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ABSTRACT: In this study we selected three breast cancer cell
lines (SKBR3, SUM149 and SUM190) with different onco-
gene expression levels involved in ERBB2 and EGFR signaling
pathways as a model system for the evaluation of selective
integration of subsets of transcriptomic and proteomic data.
We assessed the oncogene status with reads per kilobase per
million mapped reads (RPKM) values for ERBB2 (14.4, 400,
and 300 for SUM149, SUM190, and SKBR3, respectively) and
for EGFR (60.1, not detected, and 1.4 for the same 3 cell
lines). We then used RNA-Seq data to identify those onco-
genes with significant transcript levels in these cell lines (total 31)
and interrogated the corresponding proteomics data sets for
proteins with significant interaction values with these oncogenes. The number of observed interactors for each oncogene showed
a significant range, e.g., 4.2% (JAK1) to 27.3% (MYC). The percentage is measured as a fraction of the total protein interactions
in a given data set vs total interactors for that oncogene in STRING (Search Tool for the Retrieval of Interacting Genes/Proteins,
version 9.0) and I2D (Interologous Interaction Database, version 1.95). This approach allowed us to focus on 4 main oncogenes,
ERBB2, EGFR, MYC, and GRB2, for pathway analysis. We used bioinformatics sites GeneGo, PathwayCommons and NCI
receptor signaling networks to identify pathways that contained the four main oncogenes and had good coverage in the
transcriptomic and proteomic data sets as well as a significant number of oncogene interactors. The four pathways identified were
ERBB signaling, EGFR1 signaling, integrin outside-in signaling, and validated targets of C-MYC transcriptional activation. The
greater dynamic range of the RNA-Seq values allowed the use of transcript ratios to correlate observed protein values with the
relative levels of the ERBB2 and EGFR transcripts in each of the four pathways. This provided us with potential proteomic
signatures for the SUM149 and 190 cell lines, growth factor receptor-bound protein 7 (GRB7), Crk-like protein (CRKL) and
Catenin delta-1 (CTNND1) for ERBB signaling; caveolin 1 (CAV1), plectin (PLEC) for EGFR signaling; filamin A (FLNA) and
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■ INTRODUCTION
Breast cancer is a major health problem with over 40 000 deaths
each year in the United States. We have previously studied
proteomics and glycoproteomics in samples collected from
breast cancer patients2−4 as potential markers for the early
detection of breast cancer. As an extension of these studies, we
report in this manuscript on a study of protein expression as
measured by both RNA-Seq1 and proteomics of two cell lines
established from primary inflammatory breast cancer (IBC)
tumors,5 namely, SUM149 and SUM190, which are ER (−) and
PR (−), as well as the well-studied cell line SKBR3, which is
known to express high levels of ERBB2 and is ER (−) and PR (−).
EGFR and ERBB2 are members of the epidermal growth

factor receptor (EGFR) family, one of 20 subfamilies of human
receptor tyrosine kinases (RTK).6 The EGF family is one of the
best studied growth factor receptor systems, often overexpressed
in human tumors.7−9 Several small molecule inhibitors and
protein drugs have been developed to modulate disorders in the
EGFR family.10,11 Moreover, determination of ERBB2 status by
immunohistochemistry (IHC) or fluorescent in situ hybrid-
ization (FISH) has been recommended by the American Society
of Clinical Oncology (ASCO) as a marker for diagnosis and
evaluation in primary invasive breast cancer.12 Initially we will
describe the analysis of the RNA-Seq data to determine the
presence or absence of oncogenes typically associated with breast
cancer as well as the levels of the target oncogenes ERBB2 and
EGFR. These studies demonstrated the importance of EGFR
and ERBB family members in the cell lines, as well as other
oncogenes such as TP53, CRKL, EZR and MYC. We then ex-
plored different approaches to integrate the proteomic informa-
tion with the transcriptome data and compared the proteomic
levels as measured by spectral count with the transcript level as
well as interaction values of the observed proteins with the panel
of oncogenes. These comparisons highlighted the 4 oncogenes,
namely, EGFR, ERBB2, MYC and GRB2, and allowed the
identification of protein-based subpathways of interest for the
different cell lines.

