molecular interactions that are functionally irrelevant to cancer or the
patient’s tumor type, as these interactions diminish the contrast of driver pathways relative
to individual frequently mutated genes. This problem can be addressed by creating stringent
tumor-specific networks of biophysical protein interactions, identified by signatures of
epistatic selection during tumor evolution. Using such an evolutionarily selected pathway
(ESP) map, we analyze the major cancer genome atlases to derive a hierarchical classification
of tumor subtypes linked to characteristic mutated pathways. These pathways are clinically
prognostic and predictive, including the TP53-AXIN-ARHGEF17 combination in liver and
CYLC2-STKT1-STKT1IP in lung cancer, which we validate in independent cohorts. This ESP
framework substantially improves the definition of cancer pathways and subtypes from tumor
genome data.
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ne of the most striking findings of the cancer genome
sequencing projects has been the extreme heterogeneity
in genetic alterations observed among tumors!=3. Each
new tumor genome that is sequenced presents a new collection of
genetic mutations that have, save for a few recurrent events, been
only rarely observed before. This heterogeneity poses a funda-
mental challenge to efforts to understand and treat cancer, since
such efforts largely depend on finding recurrent patterns in data.

Among the ongoing attempts to address cancer heterogeneity,
an important paradigm has been to aggregate gene mutations into
higher level structures and functions in cancer cells, such as
protein complexes, signaling pathways, and biological processes.
Such pathway analyses have been frequently applied to cancer
datasets to aggregate gene-level signals to identify new pathway-
level biomarkers*~7, to increase sensitivity for identification of
cancer driver genes®?, and to discover key regulators of cancer-
related transcription!®!l. Moreover, different genetic alterations
perturbing the same cancer pathway are found to drive the same,
or similar, cancer subtypes and associated clinical outcomes®.

Methodologically, many approaches to cancer pathway
analysis have been based on aggregating mutations across
neighboring genes in a network of previously defined molecular
interactions®12-16, A popular model is heat diffusion, also called
network propagation!’, by which individual gene mutations in a
tumor are diffused, like sources of heat, across the network.
Such diffusion creates “hot” network neighborhoods of genes
proximal to mutated genes. These network neighborhoods define
cancer driver pathways®’ and potential drug targets for cancer
therapy!8-20. They also allow patients to be clustered into sub-
types, because the neighborhoods, unlike individual genes, are
commonly mutated and thus provide a basis for grouping
tumors®2!. Other than network propagation, related methods
include network clustering??, network integration?3, and network
regularization®.

Ideally, such pathway analyses should rely on the specific
molecular interactions that drive cancer in relevant tissue types,
as opposed to interactions important for other cellular states,
diseases and/or tissues. However, most types of experimental data
used to inform molecular interaction networks, including
protein—protein interactions and genetic interactions, cannot yet
be readily generated at the scale necessary to cover many specific
tumor samples or tissues. Therefore, in nearly all cancer pathway
analyses, molecular interaction information is drawn heavily from
network meta-resources’™. These meta-resources are large, cat-
aloging in the range of 103-107 interactions, as well as non-
discriminatory, representing many diverse experiments in dif-
ferent human cell lines, primary tissues, or ex-vivo contexts such
as yeast two-hybrid?4, with each source influenced by different
rates of false-positive and false-negative errors.

While these meta-resources have been extremely useful, the
high diversity of their contents motivates at least two major
directions for further bioinformatics research. First, the effects of
large numbers of non-specific interactions are not yet well
understood. Is their inclusion in cancer pathway analyses helpful,
neutral, or harmful? Second, it is not yet clear how to formulate
molecular interaction networks that are both cancer-relevant and
tissue-type specific. While various computational methods have
been proposed to address tissue specificity, for instance by
selecting interactions with tissue-specific gene expression patterns
or functional annotations!>2>, similar strategies have not been
devised for nominating interactions specific or relevant to cancer.

