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Many recent efforts to analyze cancer genomes involve aggregation of mutations within

reference maps of molecular pathways and protein networks. Here, we find these pathway

studies are impeded by molecular interactions that are functionally irrelevant to cancer or the

patient’s tumor type, as these interactions diminish the contrast of driver pathways relative

to individual frequently mutated genes. This problem can be addressed by creating stringent

tumor-specific networks of biophysical protein interactions, identified by signatures of

epistatic selection during tumor evolution. Using such an evolutionarily selected pathway

(ESP) map, we analyze the major cancer genome atlases to derive a hierarchical classification

of tumor subtypes linked to characteristic mutated pathways. These pathways are clinically

prognostic and predictive, including the TP53-AXIN-ARHGEF17 combination in liver and

CYLC2-STK11-STK11IP in lung cancer, which we validate in independent cohorts. This ESP

framework substantially improves the definition of cancer pathways and subtypes from tumor

genome data.
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One of the most striking findings of the cancer genome
sequencing projects has been the extreme heterogeneity
in genetic alterations observed among tumors1–3. Each

new tumor genome that is sequenced presents a new collection of
genetic mutations that have, save for a few recurrent events, been
only rarely observed before. This heterogeneity poses a funda-
mental challenge to efforts to understand and treat cancer, since
such efforts largely depend on finding recurrent patterns in data.

Among the ongoing attempts to address cancer heterogeneity,
an important paradigm has been to aggregate gene mutations into
higher level structures and functions in cancer cells, such as
protein complexes, signaling pathways, and biological processes.
Such pathway analyses have been frequently applied to cancer
datasets to aggregate gene-level signals to identify new pathway-
level biomarkers4–7, to increase sensitivity for identification of
cancer driver genes8,9, and to discover key regulators of cancer-
related transcription10,11. Moreover, different genetic alterations
perturbing the same cancer pathway are found to drive the same,
or similar, cancer subtypes and associated clinical outcomes9.

Methodologically, many approaches to cancer pathway
analysis have been based on aggregating mutations across
neighboring genes in a network of previously defined molecular
interactions4,12–16. A popular model is heat diffusion, also called
network propagation17, by which individual gene mutations in a
tumor are diffused, like sources of heat, across the network.
Such diffusion creates “hot” network neighborhoods of genes
proximal to mutated genes. These network neighborhoods define
cancer driver pathways4,7 and potential drug targets for cancer
therapy18–20. They also allow patients to be clustered into sub-
types, because the neighborhoods, unlike individual genes, are
commonly mutated and thus provide a basis for grouping
tumors9,21. Other than network propagation, related methods
include network clustering22, network integration23, and network
regularization9.

Ideally, such pathway analyses should rely on the specific
molecular interactions that drive cancer in relevant tissue types,
as opposed to interactions important for other cellular states,
diseases and/or tissues. However, most types of experimental data
used to inform molecular interaction networks, including
protein–protein interactions and genetic interactions, cannot yet
be readily generated at the scale necessary to cover many specific
tumor samples or tissues. Therefore, in nearly all cancer pathway
analyses, molecular interaction information is drawn heavily from
network meta-resources7–9. These meta-resources are large, cat-
aloging in the range of 103–107 interactions, as well as non-
discriminatory, representing many diverse experiments in dif-
ferent human cell lines, primary tissues, or ex-vivo contexts such
as yeast two-hybrid24, with each source influenced by different
rates of false-positive and false-negative errors.

While these meta-resources have been extremely useful, the
high diversity of their contents motivates at least two major
directions for further bioinformatics research. First, the effects of
large numbers of non-specific interactions are not yet well
understood. Is their inclusion in cancer pathway analyses helpful,
neutral, or harmful? Second, it is not yet clear how to formulate
molecular interaction networks that are both cancer-relevant and
tissue-type specific. While various computational methods have
been proposed to address tissue specificity, for instance by
selecting interactions with tissue-specific gene expression patterns
or functional annotations15,25, similar strategies have not been
devised for nominating interactions specific or relevant to cancer.