■ MATERIALS AND METHODS

Cell lines, Cell Lysis, and In-Gel Digestion

Cell Lines SKBR3, SUM149 and SUM190. The human
breast cancer cell lines SKBR3 (ER/PR−, HER2+, metastatic
pleural effusion), was obtained from the American Type Culture
Collection (Manassas, VA) and maintained in culture with
DMEM/F-12 medium supplemented with 10% FBS (Tissue
Culture Biologicals, Seal Beach, CA) and 1% of Antibiotic-
Antimycotic 100X (Gibco, Carlsbad, CA).
SUM149 and SUM190 cells were obtained from Dr. Stephen

Ethier (Kramanos Institute, MI, USA) and are commercially
available (Asterand, Detroit, MI). SUM149 cells are ER/PR−,
HER2− (triple receptors negative), and the SUM190 cells are
ER/PR−, HER2+. Both human IBC cell lines weremaintained in
culture with Ham’s/F-12 medium supplemented with 10% FBS

(Tissue Culture Biologicals, Seal Beach, CA), 5 μg/mL of insulin,
1 μg/mL of hydrocortisone and 1% of Antibiotic-Antimycotic
100X (Gibco, Carlsbad, CA).
Twenty microliters of lysis buffer (2% SDS in 50 mM

NH4CO3) was added to 10 μL of cell lysate. Cells were solu-
bilized by sonication using 20 s bursts, followed by cooling on ice
for 20 s, in a process that was repeated for 10 times. The entire
extract was concentrated down to 15 μL in a speed vacuum and
loaded onto a gel (SDS-PAGE, 4−12% gradient) to separate
proteins by molecular weight. After staining with Coomassie
blue, each gel lane was cut into five individual slices as shown in
Figure S1 (Supporting Information).
Each slice was further minced into smaller pieces (approx-

imately 0.5 mm2). The gel slices were washed with 600 mL of
water for 15 min and centrifuged, supernatant was removed, and
50%ACNwas added (1mL), followed by shaking until no visible
Coomassie stain remained. Proteins were then reduced with
dithiothreitol (DTT) by adding 250 μL of 10 mMDTT in 0.1 M
NH4CO3 and incubated for 30 min at 56 °C. Samples were
subsequently alkylated at room temperature and in the dark for
80 min with 250 μL of 55 mM iodoacetamide (IAA) in 0.1 M
NH4CO3. Trypsin digestion reagent (200 μL; 10 ng/mL of
trypsin in 50 mM NH4CO3, pH 8.0) was added, and samples
were incubated for 30min at 4 °C. The trypsin concentration was
based upon an estimate of approximately 0.1−0.5 mg of protein
per gel slice and adjusted as necessary. The solution was then
replaced with 50 mM NH4CO3 to cover the gel pieces (50 μL)
and incubated overnight at 37 °C to elute peptides from the gel.
Following this step, supernatant was removed and stored. Gel
pieces were further extracted with 5% formic acid (30 μL) and
acetonitrile (ACN, 400 μL) at 37 °C for 10 min and then twice
with 5% formic acid (30 μL) and ACN (200 μL). The formic acid
solution containing tryptic peptides was combined with the
previous supernatant and concentrated to 5−10 μL. The
concentrated solution (trypsin-digested peptides) was subjected
to LC−MS analysis.
LTQ-FT MS