Here we show that, in fact, the informative pathways driving
cancer pathogenesis and subtypes can be remarkably difficult to
identify in the presence of many gene interactions irrelevant to
cancer. We find that this problem can be at least partially
addressed by creating a stringent filter on molecular interaction

resources, based on patterns of mutually exclusive genetic
alterations which arise during tumor evolution”-2°, We use the
resulting cancer- and tissue-specific network, which we call the
Evolutionarily Selected Pathway map, to analyze tumor genomes
from The Cancer Genome Atlas and International Cancer Gen-
ome Consortium, resulting in a taxonomy of cancer pathways
and subtypes associated with clinical outcomes.

Results

Random interactions diminish the influence of pathways. To
explore the effects of irrelevant gene interactions on cancer
pathway analysis, we first simulated a somatic mutation dataset
consisting of a gene-by-tumor matrix of binary mutated/unmu-
tated states for each gene across multiple tumors. Mutations were
generated randomly considering the existence of frequently
mutated pathways (FMP) and frequently mutated genes (FMG),
both of which were mutated with equal elevated probability in a
tumor relative to the remaining background genes (Fig. 1a). In
mutating FMPs, mutations were assigned to a fixed number of
member genes in the pathway. The simulated tumors were then
annotated to subtypes according to the status of a selected FMP,
i.e., tumors for which this pathway was mutated were assigned
FMP subtype 1 and otherwise FMP subtype 2 (Fig. 1a). As an
alternative, we also considered subtype assignments following an
FMG rather than a pathway.

Next, we sought to determine how well these simulated tumor
subtypes could be recovered by current pathway analysis
approaches. Following a standard methodology?’, the mutation
profile of each tumor was propagated across a gene interaction
network, which we constructed by densely connecting sets of
genes representing FMPs, embedded within otherwise random
interactions (Fig. 1b). Random networks were simulated using an
Erdos-Renyi model?8. We found empirically that the method for
generating random interactions, preferential attachment?® or
Erdos-Renyi?®, did not have a large effect on the analysis
(Supplementary Figs. 1, 2 and 3). The propagated profiles for all
tumors were then clustered into two groups (Fig. 1¢) using the k-
means + + algorithm30, The agreement between these clusters
and the correct subtypes was measured using the Adjusted Rand
Index (ARI). For further details of simulations, see Methods.

When the reference network contained few random interac-
tions ( < 1%), we found that FMP-driven subtypes were recovered
with very high accuracy, even in the presence of background
mutations (Fig. 1d and Supplementary Fig. 2a; 95% accuracy for a
model with 1% random interaction density and 1% background
mutation frequency). This performance was robust to a range of
interaction densities within the pathway, such that high accuracy
could still be achieved with as few as 20% of interactions among
pathway member genes (Fig. le). In contrast to pathways, the
ability to recover single gene (FMG) subtypes dropped sharply as
background mutations were added, consistent with previous
reports that pathway analysis can boost power to detect subtypes®
in comparison to analysis of individual gene mutations (Fig. 1d).

When increasing numbers of random interactions were added
to the network (ie., cancer irrelevant), the accuracy of FMP
subtype recovery gradually decreased. For example, by increasing
the random interaction density to connect 2% of gene pairs, we
found that accuracy of subtype recovery fell to less than 10%
(Fig. 1f and Supplementary Fig. 2b). This result raised a warning
that cancer pathways might be difficult to discern within the large
interaction databases commonly used for network analysis, in
which interactions typically connect 1-2% of gene pairs3!.

Further exploration led to the curious observation that, even in
the presence of random interactions, high accuracy could be
restored by simulating FMPs only, while excluding FMGs from
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Fig. 1 Exploring cancer pathway analysis through simulation. a Simulated somatic mutation dataset including two FMPs (genes 1-5) and an FMG (gene 16).
Mutated genes are shown in red and non-mutated genes are shown in white. A reduced set of tumors and genes (10 x 20) is shown as an example; the full
simulation is (1000 x 1000). b Network-based propagation of mutations over a simulated gene interaction network. Shades of red show propagated
mutation values for tumor sample #3. ¢ Mutation dataset from a following network propagation. d Tumor stratification performance with increasing
frequency of background mutations, when no random interactions are presented. Performance is measured by calculating Adjusted Random Index (ARI)
between the true subtypes and the tumor clusters derived by network stratification. @ Tumor stratification performance with increasing density of
interactions within FMPs, when no random interactions are presented. f Tumor stratification performance with increasing random gene interaction density