Here we show that, in fact, the informative pathways driving
cancer pathogenesis and subtypes can be remarkably difficult to
identify in the presence of many gene interactions irrelevant to
cancer. We find that this problem can be at least partially
addressed by creating a stringent filter on molecular interaction

resources, based on patterns of mutually exclusive genetic
alterations which arise during tumor evolution7,26. We use the
resulting cancer- and tissue-specific network, which we call the
Evolutionarily Selected Pathway map, to analyze tumor genomes
from The Cancer Genome Atlas and International Cancer Gen-
ome Consortium, resulting in a taxonomy of cancer pathways
and subtypes associated with clinical outcomes.

Results
Random interactions diminish the influence of pathways. To
explore the effects of irrelevant gene interactions on cancer
pathway analysis, we first simulated a somatic mutation dataset
consisting of a gene-by-tumor matrix of binary mutated/unmu-
tated states for each gene across multiple tumors. Mutations were
generated randomly considering the existence of frequently
mutated pathways (FMP) and frequently mutated genes (FMG),
both of which were mutated with equal elevated probability in a
tumor relative to the remaining background genes (Fig. 1a). In
mutating FMPs, mutations were assigned to a fixed number of
member genes in the pathway. The simulated tumors were then
annotated to subtypes according to the status of a selected FMP,
i.e., tumors for which this pathway was mutated were assigned
FMP subtype 1 and otherwise FMP subtype 2 (Fig. 1a). As an
alternative, we also considered subtype assignments following an
FMG rather than a pathway.

Next, we sought to determine how well these simulated tumor
subtypes could be recovered by current pathway analysis
approaches. Following a standard methodology27, the mutation
profile of each tumor was propagated across a gene interaction
network, which we constructed by densely connecting sets of
genes representing FMPs, embedded within otherwise random
interactions (Fig. 1b). Random networks were simulated using an
Erdos-Renyi model28. We found empirically that the method for
generating random interactions, preferential attachment29 or
Erdos-Renyi28, did not have a large effect on the analysis
(Supplementary Figs. 1, 2 and 3). The propagated profiles for all
tumors were then clustered into two groups (Fig. 1c) using the k-
means++ algorithm30. The agreement between these clusters
and the correct subtypes was measured using the Adjusted Rand
Index (ARI). For further details of simulations, see Methods.

When the reference network contained few random interac-
tions ( < 1%), we found that FMP-driven subtypes were recovered
with very high accuracy, even in the presence of background
mutations (Fig. 1d and Supplementary Fig. 2a; 95% accuracy for a
model with 1% random interaction density and 1% background
mutation frequency). This performance was robust to a range of
interaction densities within the pathway, such that high accuracy
could still be achieved with as few as 20% of interactions among
pathway member genes (Fig. 1e). In contrast to pathways, the
ability to recover single gene (FMG) subtypes dropped sharply as
background mutations were added, consistent with previous
reports that pathway analysis can boost power to detect subtypes9

in comparison to analysis of individual gene mutations (Fig. 1d).
When increasing numbers of random interactions were added

to the network (i.e., cancer irrelevant), the accuracy of FMP
subtype recovery gradually decreased. For example, by increasing
the random interaction density to connect 2% of gene pairs, we
found that accuracy of subtype recovery fell to less than 10%
(Fig. 1f and Supplementary Fig. 2b). This result raised a warning
that cancer pathways might be difficult to discern within the large
interaction databases commonly used for network analysis, in
which interactions typically connect 1–2% of gene pairs31.

Further exploration led to the curious observation that, even in
the presence of random interactions, high accuracy could be
restored by simulating FMPs only, while excluding FMGs from
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the mutation model (Fig. 1f and Supplementary Fig. 2b).
Prompted by this observation, we then considered a comple-
mentary scenario in which subtypes were driven by an FMG
rather than FMPs. Remarkably, the accuracy of FMG subtype
recovery actually improved as random interactions were added to
the network, suggesting that random interactions amplify the
mutation signal of individual genes relative to pathways (Fig. 1f
and Supplementary Fig. 2b). Inspection of the model revealed
that this difference occurs because an FMG propagates its
mutation state more readily to network neighbors: All interac-
tions of an FMG spread mutation signal outwards, whereas only
some interactions of an FMP do, with others being internal to the
pathway. Therefore, in the presence of sufficient random
interactions, the mutation signal of pathways is eclipsed by the
mutation signal of strong individual driver genes, an outcome
which runs counter to the goal of pathway analysis. These same
qualitative results were seen for a range of background mutation
frequencies and interaction densities (Methods, Supplementary
Figs. 1 and 3).