The in-gel digested peptides were analyzed by online LC using a
linear IT coupled to a Fourier transfer mass spectrometer (LTQ-
FTMS, Thermo Electron, San Jose, CA) with a Dionex nano-LC
instrument (Ultimate 3000, Sunnyvale, CA) and a 75 mm i.d. ×
15 cm C-18 capillary column packed with Magic C18 (3 mm,
200 Å pore size) (Michrom Bioresources, Auburn, CA). The
LTQ-FT mass spectrometer was operated in the data-dependent
mode to switch automatically between MS and MS/MS
acquisition. Survey full-scan MS spectra with two microscans
(m/z 400−2000) were acquired in the Fourier transform ion
cyclotron resonance cell with a mass resolution of 100 000 atm/z
400 (after accumulation to a target value of 2 × 106 ions in the
linear IT), followed by ten sequential LTQ-MS/MS scans
throughout the 90 min separation. The analytical separation was
carried out using a three-step linear gradient, starting from 2% B
to 40%B in 40min (A: water with 0.1% formic acid; B: ACNwith

actinin alpha1 (ACTN1) (associated with high levels of EGFR transcript) for integrin signalings; branched chain amino-acid
transaminase 1 (BCAT1), carbamoyl-phosphate synthetase (CAD), nucleolin (NCL) (high levels of EGFR transcript); transferrin
receptor (TFRC), metadherin (MTDH) (high levels of ERBB2 transcript) for MYC signaling; S100-A2 protein (S100A2), caveolin
1 (CAV1), Serpin B5 (SERPINB5), stratifin (SFN), PYD and CARD domain containing (PYCARD), and EPH receptor A2
(EPHA2) for PI3K signaling, p53 subpathway. Future studies of inflammatory breast cancer (IBC), from which the cell lines were
derived, will be used to explore the significance of these observations.

ERBB2, EGFR, Inflammatory breast cancer, Chromosome-centric Human Proteome Project,KEYWORDS:
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0.1% formic acid), increased to 60% B in 10min, and then to 80%
B in 5 min. The column flow rate was maintained at 200 nL/min.

Protein Identification

Peptide sequences were identified using Thermo Proteome
Discoverer 1.3 from a human database SP.human.56.5 with full
trypsin specificity and up to three internal missed cleavages. The
tolerance was 50 ppm for precursor ions and 0.8 Da for product
ions. Dynamic modifications were deamidation of asparagine,
and static modification was carbamidomethylation for cysteine.
Peptides were identified with Xcorr scores above the following
thresholds: ≥3.8 for 3+ and higher charge state ions, ≥2.2 for 2+
ions, and ≥1.9 for 1+ ions.
We used the spectral count approach to measure relative

abundance of protein samples as reported by Choi et al.13

We have selected several housekeeping proteins, glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), b-actin (ACTB),
b-tubulins (2A, 2B, 2C, 3 and 5),14 which are ubiquitously
expressed in a wide range of tissues and cell types,15 as internal
standards for relative quantification in order to minimize
variations in the amount of samples loaded on the 1D SDS-
PAGE gel. These proteins met the required criteria of high
abundance and consistent ratios across the 3 cell lines, as
measured by peptide counts and extracted ions in the same gel
section between the different cell lines.
The protein list also was submitted to the Gene A La Cart

(provided by www.genecards.com, uploaded to Gene A La Cart
for analysis in August, 2011) to acquire data for bioinformatics
analysis, including gene symbols and other genomic information.

RNA-Seq Measurement

Strand-specific RNA-Seq libraries were prepared and sequenced
on a lane of the Illumina HiSeq 2000 instrument per sample
to obtain transcript data.16 All RNA-Seq data are available at
Short Read Archive (SRS366582, SRS366583, SRS366584,
SRS366609, SRS366610, SRS366611).
From total RNA, strand-specific RNA-Seq libraries were

prepared according to Illumina TruSeq standard procedures and
sequenced at both ends (paired-end RNA-sequencing) on
Illumina HiSeq 2000. Tophat embedded with Bowtie was used
to align the sequence reads to human genome (hg19). Using
Cufflinks, the alignments were assembled into gene transcripts
(NCBI build 37.2), and their relative abundances (RPKM) were
calculated.