the mutation model (Fig. 1f and Supplementary Fig. 2b).
Prompted by this observation, we then considered a comple-
mentary scenario in which subtypes were driven by an FMG
rather than FMPs. Remarkably, the accuracy of FMG subtype
recovery actually improved as random interactions were added to
the network, suggesting that random interactions amplify the
mutation signal of individual genes relative to pathways (Fig. 1f
and Supplementary Fig. 2b). Inspection of the model revealed
that this difference occurs because an FMG propagates its
mutation state more readily to network neighbors: All interac-
tions of an FMG spread mutation signal outwards, whereas only
some interactions of an FMP do, with others being internal to the
pathway. Therefore, in the presence of sufficient random
interactions, the mutation signal of pathways is eclipsed by the
mutation signal of strong individual driver genes, an outcome
which runs counter to the goal of pathway analysis. These same
qualitative results were seen for a range of background mutation
frequencies and interaction densities (Methods, Supplementary
Figs. 1 and 3).

A stringent map of evolutionarily selected pathways. Given that
pathway analysis was adversely affected by random (irrelevant)
interactions but robust to missing interactions within pathways,
we sought to derive a new cancer gene interaction reference map
using a very stringent policy (Fig. 2, Methods). Out of the many
sources to construct such a network (e.g., strength of a certain
type of data, literature, expert curation), exploratory analysis
revealed two features as particularly important: biophysical
interaction among gene products and epistatic genetic interaction
during somatic evolution (Supplementary Figs. 4-7). Biophysical
(or protein—protein) interactions define the physical architecture
of cancer pathways, including protein complexes and signaling
cascades. Epistatic genetic interactions connect genes in which the
functional effects of genetic mutations are inter-dependent32-34,

Mutual exclusivity, a type of epistatic interaction whereby two
genes are rarely co-mutated during somatic evolution of a tumor,
has been used extensively to prioritize functionally related cancer
genes?®3%36. Combining these two features, we selected biophy-
sical interactions from the InBioMap resource” in which the two
genes exhibited mutual exclusivity within one or more cancer
types (Methods). The resulting network of tumor type-specific
interactions, which we call an Evolutionarily Selected Pathway
(ESP) map, covered 258 genes and 263 interactions (Fig. 2 and
Supplementary Data 1).

Using the ESP map to stratify tumors. Given this ESP map, we
applied it to analyze somatic mutation profiles of 18 cancer
cohorts in The Cancer Genome Atlas (TCGA, Methods). As
above, network propagation was used to spread the influence of
gene mutations in each tumor to network neighbors, along only
those interactions supported by mutual exclusivity in the corre-
sponding tumor tissue. The propagated tumor mutation profiles
for each tissue were compressed into low dimensions and clus-
tered into subtypes of increasing resolution (k=2...6) using
standard consensus clustering with the k-means + + algorithm°
(Fig. 3a, b). By contrasting the propagated mutation profiles
across subtypes of cancer patients, each subtype was assigned one
or more network regions—which we call characteristic ESPs—
that were impacted by mutations enriched in that subtype
(Fig. 3¢, Methods).

For example, this procedure stratified 430 HPV-negative head
and neck squamous carcinomas (HNSC) into a hierarchy of
subtypes (Fig. 4a) that were strongly associated with patient
survival (Fig. 4b-d) and clinical variables including smoking
status and recurrence (Fig. 4a bottom, and Supplementary
Data 3). The characteristic ESPs for these subtypes included
genes well-known to function in pathogenesis of head and neck
cancer (Fig. 4e, TP53, NOTCH, CDKNZ2A) as well as many genes
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Fig. 2 Evolutionarily selected pathway (ESP) map. All interactions in the map are supported by prior evidence of both biophysical protein-protein
interaction and mutual exclusivity of mutation during somatic evolution. Interaction colors represent the cancer type in which mutual exclusivity is
observed. Black edges indicate interactions for multiple cancer types (Supplementary Data 2). Boxes indicate interaction neighborhoods enriched in
specific cancer types. The largest connected component of ESP map is shown, covering 88% of the complete map (226,256 genes) and focused on seven
cancer types in which the ESP map leads to superior subtype stratification (see text): BLCA bladder cancer, GBM glioblastoma, HNSC head and neck
squamous carcinoma, LIHC liver hepatocellular carcinoma, LUAD lung adenocarcinoma, OV ovarian cancer, SARC sarcoma

that had not been previously described to have roles in this
disease. Subtype hierarchies for other tumor tissue types are
provided in the supplement (Supplementary Figs. 8-14).