A stringent map of evolutionarily selected pathways. Given that
pathway analysis was adversely affected by random (irrelevant)
interactions but robust to missing interactions within pathways,
we sought to derive a new cancer gene interaction reference map
using a very stringent policy (Fig. 2, Methods). Out of the many
sources to construct such a network (e.g., strength of a certain
type of data, literature, expert curation), exploratory analysis
revealed two features as particularly important: biophysical
interaction among gene products and epistatic genetic interaction
during somatic evolution (Supplementary Figs. 4–7). Biophysical
(or protein–protein) interactions define the physical architecture
of cancer pathways, including protein complexes and signaling
cascades. Epistatic genetic interactions connect genes in which the
functional effects of genetic mutations are inter-dependent32–34.

Mutual exclusivity, a type of epistatic interaction whereby two
genes are rarely co-mutated during somatic evolution of a tumor,
has been used extensively to prioritize functionally related cancer
genes26,35,36. Combining these two features, we selected biophy-
sical interactions from the InBioMap resource37 in which the two
genes exhibited mutual exclusivity within one or more cancer
types (Methods). The resulting network of tumor type-specific
interactions, which we call an Evolutionarily Selected Pathway
(ESP) map, covered 258 genes and 263 interactions (Fig. 2 and
Supplementary Data 1).

Using the ESP map to stratify tumors. Given this ESP map, we
applied it to analyze somatic mutation profiles of 18 cancer
cohorts in The Cancer Genome Atlas (TCGA, Methods). As
above, network propagation was used to spread the influence of
gene mutations in each tumor to network neighbors, along only
those interactions supported by mutual exclusivity in the corre-
sponding tumor tissue. The propagated tumor mutation profiles
for each tissue were compressed into low dimensions and clus-
tered into subtypes of increasing resolution (k= 2…6) using
standard consensus clustering with the k-means++ algorithm30

(Fig. 3a, b). By contrasting the propagated mutation profiles
across subtypes of cancer patients, each subtype was assigned one
or more network regions—which we call characteristic ESPs—
that were impacted by mutations enriched in that subtype
(Fig. 3c, Methods).

For example, this procedure stratified 430 HPV-negative head
and neck squamous carcinomas (HNSC) into a hierarchy of
subtypes (Fig. 4a) that were strongly associated with patient
survival (Fig. 4b–d) and clinical variables including smoking
status and recurrence (Fig. 4a bottom, and Supplementary
Data 3). The characteristic ESPs for these subtypes included
genes well-known to function in pathogenesis of head and neck
cancer (Fig. 4e, TP53, NOTCH, CDKN2A) as well as many genes
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that had not been previously described to have roles in this
disease. Subtype hierarchies for other tumor tissue types are
provided in the supplement (Supplementary Figs. 8–14).

Exploration and validation of characteristic ESPs. To system-
atically evaluate the stratification results, we first compared the
ESP subtypes to previously annotated cancer subtypes and clinical
variables for each tissue as recorded by TCGA. Indeed, some ESP
subtypes closely tracked known clinically identified subtypes
(Supplementary Data 3). For instance in breast cancer, ESP
subtypes were significantly correlated with Estrogen Receptor and
HER2 expression status, while in uterine cancer, subtypes were
significantly correlated with the histological subtype, serous vs.

endometrioid. In colorectal cancer, ESP subtypes were correlated
with KRAS and BRAF mutation status and also separated primary
colon from primary rectal tumors. Notably, these distinct origins
had been considered indistinguishable from analysis of somatic
mutation profiles alone38 (this previous analysis was in the
absence of molecular network information). In other cases,
including head and neck, liver, and bladder, the resulting strati-
fication of tumors corresponded only weakly to known clinical
subtypes and variables, or not at all, suggesting new disease
subtypes and pathways worthy of further investigation (Supple-
mentary Data 3).

We next examined the ability of the ESP subtypes to stratify
patients according to progression-free survival time, a common
quantitative means of assessing the utility of subtype
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stratification9,39. We found that 8 of the 18 tumor cancer
cohorts could be stratified into prognostic subtypes, i.e., which
were significantly associated with differences in patient survival
(p < 0.01, BLCA, GBM, HNSC, LIHC, LUAD, OV, SARC,
THCA). This prognostic ability was quite favorable compared
to standard clustering of somatic mutation profiles in the
absence of network information (Fig. 5a). Generally, with few
exceptions it was also favorable in comparison to the prognostic
value of known subtypes and clinical variables (Supplementary
Data 3). These substantial associations with patient survival
provide clinical support to the subtypes identified by the ESP
mapping procedure.