■ RESULTS AND DISCUSSION

We have previously studied on the role of two driver oncogenes,
EGFR, ERBB2, in epithelial cancers17,18 and have investigated
the changes in their glycosylation patterns.2−4,19 To further
expand on our previous observations, we have performed a
comparative study to explore the total lysate proteome of a well-
established epithelial breast cancer cell line, SKBR3, which
overexpresses ERBB2 and two primary cell lines (SUM149 and
SUM190) isolated from patients with inflammatory breast
cancer.5 We have employed a traditional proteomic analysis of
the data and compared these results with an alternative format,
namely genome-wide proteomics using the chromosome format
(C-HPP20), which is being developed as part of the HUPO
human proteome initiative. One benefit of such approach is the
facile integration of proteomic and transcriptomics data as well as
allowing for the identification of genomic regions in which a
driver oncogene may effect gene transcription of adjacent genes.

Analysis of Cell Lines SKBR3, SUM149, and SUM190

Each cell line was analyzed in triplicate, and relative quantitation
was achieved with spectral counts using a correction factor based
on housekeeping proteins. With the availability of a deep mea-
surement of the transcriptome, by RNA-Seq (100 million reads),
it is common to measure 10 000−11 000 transcripts in a cell line
study. In contrast, a proteomic study comparable to what is
reported here will sample only approximately 10% of the
expressed the expressed set of proteins. While the transcriptome
can enhance the proteomic measurement, the opposite is also
true as a medium level protein study can be used to explore the
major phenotypic patterns observed in a study of disease versus
normal cell lines and patient tissue. In addition, there are
examples of a protein being identified in the absence of a
measurable transcript level.21

In the proteomic analysis we used a conservative protocol for
identifying proteins in replicate analysis, which included high
protein confidence and high peptide rank (Proteome Discov-
erer) and with a FDR of less than 1%. We identified a total of
1444, 1396, and 964 proteins (numbers of proteins with 2 or
more peptides) in the SKBR3, SUM149 and 190 cell line
samples, respectively (numbers of proteins with 2 or more
peptides were 1071, 1134, and 686 for SKBR3, SUM149 and
SUM190, respectively). In addition, selected proteins identified
by one single peptide were further analyzed using additional
criteria such as high mass accuracy, fragmentation spectra and
observation of the corresponding transcript (see Table 1). In the
cell line studies a comparison of the SKBR3 with SUM190,
SKBR3 with SUM149, and SUM190 with SUM149 proteome
contents identified 751, 934, and 695 common proteins,
respectively.
Characterization of EGFR and ERBB2

EGFR was identified in SUM149 and SKBR3 cell lysates, while
ERBB2 was identified in SKBR3 and SUM190 cell lysate
preparations, consistent with IHC results in previous studies.5,22

As shown in Table S1 (Supporting Information), EGFR and
ERBB2 were identified with 11 and 13 peptides for cell lines
SUM149 and SKBR3, respectively. This table employs data from
GPMDB (Global Proteome Machine database)23 to assess the
quality of peptides observed for the two proteins. The peptides
observed in our study have been frequently reported in the
literature, e.g., rank 1−5 and 1−4 for the most frequently ob-
served, as well as other peptides for EGFR and ERBB2,
respectively. The MS/MS data for a diagnostic peptide for
EGFR and ERBB2 in shown in Figure S2 (Supporting
Information). Both EGFR and ERBB2 were detected with
good sequence coverage (15.5 and 15.8%), although peptides
derived from the N-terminal domain of ERBB2 were not
observed. The identification of ERBB2 was confirmed by
immunoprecipitation with the monoclonal antibody trastuzu-
mab (Herceptin) and subsequent analysis on 1D SDS-PAGE and
detected at an approximate molecular weight (MW) of 110 000
(theoretical 138 kD, data not shown).
Protein Observationswith RNA-Seq Data and Expressed in a
Genome Wide Format (Chromosomes)