Exploration and validation of characteristic ESPs. To system-
atically evaluate the stratification results, we first compared the
ESP subtypes to previously annotated cancer subtypes and clinical
variables for each tissue as recorded by TCGA. Indeed, some ESP
subtypes closely tracked known clinically identified subtypes
(Supplementary Data 3). For instance in breast cancer, ESP
subtypes were significantly correlated with Estrogen Receptor and
HER?2 expression status, while in uterine cancer, subtypes were
significantly correlated with the histological subtype, serous vs.

endometrioid. In colorectal cancer, ESP subtypes were correlated
with KRAS and BRAF mutation status and also separated primary
colon from primary rectal tumors. Notably, these distinct origins
had been considered indistinguishable from analysis of somatic
mutation profiles alone3® (this previous analysis was in the
absence of molecular network information). In other cases,
including head and neck, liver, and bladder, the resulting strati-
fication of tumors corresponded only weakly to known clinical
subtypes and variables, or not at all, suggesting new disease
subtypes and pathways worthy of further investigation (Supple-
mentary Data 3).

We next examined the ability of the ESP subtypes to stratify
patients according to progression-free survival time, a common
quantitative means of assessing the utility of subtype
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stratification®. We found that 8 of the 18 tumor cancer
cohorts could be stratified into prognostic subtypes, i.e., which
were significantly associated with differences in patient survival
(p<0.01, BLCA, GBM, HNSC, LIHC, LUAD, OV, SARC,
THCA). This prognostic ability was quite favorable compared
to standard clustering of somatic mutation profiles in the
absence of network information (Fig. 5a). Generally, with few
exceptions it was also favorable in comparison to the prognostic
value of known subtypes and clinical variables (Supplementary
Data 3). These substantial associations with patient survival
provide clinical support to the subtypes identified by the ESP
mapping procedure.

Next, we studied whether mutation of the identified ESPs
leads to downstream effects on gene expression. Indeed, the
alteration status (mutated or unmutated) of three ESPs,
THCA_551, LUAD_531, and SARC_531 (Supplementary Data 1),
was associated with the first principal component of expression
among tumor samples in thyroid carcinoma, lung, and sarcoma,
respectively (Supplementary Data 4). More specifically, we
checked the influence of ESP alteration on the expression of
known cellular pathways associated with cancer (Methods). In
this case, we found a larger proportion of ESPs (82 out of 117)
were associated with expression changes in at least one of these
specific cancer pathways.

Further support was provided by a number of exploratory
analyses, of which we mention the most important findings here
(Supplementary Figs. 4-7). First, we compared different ESP
maps in which biophysical protein interactions were drawn not
from InBioMap but from STRING*’ or PathwayCommons?!,
alternative database sources frequently used in cancer pathway
analyses. Of these sources, InBioMap had the best ability to
stratify patients by survival (Supplementary Fig. 7). Second, we
compared ESP map against the much larger complete set of
606,195 protein interactions in InBioMap, unconstrained by
epistatic genetic interactions. As anticipated by our earlier
simulations, this large network did not find prognostic subtypes
for any of the 18 cancer cohorts examined (Fig. 5b). Analysis with

ESP map also yielded a higher density of known cancer driver
genes than analysis with the full InBioMap (Supplementary
Fig. 15). Third, we evaluated the complementary configuration: a
network constructed solely by mutual exclusivity of gene pairs,
unconstrained by biophysical interactions. For most of the
evaluated cancer types, the performance was not as good as that
of the ESP map, indicating that epistatic interactions are more
informative when combined with biophysical interactions
(Supplementary Figs. 4-6). Fourth, we examined the impact of
total network size by progressively adding biophysical interac-
tions to the ESP map based on their significance of mutual
exclusivity (Methods). For most cancer types, we saw the best
stratification performance (survival association) with the top
~100 mutually exclusive gene interactions. Remarkably, adding
further interactions led to a drop of performance that was seen
consistently across tissues (Fig. 5¢). Collectively these analyses led
us to select a reference network approximately three orders of
magnitude smaller than the very large networks used in previous
cancer studies (Fig. 2, 263 interactions in ESP vs.>10°
interactions for unconstrained interaction databases such as
InBioMap, STRING, or PathwayCommons)*7>?,