Next, we studied whether mutation of the identified ESPs
leads to downstream effects on gene expression. Indeed, the
alteration status (mutated or unmutated) of three ESPs,
THCA_551, LUAD_531, and SARC_531 (Supplementary Data 1),
was associated with the first principal component of expression
among tumor samples in thyroid carcinoma, lung, and sarcoma,
respectively (Supplementary Data 4). More specifically, we
checked the influence of ESP alteration on the expression of
known cellular pathways associated with cancer (Methods). In
this case, we found a larger proportion of ESPs (82 out of 117)
were associated with expression changes in at least one of these
specific cancer pathways.

Further support was provided by a number of exploratory
analyses, of which we mention the most important findings here
(Supplementary Figs. 4–7). First, we compared different ESP
maps in which biophysical protein interactions were drawn not
from InBioMap but from STRING40 or PathwayCommons41,
alternative database sources frequently used in cancer pathway
analyses. Of these sources, InBioMap had the best ability to
stratify patients by survival (Supplementary Fig. 7). Second, we
compared ESP map against the much larger complete set of
606,195 protein interactions in InBioMap, unconstrained by
epistatic genetic interactions. As anticipated by our earlier
simulations, this large network did not find prognostic subtypes
for any of the 18 cancer cohorts examined (Fig. 5b). Analysis with

ESP map also yielded a higher density of known cancer driver
genes than analysis with the full InBioMap (Supplementary
Fig. 15). Third, we evaluated the complementary configuration: a
network constructed solely by mutual exclusivity of gene pairs,
unconstrained by biophysical interactions. For most of the
evaluated cancer types, the performance was not as good as that
of the ESP map, indicating that epistatic interactions are more
informative when combined with biophysical interactions
(Supplementary Figs. 4–6). Fourth, we examined the impact of
total network size by progressively adding biophysical interac-
tions to the ESP map based on their significance of mutual
exclusivity (Methods). For most cancer types, we saw the best
stratification performance (survival association) with the top
~100 mutually exclusive gene interactions. Remarkably, adding
further interactions led to a drop of performance that was seen
consistently across tissues (Fig. 5c). Collectively these analyses led
us to select a reference network approximately three orders of
magnitude smaller than the very large networks used in previous
cancer studies (Fig. 2, 263 interactions in ESP vs. > 105

interactions for unconstrained interaction databases such as
InBioMap, STRING, or PathwayCommons)4,7,9.

A TP53-AXIN-ARHGEF17 pathway associated with liver can-
cer. As one particular case study, we examined an ESP subtype
associated with poor survival in liver cancer which was mutated
in 36% of tumors (Fig. 6a, b). AXIN1 and TP53 form a previously
described protein complex, in which AXIN1 phosphorylates TP53
in response to DNA damage, triggering cell-cycle arrest or
apoptosis42. In contrast, the biophysical interaction between
ARHGEF17 and TP53 had not been studied in depth, having been
one of many interactions detected in a large-scale interaction
screen43. Mutations to ARHGEF17 and TP53 were mutually
exclusive within this subtype and this subtype only (p-value=
0.05 using one tailed Fisher’s exact test, p-value= 0.21 for the
liver tumor cohort at large), supporting the biophysical interac-
tion and suggesting it is subtype-specific.
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We identified two interesting properties relating to genes in
this ESP that had not been reported by previous studies. First,
mutating this ESP indicated low survival, which could be further
validated in a second large cohort of liver tumors from the
International Cancer Genome Consortium (ICGC), supporting
the value of this ESP as a putative clinical biomarker (Hazard
ratio 2.7, Fig. 6c). Notably, none of the three genes involved in
this ESP (TP53, AXIN1, and ARHGEF17) was significantly
prognostic when mutations to each gene were considered
individually (Fig. 6d). Second, given that the AXIN1-TP53
interaction modulates DNA damage response, we also tested
associations between this ESP and DNA damaging

chemotherapeutics widely used to treat liver cancer (Methods).
This investigation was carried out in a panel of 19 liver cancer cell
lines characterized in the Genomics of Drug Sensitivity in Cancer
(GDSC) dataset, of which 15 had mutations placing them in the
ESP subtype. This analysis showed that ESP subtype mutations
are indeed associated with strong resistance to mitomycin C
(Fig. 6e and Supplementary Fig. 16a), consistent with the
observation of poor survival in both TCGA and ICGC (Fig. 6b, c).