Besides proteomic analysis, we have also discovered potential
proteins of interest by comparing proteomics data with the
corresponding transcriptomic data in a chromosome format (see
Tables S3 and S4, Supporting Information, for the RNA-Seq
results for SKBR3, SUM149 and SUM190). We collected the
genomic information from the Gene A La Cart tool provided by
www.genescards.org. In doing so, UniProt accession numbers for
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their corresponding proteins were first extracted from the search
result files in Proteome Discoverer, prior to submission to Gene
a la Cart as identifiers to retrieve their genomic information,
including gene symbols, genomic locations (chromosome
number, base pair location of gene start and end, and gene
size), and Ensemble cytobands. This would allow the protein list
to be organized by their locations on different chromosomes.
The resulting data sets for the three cell lines are shown in Table
S3 (Supporting Information).

Use of RNA-Seq Data to Explore ERBB2 Signaling Pathways

As a first step we generated a list of 33 oncogenes associated
with breast cancer from the Sanger, Genecards databases, and
literatures,24,25 which had either measurable transcript level
(RPKM >1) and in some cases proteomic data (see Table 1).
The RNA-Seq values showed that the cell line SUM149 had a
high level of transcript for EGFR (RPKM = 60) and a relatively
low value for ERBB2 (RPKM =14). Conversely the cell line
SUM190 had values of 400 and ND for ERBB2 and EGFR,
respectively. The immortalized cell line SKBR3 expressed a high

level of ERBB2 and a low level of EGFR (RPKM = 300 and 1.4,
respectively). Other oncogenes with a high level of transcript
(RPKM > 40) were TP53, MYC (SUM149); GRB7, CRKL
(SUM190) and EZR, TOP2A (SKBR3). As described in a later
section we also explored reported interactions between the group
of 31 oncogenes and the proteins observed in the SUM149 and
190 proteomic results.
Figure 1A and B compares the ERBB2 signaling pathway in

two IBC cell lines, SUM149 (high levels of EGFR transcript) and
SUM190 (high levels of ERBB2 transcript) with the ERBB2
pathway derived from the KEGG database. SUM190 presents an
interesting situation with high transcript levels of ERBB2 and
ERBB3 (RPKM = 400 and 23, respectively) and a low level
for ERBB4 (RPKM = 3), without detectable transcript levels
of EGFR (ERBB1) and a low RNA-Seq value (4.91) for
amphiregulin (AR in Figure 1), one of the EGFR ligands.26

ERBB2 is a special member in the ERBB family in that there has
been no ligand discovered for ERBB2 and signaling largely
depends on heterodimer formation with either EGFR, ERBB3 or

Table 1. List of Oncogenes Associated with Breast Cancer with Associated Proteomic and Transcriptomic Data

aGene symbols are from Genecards. bSpectral counts. cRPKM values. dND = not detected. eOncogenes used for pathway analysis are highlighted by
box. fIdentifications of single peptide proteins are shown in Figure S3 (Supporting Information).
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ERBB4.27,28 However, a high level of ERBB3 is found in the
SUM190 transcript, and it has been reported that the ERBB2/
ERBB3 heterodimer is active in cell proliferation in breast tumor
cells (see highlighted blue lines in Figure 1A).29 Conversely, as is
shown in Figure 1B (highlighted blue lines) with the observed
transcript values in the SUM149 cell line for the EGFR family
signaling pathway there are several possibilities for signaling with

involvement of EGFR dimers, ERBB2 heterodimers with EGFR
or ERBB3. Since ERBB4 is not detected at either the transcript or
protein level, it is presumably not part of the signaling cascade.
Thus RNA-Seq studies identified potential differences between
the two cell lines and thus set the stage for a proteomic inves-
tigation. Another advantage of the RNA-Seq studies was the
greater dynamic range than the proteomic measurement; one