A TP53-AXIN-ARHGEF17 pathway associated with liver can-
cer. As one particular case study, we examined an ESP subtype
associated with poor survival in liver cancer which was mutated
in 36% of tumors (Fig. 6a, b). AXINI and TP53 form a previously
described protein complex, in which AXINI phosphorylates TP53
in response to DNA damage, triggering cell-cycle arrest or
apoptosis*2. In contrast, the biophysical interaction between
ARHGEF17 and TP53 had not been studied in depth, having been
one of many interactions detected in a large-scale interaction
screen*>. Mutations to ARHGEFI7 and TP53 were mutually
exclusive within this subtype and this subtype only (p-value =
0.05 using one tailed Fisher’s exact test, p-value =0.21 for the
liver tumor cohort at large), supporting the biophysical interac-
tion and suggesting it is subtype-specific.
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We identified two interesting properties relating to genes in
this ESP that had not been reported by previous studies. First,
mutating this ESP indicated low survival, which could be further
validated in a second large cohort of liver tumors from the
International Cancer Genome Consortium (ICGC), supporting
the value of this ESP as a putative clinical biomarker (Hazard
ratio 2.7, Fig. 6¢). Notably, none of the three genes involved in
this ESP (TP53, AXINI, and ARHGEF17) was significantly
prognostic when mutations to each gene were considered
individually (Fig. 6d). Second, given that the AXINI-TP53
interaction modulates DNA damage response, we also tested
associations between this ESP and DNA damaging

chemotherapeutics widely used to treat liver cancer (Methods).
This investigation was carried out in a panel of 19 liver cancer cell
lines characterized in the Genomics of Drug Sensitivity in Cancer
(GDSC) dataset, of which 15 had mutations placing them in the
ESP subtype. This analysis showed that ESP subtype mutations
are indeed associated with strong resistance to mitomycin C
(Fig. 6e and Supplementary Fig. 16a), consistent with the
observation of poor survival in both TCGA and ICGC (Fig. 6b, c).

A CYLC2-STK11-STKI11IP pathway associated with lung can-
cer. As a second case study, we examined an ESP associated with
aggressive lung cancer, mutated in 22% of lung tumors and
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involving mutations to the genes CYLC2, STKI11 and STKIIP
(Fig. 6f). As validation, we found that patients of this ESP subtype
had significantly lower survival not only in the original TCGA
cohort we examined (Fig. 6g) but also the MSK-IMPACT cohort
(Fig. 6h). As we had observed for liver, we found that the prog-
nostic significance of this lung ESP was not tied to any individual
gene but required the integration of mutations across the pathway
(Fig. 6i). Lung cell lines mutated in this ESP were significantly less
sensitive to paclitaxel, a common chemotherapy in treatment of
lung cancer (Fig. 6j and Supplementary Fig. 16b), providing a
rationale for the observed poor survival in patients.

Among the three genes, STK11 stood out as the only gene well-
studied in this cancer type**~4°, in which STK11 mutation has
been associated with decreased immune surveillance and lack of
response to immune checkpoint inhibitors. The biophysical
interaction between STK11 and STKI11IP had not been directly
studied in cancer but is known to play a role in Peutz-Jeghers
syndrome, in which patients are at high risk to further develop
cancers of multiple types*’”. The physical and epistatic interac-
tions between STKIIIP and CYCL2 had not been previously
studied.