A CYLC2-STK11-STK11IP pathway associated with lung can-
cer. As a second case study, we examined an ESP associated with
aggressive lung cancer, mutated in 22% of lung tumors and
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involving mutations to the genes CYLC2, STK11 and STK11P
(Fig. 6f). As validation, we found that patients of this ESP subtype
had significantly lower survival not only in the original TCGA
cohort we examined (Fig. 6g) but also the MSK-IMPACT cohort
(Fig. 6h). As we had observed for liver, we found that the prog-
nostic significance of this lung ESP was not tied to any individual
gene but required the integration of mutations across the pathway
(Fig. 6i). Lung cell lines mutated in this ESP were significantly less
sensitive to paclitaxel, a common chemotherapy in treatment of
lung cancer (Fig. 6j and Supplementary Fig. 16b), providing a
rationale for the observed poor survival in patients.

Among the three genes, STK11 stood out as the only gene well-
studied in this cancer type44–46, in which STK11 mutation has
been associated with decreased immune surveillance and lack of
response to immune checkpoint inhibitors. The biophysical
interaction between STK11 and STK11IP had not been directly
studied in cancer but is known to play a role in Peutz–Jeghers
syndrome, in which patients are at high risk to further develop
cancers of multiple types47. The physical and epistatic interac-
tions between STK11IP and CYCL2 had not been previously
studied.

Discussion
Pathways have been extensively applied in cancer genetics
to organize cancer driver genes and stratify patients into sub-
types7–9,31. Since interaction mapping techniques do not yet
generate comprehensive datasets tailored to each specific tumor
and tissue in a cohort, pathway analyses typically strike a com-
promise, by pooling molecular interactions derived from many

previous experiments into one large protein network. Here, we
have demonstrated that this compromise can be a major limita-
tion, as it dilutes the signal of pathways relative to frequently
mutated genes. We showed that this problem could be addressed
by reinforcing biophysical interactions with epistatic genetic
interactions observed directly in populations of tumors, leading to
creation of a tissue-specific resource, the ESP map, of broad use in
the study of cancer pathways and subtypes.

The general findings of our study may have relevance to a
spectrum of network analysis methods in current use. Several
popular tools for identifying cancer pathways are based on the
technique of network propagation, as we have used here,
including HotNet2, TieDie, Paradigm, Network-Based Stratifica-
tion, and NetSig, among others7–9,48,49. More broadly, any
method that examines the interaction partners of a gene to
identify disease genes and pathways may be adversely affected
when mining large reference interaction networks containing
disease-irrelevant interactions. Such concerns are not restricted to
the field of cancer genetics but likely apply to other diseases and
end-goals, such as annotation of gene function, a field replete
with network-based methods50,51. Where problems are indeed
identified, there may be significant opportunities to apply some of
the lessons learned here, namely, much greater stringency and
specificity in reference molecular networks.

Although the present analysis has focused on identification of
cancer pathways impacted by somatic coding mutations, it is
important to note that such pathways likely capture just one facet
of the molecular mechanisms contributing to tumorigenesis.
Many other data types can reveal pathways and stratify tumors
into clinically meaningful subtypes, including copy number
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variants52, noncoding somatic mutations53, germline variants54,
and gene expression and epigenetics55. While it will be important
to develop methods to simultaneously integrate all of these var-
ious layers (some encouraging attempts exist already56,57), it is
also critical to understand as deeply as possible the biological
information embedded in each data type individually, as we have
done here for somatic coding mutations.

Looking to the future, we see many opportunities to improve
upon the concept of selecting cancer-relevant gene interactions.
First, algorithms for detection of single cancer genes could be
applied to help identify cancer-related network regions, such as
MutSigCV58, OncodriveFM59, ActiveDriver60, and NetSig8. Sec-
ond, cancer-specific molecular networks are being accumulated
by different groups in increasing numbers, including networks of
protein–protein interactions61, genetic interactions62–64, and
gene-drug interactions65–67; one would be expect these new
networks to present greater enrichment for cancer-relevant
interactions, and this potential can certainly be tested. Other
efforts have attempted to predict somatic mutations that are likely
to perturb cell signaling68,69, representing another promising way
to identify cancer-specific networks.