Figure 1. Annotation of KEGG ERBB2 signaling pathways with transcriptomic data, (A) SUM190, (B) SUM149. The pathway was derived from
http://www.genome.jp/kegg/pathway/hsa/hsa04012.html in January 2012. The RPKMvalues are shown as follows. Green circle: RPKM value is larger
than 15; yellow circle: RPKM value is between 3 and 15; red circle: RPKM value is between 1 and 3; blue cross: transcription value is under detection
limit; blue line: potential preferred signaling based on transcript levels.
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important example was identification of high levels of the
transcript for the MYC oncogene in SUM149 and 190 (19 and
10, respectively) in the absence of a proteomics signal. The
importance of this oncogene is consistent with the importance of
theMEK/ERK pathway in carcinogenesis (see arrow in Figure 1)
and is supported by the large number of MYC interactors
identified in the proteomics study (see Figure 2 and discussion
later).
To further explore the difference between EGFR and ERBB2

signaling in SUM190 and 149 transcriptome, we used the ratio of
the RPKM values to interrogate the NCI Erbb receptor signaling
network and visualized the data by assigning different colors
based on the ratio values. First, EGFR and ERBB2 are the most
differentially expressed genes in this network. As can be seen in
Table 2 increased levels of EGFR transcript are associated with
increased levels of the ligands amphiregulin (AR), epiregulin
(EPR) and transforming growth factor, alpha (TGFA) for
SUM149 vs 190, while the transcript levels for ERBB2 and asso-
ciated receptors/ligands HBEGF, ERBB3 and 4 are increased in
SUM190 vs 149. Amphiregulin is identified as a ligand of EGFR26

and acts as an effective mitogen for epithelial cells.30 Epiregulin is
another EGFR ligand that binds directly to EGFR and regulates
tyrosine phosphorylation of EGFR.31 On the other hand, ERBB3
and ERBB4 are reported to be part of ERBB2 heterodimer in
ERBB2 signaling, and ERBB3 has been reported to be necessary
for tumor cell proliferation in breast cancer.29

Proteomic Analysis of SKBR3, SUM149, and 190 Cell Lines

With the importance of ERBB2 and EGFR signaling indicated by
the RNA-Seq data, we then examined the correlation between
our proteomics data, transcript levels and chromosome location.
In Table S2 (Supporting Information) we have ranked the
20 most abundant proteins as measured by spectral count in the
SKBR3 cell line (highest number of protein observations) and
compared these values with the corresponding RNA-Seq levels as
well as the proteomic values for SUM149 and 190 cell lines.
As has been reported elsewhere9 there is a general correlation

between the levels of a transcript and the corresponding proteins,
although relative differences in transcript and protein stability as
well as temporal events can result in exceptions to this rule. The
genes TUBB, ACTB and GAPDH, which were selected as
housekeeping proteins for normalization of the proteomic data,
were indeed observed at high levels (spectral count rank 17, 8,
and 7, respectively, for SKBR3), and these genes were also
observed with high transcript values (RPKM of 209, 1391, and
2966, respectively). Conversely, the genes HIST1H4A, EPPK1,
ENO3 and FLNA offer examples of poor correlation with a rank
of 15, 9, 10, 11 in the proteomic data and a RPKM of only 3, 4, 2,
and 6, respectively. While the selection of 20 examples in Table
S2 (Supporting Information) as a representative protein set is
arbitrary, it is of interest to note that 11 of the 20 proteins are

Figure 2.A composite of SUM149 (A) and SUM190 (B) transcriptomic, proteomic, and interaction data for significant oncogenes observed in SUM149
and SUM190. The following notations are used. Line length: Interaction score (shorter line, stronger interaction with ERBB2). Circle size: RPKM value
(largest: RPKM > 15, medium: RPKM between 3 and 15, small: RPKM between 1 and 3, spot: RPKM <1). Black circle: if observed in proteomic
experiments. Percentage: percentage of proteins identified in SUM149 or 190 with specific oncogene interactions as listed by STRING or I2D in
Genecards.org.