Discussion

Pathways have been extensively applied in cancer genetics
to organize cancer driver genes and stratify patients into sub-
types’ %31, Since interaction mapping techniques do not yet
generate comprehensive datasets tailored to each specific tumor
and tissue in a cohort, pathway analyses typically strike a com-
promise, by pooling molecular interactions derived from many

previous experiments into one large protein network. Here, we
have demonstrated that this compromise can be a major limita-
tion, as it dilutes the signal of pathways relative to frequently
mutated genes. We showed that this problem could be addressed
by reinforcing biophysical interactions with epistatic genetic
interactions observed directly in populations of tumors, leading to
creation of a tissue-specific resource, the ESP map, of broad use in
the study of cancer pathways and subtypes.

The general findings of our study may have relevance to a
spectrum of network analysis methods in current use. Several
popular tools for identifying cancer pathways are based on the
technique of network propagation, as we have used here,
including HotNet2, TieDie, Paradigm, Network-Based Stratifica-
tion, and NetSig, among others’~>484%. More broadly, any
method that examines the interaction partners of a gene to
identify disease genes and pathways may be adversely affected
when mining large reference interaction networks containing
disease-irrelevant interactions. Such concerns are not restricted to
the field of cancer genetics but likely apply to other diseases and
end-goals, such as annotation of gene function, a field replete
with network-based methods®®>!. Where problems are indeed
identified, there may be significant opportunities to apply some of
the lessons learned here, namely, much greater stringency and
specificity in reference molecular networks.

Although the present analysis has focused on identification of
cancer pathways impacted by somatic coding mutations, it is
important to note that such pathways likely capture just one facet
of the molecular mechanisms contributing to tumorigenesis.
Many other data types can reveal pathways and stratify tumors
into clinically meaningful subtypes, including copy number

| (2018)9:4159 | DOI: 10.1038/541467-018-06464-y | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/541467-018-06464-y

AXTN—O

TP53
Top 1 ESP for liver cancer (LIHC)

ARHGEF17

Protein complex
= Activation

Mutually exclusive

PPI from high-throughput
experiments

% Tumors mutated in tissue

o 0 O

<10% <20% <50%

Known cancer gene
@Liver @Llung @ Other
O Head and neck

f

CYLC2 . o

STk STK1IP

Top 1 ESP for lung cancer (LUAD)

« Log-rank P-value (log scale) Q. Survival probability

Survival probability

Log-rank P-value (log scale)

100%

80%

60%

40%

20%

0%

Hazard ratio
=1.64

Log-rank
p-value = 0.03160

== ESP not mutated (127)
== ESP mutated (69)

0 10 20 30 40 50 60
Time (months)

0.01

0.1 1

#tumors = 69
HR =1.64

#tumors = 9
HR=2.29

#tumors = 62

HR =1.51

#tumors = 4
HR=2.26

ESP AXIN1 TP53 ARHGEF17

100% -

80% A

60% -

40% A

20% A

0%

Hazard ratio
=1.45

Log-rank
p-value = 0.04300

== ESP not mutated (387)
== ESP mutated (82)

0.01 1

0.1

0 10 20 30 40 50 60
Time (months)

#tumors = 82
HR=1.45

#tumors = 15

HR =171 0umors = 76

HR =1.25
#tumors = 12

-HR=1.11

EéP CYLC2 STk11 ST}'(11IP

Survival probability

MITOMYCIN resistance
(log-IC50)

=2

100% -

Survival probability

PACLITAXEL resistance
(log-1C50)

80% A

60% -

40% -

20% -

80% -

60% -

40% -

20% -

0% -

Hazard ratio
=267

Log-rank
p-value = 0.00068

== ESP not mutated (178)
== ESP mutated (80)

0 10 20 30 40 50 60
Time (months)

L —
p=0.01597

ESP mutated ESP not mutated

0% A

Hazard ratio
=1.46

Log-rank
p-value = 0.00440

== ESP not mutated (826)
== ESP mutated (153)

|
-
L

0 10 20 30 40 50 60
Time (months)

p=0.03776

L.