Methods
Processing of patient mutation profiles. As our primary discovery dataset, we
downloaded somatic mutation profiles of tumors from TCGA based on whole-
exome sequencing data from the GDAC Firehose website (http://gdac.
broadinstitute.org, 11th February 2016). Each gene was classified as either wild type
(0) or altered (1) in each patient, with alteration defined as any type of non-silent
mutation. We excluded tumor types with less than 100 patients and patients with
less than 10 mutations. This left in total 6240 patients with 882,110 mutations in
18,018 genes in 18 tumor type cohorts. As a validation set, we downloaded somatic
mutation profiles from the ICGC portal (https://dcc.icgc.org/releases/current, 7th
December 2016) including the following cohorts: OV-AU, BLCA-CN, GBM-CN,
LICA-CN, LIAD-FR, LINC-JP, LIRI-JP, LUSC-CN, LUSC-KR, SKCA-BR, THCA-
CN, and THCA-SA. Among these, OV-AU, GBM-CN, LICA-CN, LINC-JP, LIRI-
JP, LUSC-KR, SKCA-BR, THCA-CN, THCA-SA had associated patient survival
data. For these ICGC data, we excluded patients with less than 10 mutations and
selected the following mutation types: missense variant, frameshift variant, non-
conservative missense variant, initiator codon variant, and stop-gain. This left in
total 1453 patients with 359,876 mutations in 17,135 genes. As an alternative
validation set, we also obtained somatic mutation profiles for bladder cancer, lung
cancer, skin cancer, brain cancer, liver cancer, ovary cancer, and thyroid cancer
from MSK-IMPACT2. In contrast to TCGA and ICGC, which include mutation
data for all genes, MSK-IMPACT uses targeted deep sequencing of 410 select
cancer genes. We thus did not disregard any mutation or patient in MSK-IMPACT.
In total, this dataset included 3485 patients with 28,323 mutations in 408 genes.

Sources of molecular network data. We consider three public databases widely
used in cancer analyses, InBioMap37, PathwayCommons41, and STRING40.
InBioMap aggregates PPIs from eight different gene orthology databases, trans-
ferring data to human protein pairs only if the majority of these databases agree on
the phylogenetic relationship between two proteins in model organisms or humans.
PathwayCommons includes PPIs from several pathway and interaction databases,
focusing primarily on functional relationships between genes in canonical reg-
ulatory, signaling and metabolic pathways including hallmark pathways of cancer.
STRING uses a Bayesian algorithm to integrate many different types of evidence
for a protein–protein interactions, including literature curation, computationally
predicted interactions, interactions transferred from model organisms by orthol-
ogy, interactions computed from genomic features such as gene–gene fusion
events, and interactions based on functional or co-expression similarity. All of the
above network sources comprise both direct and indirect physical binding inter-
actions between two proteins. All interactions were used as unweighted and
undirected in our network propagation model.

Evolutionarily selected pathway construction. For each cancer type, we only
focused on the gene pairs with protein interactions documented in the public gene
interaction databases. We then selected top k (= 100) most significant mutually
exclusively mutated gene pairs ranked by p-value from these gene pairs. In parti-
cular, for any of two genes, we calculated the number of patients that (1) both genes
are mutated; (2) the first gene is mutated; (3) the second gene is mutated; (4)
neither of the two genes is mutated. We then calculated the p-value using a one
tailed Fisher’s exact test with these four numbers. It is possible that there is no
documented gene interactions detected among these top k mutually exclusive gene
pairs. Then the problem degenerates to stratifying patients without using network
information and thus no network propagation was performed.

Network propagation. For each cancer type, we mapped the mutation profile of
each patient to the corresponding cancer-specific molecular network. We then
propagated the mapped mutation profile to ‘‘smooth’’ the mutation signal across
the network. Formally, let A denote the adjacency matrix of a molecular network
with n genes. Define a gene-by-gene matrix B in which each entry Bi,j represents
the probability of a transition from node i to j:

Bi;j ¼
Ai;j

ΣjAi;j
ð1Þ

Next, let Ftbe a patient-by-gene smoothed mutation profile matrix. We used the
random walk (with restart) algorithm to calculate Ft from B:

Ftþ1 ¼ 1� αð Þ FtBþ αF0 ð2Þ

where F0 is a patient-by-gene matrix representing the original patient mutation
profile, and α denotes the restart probability controlling the relative influence of
global vs. local topological information during the random walk. A larger (smaller)
α places greater (lesser) emphasis on the local structure of the network. In practice,
we found the specific value of α had a minor effect on our results over a sizable
range (0.5–0.8; in what follows α= 0.5). The propagation function was run
recursively until Ft converges (jjFtþ1 � Ft jj2<10�6). After converage, we normal-
ized Ft such that each row sum equals to one, so that the resulting stratification was
independent of the total number of mutations per patient (mutational load).