=

ESP mutated ESP not mutated

Fig. 6 Exploration and validation of mutated ESPs in multiple cancers. a Mutated ESP characteristic of liver cancer subtype 1/2. b Kaplan-Meier survival plot
for the liver ESP shown in a on patients in TCGA (Methods). ¢ Corresponding Kaplan-Meier survival plot for patients in ICGC. d Stratification of patients
using the aggregate of genes in the liver ESP vs. each of its genes individually. e Difference in drug resistance based on status of the ESP shown in

a (Methods). Drug resistance is assessed by log(IC50) of liver cell lines in the GDSC dataset. p-value is calculated using a one-sided Wilcoxon signed-rank
test. Box plots show the median, the 25th and 75th percentiles. f Mutated ESP characteristic of lung cancer subtype 1/5. g Kaplan-Meier survival plot for
the lung ESP shown in f on patients in TCGA (Methods). h Corresponding Kaplan-Meier survival plot for patients in MSK-IMPACT. i Stratification of
patients using the aggregate of genes in the lung ESP vs. each of its genes individually. j Difference in drug resistance based on status of the ESP shown in
f (Methods). Drug resistance and p-value are calculated the same as for (e)

8 NATURE COMMUNICATIONS | (2018)9:4159 | DOI: 10.1038/541467-018-06464-y | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

variants®2, noncoding somatic mutations®>, germline variants>,
and gene expression and epigenetics®>. While it will be important
to develop methods to simultaneously integrate all of these var-
ious layers (some encouraging attempts exist already>®>7), it is
also critical to understand as deeply as possible the biological
information embedded in each data type individually, as we have
done here for somatic coding mutations.

Looking to the future, we see many opportunities to improve
upon the concept of selecting cancer-relevant gene interactions.
First, algorithms for detection of single cancer genes could be
applied to help identify cancer-related network regions, such as
MutSigCV>8, OncodriveFM>, ActiveDriver®, and NetSig8. Sec-
ond, cancer-specific molecular networks are being accumulated
by different groups in increasing numbers, including networks of
protein—protein interactions®!, genetic interactions®?-%4, and
gene-drug interactions®®=%7; one would be expect these new
networks to present greater enrichment for cancer-relevant
interactions, and this potential can certainly be tested. Other
efforts have attempted to predict somatic mutations that are likely
to perturb cell signaling®®%9, representing another promising way
to identify cancer-specific networks.

Methods

Processing of patient mutation profiles. As our primary discovery dataset, we
downloaded somatic mutation profiles of tumors from TCGA based on whole-
exome sequencing data from the GDAC Firehose website (http://gdac.
broadinstitute.org, 11th February 2016). Each gene was classified as either wild type
(0) or altered (1) in each patient, with alteration defined as any type of non-silent
mutation. We excluded tumor types with less than 100 patients and patients with
less than 10 mutations. This left in total 6240 patients with 882,110 mutations in
18,018 genes in 18 tumor type cohorts. As a validation set, we downloaded somatic
mutation profiles from the ICGC portal (https://dcc.icgc.org/releases/current, 7th
December 2016) including the following cohorts: OV-AU, BLCA-CN, GBM-CN,
LICA-CN, LIAD-FR, LINC-JP, LIRI-JP, LUSC-CN, LUSC-KR, SKCA-BR, THCA-
CN, and THCA-SA. Among these, OV-AU, GBM-CN, LICA-CN, LINC-JP, LIRI-
JP, LUSC-KR, SKCA-BR, THCA-CN, THCA-SA had associated patient survival
data. For these ICGC data, we excluded patients with less than 10 mutations and
selected the following mutation types: missense variant, frameshift variant, non-
conservative missense variant, initiator codon variant, and stop-gain. This left in
total 1453 patients with 359,876 mutations in 17,135 genes. As an alternative
validation set, we also obtained somatic mutation profiles for bladder cancer, lung
cancer, skin cancer, brain cancer, liver cancer, ovary cancer, and thyroid cancer
from MSK-IMPACT?. In contrast to TCGA and ICGC, which include mutation
data for all genes, MSK-IMPACT uses targeted deep sequencing of 410 select
cancer genes. We thus did not disregard any mutation or patient in MSK-IMPACT.
In total, this dataset included 3485 patients with 28,323 mutations in 408 genes.

Sources of molecular network data. We consider three public databases widely
used in cancer analyses, InBioMap?’, PathwayCommons*!, and STRING*?,
InBioMap aggregates PPIs from eight different gene orthology databases, trans-
ferring data to human protein pairs only if the majority of these databases agree on
the phylogenetic relationship between two proteins in model organisms or humans.
PathwayCommons includes PPIs from several pathway and interaction databases,
focusing primarily on functional relationships between genes in canonical reg-
ulatory, signaling and metabolic pathways including hallmark pathways of cancer.
STRING uses a Bayesian algorithm to integrate many different types of evidence
for a protein—protein interactions, including literature curation, computationally
predicted interactions, interactions transferred from model organisms by orthol-
ogy, interactions computed from genomic features such as gene—gene fusion
events, and interactions based on functional or co-expression similarity. All of the
above network sources comprise both direct and indirect physical binding inter-
actions between two proteins. All interactions were used as unweighted and
undirected in our network propagation model.

Evolutionarily selected pathway construction. For each cancer type, we only
focused on the gene pairs with protein interactions documented in the public gene
interaction databases. We then selected top k (= 100) most significant mutually
exclusively mutated gene pairs ranked by p-value from these gene pairs. In parti-
cular, for any of two genes, we calculated the number of patients that (1) both genes
are mutated; (2) the first gene is mutated; (3) the second gene is mutated; (4)
neither of the two genes is mutated. We then calculated the p-value using a one
tailed Fisher’s exact test with these four numbers. It is possible that there is no
documented gene interactions detected among these top k mutually exclusive gene
pairs. Then the problem degenerates to stratifying patients without using network
information and thus no network propagation was performed.

Network propagation. For each cancer type, we mapped the mutation profile of
each patient to the corresponding cancer-specific molecular network. We then
propagated the mapped mutation profile to “smooth” the mutation signal across
the network. Formally, let A denote the adjacency matrix of a molecular network
with n genes. Define a gene-by-gene matrix B in which each entry B;; represents
the probability of a transition from node i to j:
A,
B, =" 1
=sa )

Next, let Fibe a patient-by-gene smoothed mutation profile matrix. We used the
random walk (with restart) algorithm to calculate F, from B:

F;y =(1-a)FB+aF, 2)

where F, is a patient-by-gene matrix representing the original patient mutation
profile, and « denotes the restart probability controlling the relative influence of
global vs. local topological information during the random walk. A larger (smaller)
o places greater (lesser) emphasis on the local structure of the network. In practice,
we found the specific value of « had a minor effect on our results over a sizable
range (0.5-0.8; in what follows « = 0.5). The propagation function was run
recursively until F, converges (||F,_; — F,||,<107°). After converage, we normal-
ized F,; such that each row sum equals to one, so that the resulting stratification was
independent of the total number of mutations per patient (mutational load).

Dimensionality reduction. To reduce noise brought by random passenger
mutations, we projected the propagated mutation profile of each patient onto a low
dimensional space using truncated SVD. With SVD, we decomposed the logarithm
of the propagated mutation profile F obtained by Eq. (2) into three matrices U.S,
and V:

log(F +¢) = USVT (3)

where U was a left-singular matrix, for which each column could be recognized as a
“meta-patient” representing a group of patients with similar propagated mutation
profiles. S is a diagonal matrix of singular values. V is a right-singular gene-by-gene
matrix, for which each column can be recognized a “metagene” representing a
group of genes mutated in similar patients. The value c is a small positive constant
(reciprocal of the number of genes) added to each entry of F to avoid taking the
logarithm of zero. We then truncated U,V, and S by simply choosing the first d
singular vectors UV, and first d singular values S,. The projected d-dimention
matrix M, was constructed by calculating S/ Uy

Consensus clustering. A patient similarity matrix was constructed by calculating
the cosine similarity between the columns of M, obtained by previous truncated
SVD step. We adopted the k-means + + clustering algorithm to cluster patients
using the cosine patient similarity matrix. For k-means ++, the maximum number
of iterations was set to 100 and the number of random starts was set to 200. A
consensus matrix was constructed to integrate the clustering results over different
numbers of components (10-50) in SVD factorization. For each clustering result, a
binary similarity matrix was constructed from the corresponding clustering labels:
if two patients belong to the same cluster, their similarity is 1; otherwise the
similarity is 0. A consensus matrix was calculated by averaging all similarity
matrices of individual clusterings. Another k-means + + clustering with the same
parameter setting was then applied to cluster patients us