Dimensionality reduction. To reduce noise brought by random passenger
mutations, we projected the propagated mutation profile of each patient onto a low
dimensional space using truncated SVD. With SVD, we decomposed the logarithm
of the propagated mutation profile F obtained by Eq. (2) into three matrices U,S,
and V:

log F þ cð Þ ¼ USVT ð3Þ

where U was a left-singular matrix, for which each column could be recognized as a
‘‘meta-patient’’ representing a group of patients with similar propagated mutation
profiles. S is a diagonal matrix of singular values. V is a right-singular gene-by-gene
matrix, for which each column can be recognized a ‘‘metagene’’ representing a
group of genes mutated in similar patients. The value c is a small positive constant
(reciprocal of the number of genes) added to each entry of F to avoid taking the
logarithm of zero. We then truncated U,V, and S by simply choosing the first d
singular vectors UdVd, and first d singular values Sd. The projected d-dimention
matrix Md was constructed by calculating S1=2d UT

d .

Consensus clustering. A patient similarity matrix was constructed by calculating
the cosine similarity between the columns of Md obtained by previous truncated
SVD step. We adopted the k-means++ clustering algorithm to cluster patients
using the cosine patient similarity matrix. For k-means ++, the maximum number
of iterations was set to 100 and the number of random starts was set to 200. A
consensus matrix was constructed to integrate the clustering results over different
numbers of components (10–50) in SVD factorization. For each clustering result, a
binary similarity matrix was constructed from the corresponding clustering labels:
if two patients belong to the same cluster, their similarity is 1; otherwise the
similarity is 0. A consensus matrix was calculated by averaging all similarity
matrices of individual clusterings. Another k-means++ clustering with the same
parameter setting was then applied to cluster patients using the cosine similarity
between two rows of the consensus matrix. We used default k-means++ and
truncated SVD functions implemented in Matlab.

Simulation of somatic mutation cohorts. We used simulations to study the
function and interaction of frequently mutated pathways (FMPs) and frequently
mutated genes (FMGs) to recover subtypes from somatic mutation profiles. We
simulated a somatic mutation profile with 1000 tumors and 1000 genes and ran-
domly divided the cohorts into two equal-sized subtypes. We consider three sce-
narios with different features to determine the tumor subtypes:

1. Subtypes driven by mutations of FMPs: Each subtype was assigned with 25
genes in the pathway. The density of interactions within each pathway was set
to 0.2 by default. For each tumor, there were two random genes mutated
within each pathway. In the meanwhile, there was also an FMG in the
mutation profile and it was mutated on one subtype with probability 1.0 and
not mutated on the other subtype.

2. Subtypes driven by a FMG: There was only one FMG among in the mutation
profile and it was only mutated in one subtype with probability 1.0 but not the
other. The overall mutation rate of the FMG is 0.5. Notice that in this setting
the network structure of FMP created by scenario 1 were still in the network
but it did not have any mutation enrichment.

3. Subtypes driven by mutations of FMPs with FMG: The mutation setting on
FMPs was the same as scenario 1 without any FMG presented.

We consider two types of network structure regarding the different structures of
FMP and random interactions. In our first setting, we set FMP to be densely
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connected subnetworks with various edge densities (from 0% to 100%) and
uniformly sample m (from 0% to 2.5%) random edges using an Erdos-Renyi
model28. In the second setting, each FMP is a star-like graph and random edges are
samples using preferential attachment model29. Besides mutations on the FMPs
and the FMG, we sampled l (from 0% to 2.5%) random background mutations for
other genes to simulate the effect of passenger mutations in cancer. We iterated
over different l and m to study the effect of passenger mutations and molecular
interactions irrelevant to cancer during stratifying patients.

Implementation of baseline methods. To investigate the impact of different
network sources on pathway-based tumor stratification, we compared five different
kinds of input networks to ESP: 1. ‘‘empty’’ network with no interactions,
equivalent to standard consensus clustering of somatic mutation profiles; 2.
complete gene interaction network of InBioMap; 3. mutually exclusive gene pairs
without considering any biophysical gene interactions; 4. Random gene network
filtered by mutually exclusive gene pairs. 5. InBioMap gene interaction network
filtered by known cancer pathways56. All these five methods were tested using the
same collection of mutation profile. For methods 1, 2, 4, and 5 we used the same
clustering procedure (i.e., SVD, k-means++ algorithm and standard consensus
clustering) as discussed above. For method 3, we used the implementation of our
previous work NBS9, a network-based patient stratification method using Non-
negative Matrix Factorization instead of SVD and performed network propagation
using the complete gene network without applying any edge filtering. We down-
loaded the NBS software from its journal website9 and used its default parameter
settings. For method 2, 4, and 5 considering mutually exclusivity, we first selected
top k (= 100) mutually exclusive gene pairs without considering gene interaction
information. Network propagation were only performed across these top mutually
exclusive edges. For method 4, a random gene network was generated by shuffling
gene name annotations. Therefore, the node degree distribution was preserved for
each randomization. We also selected top k (= 100) mutually exclusive interac-
tions from each random PPI network and used them to perform network propa-
gation. We repeated this process 100 times and used the average log-rank statistics
to calculate the log-rank p-value.

Survival analysis. Survival analysis was performed using the R “survival” package.
A Cox-proportional hazards model was fit to determine the relationship between
the identified subtypes and patient survival times.

Signature subnetwork detection algorithm. After stratifying patients, for each
subtype we identified genes that had a differentially propagated mutation score
compared to the remaining cohort based on a student t-test. The p-value cutoff to
determine differentially propagated genes was set at 0.05 for <4 subtypes or 0.1 for
≥4 subtypes. For each subtype, the selected set of genes was mapped back on the
network to generate a subnetwork, which were taken as the characteristic ESP for
the subtype.

Validation of ESP-based patient clustering. To validate the ability of stratifying
tumors for each detected ESP, we tried to cluster tumors solely based on the
selected ESP by using the same random walk-based clustering procedure was
performed as before. If an individual gene was detected, then the binarized
mutation profile of that gene was used to stratify tumors. Since MSK-IMPACT data
only sequenced 410 cancer genes, many somatic mutations in the identified sub-
networks were not included in this dataset. Therefore, when stratifying tumors in
MSK-IMPACT, we did not normalize the propagated score by the total mutation
numbers of each patient. Moreover, for MSK-IMPACT dataset, we used the
Euclidian distance to measure the similarity between two propagated mutation
profiles instead of cosine distance due to the sensitivity of cosine distance on small
numbers of genes.

GDSC cell line drug response data. We obtained the GDSC large-scale com-
pound response screening dataset65, which spanned 255 chemical compounds and
990 human cancer cell lines encompassing 25 cell lineages. These 255 compounds
were collected from different sources including clinical candidates, FDA approved
drugs and previous documented chemosensitivity profiling experiments. To
quantify drug sensitivity, we used IC50 provided by GDSC65. To identify the
approved drugs for different types of cancer, we manually searched the useages of
these drugs in the NCI database (https://www.cancer.gov/about-cancer/treatment/
drugs) and Wikipedia. The drug list for each cancer type is listed in Supplementary
Data 1. The somatic mutation profile and corresponding tissue of origin of these
990 cancer cell lines were also downloaded70. We applied our ESP-based propa-
gation algorithm to stratify each cancer cell line into two clusters, using only
subnetwork information. A rank-based Wilcoxon-type statistic was then adopted
to compare the difference in drug responses of these two clusters.

Expression association. We clustered tumors based on a selected ESP by using a
random walk-based clustering procedure described in the previous section. We
then evaluated whether the expression level of a certain set of genes was sig-
nificantly different for ESP-mutated and ESP-non-mutated cohorts using a one tail

ranksum test. The expression level of a set of genes was represented by the first
principal component of the patient-by-gene expression matrix56.

Data availability
A software implementation is available on GitHub at https://github.com/wangshenguiuc/
NBS-ESP. All datasets used in this manuscript are available in public repositories and
references are given in the text (see Processing of patient mutation profiles subsection).
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