Table 2. Erbb Receptor Signaling Networka with RNA-Seq
Ratios (SUM149 vs SUM190)b

aGene set in this pathway is retrieved from the following link: http://pid.
nci.nih.gov/search/pathway_landing.shtml?pathway_id=erbb_network_
pathway&pathway_name=ErbB%20receptor%20signaling%20network&
source=NCI-Nature%20curated&what=graphic&jpg=on&ppage=1. All
pathways from Nature Cancer Institute were released on October 12, 2011.
bRPKM values are used to show the expression differences in two IBC
cell lines, and the values in the ratio column are calculated as follows:
Ratio (149/190) = log2

((RPKM SUM149 + 1)/(RPKM SUM190 + 1)). By adding
1 to RPKM values artificially, the ratio could still be calculated even if
RPKM value is 0.
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located on just 3 chromosomes: 6, 12, and 17. The possible
significance of this observation will be discussed in the next
section. One of the proteins coded by the geneMYH9 is a known
oncogene,32 and such a high level of expression is of potential
interest.
It has been reported there is a relationship between levels

of gene expression and gene density in a chromosome region.9

Figure 3 shows the number of proteins identified in the SKBR3
study reported for each chromosome together with the %
observed (number of protein observations divided by the num-
ber of protein coding genes on the chromosome). It is not
surprising that the highest number of protein observations occurs
for chromosome 1 and the lowest for chromosome 13 (largest
chromosome and chromosome with lowest number of protein
coding gene density, respectively). The highest % values were
observed for genes 17, 12, 20, and 22, and while there is some
correlation with reported gene densities on each chromosome
(order of gene density is 19, 17, 20 and 22, high to low) it is
relevant to note that chromosome 12 had 5 of the 20 most
abundant proteins in Table S2 (Supporting Information), fol-
lowed by chromosome 17 (3). Another factor is that chromosome
17 contains the highly expressed oncogene ERBB2 that can amplify
a set of genes colocated near this oncogene (9).

Comparison of Proteomic Observations between Cell Lines

One of the challenges of studies with cancer cell lines compared
with patient derived tumor samples is the lack of a suitable
control samples. We chose the levels of ERBB2 as the com-
parator and compared the relative abundance of proteins in the
two ERBB2 expressing cell lines (SUM190 and SKBR3, RPKM=
400 and 300) with SUM149 (RPKM = 14) in terms of unique
proteins and for proteins with a 10-fold higher expression (see
Tables S3, Supporting Information). Examples of proteins
observed with this approach include the RAS associated proteins
that are commonly activated in tumors in which ERBB2 is over-
expressed.31,33 RAS-related proteins were preferentially observed

in SUM190 and SKBR3 (ERBB2+) in that of the 24 different
types of RAS-related proteins identified, SUM190 and SKBR3
accounted for 15 and 20, respectively, while only 6 were shared
by all three cell lines. In addition, there are 5 RAS proteins with
relative abundance 2-fold higher in SUM190 and SKBR3
compared to SUM149. Another example is cathepsin D which
was elevated 6× and 10× more in SUM190 and SKBR3 com-
pared to SUM149 and has previously been associated with Her2
amplification23 and is a marker of breast cancer marker.12 While
this type of data analysis did detect some proteins with cancer
associations it did not lead to pathway discoveries similar to that
observed with the RNA-Seq analysis, and thus we explored
alternative approaches.

Mapping of Oncogene Interactions with Proteomic
Observations

With the use of interaction scores provided by Genecards
(String, I2D) we recorded the values for interactions between the
proteins identified in the proteomic studies of the two IBC cell
lines and 21 oncogenes listed in Table 1. The large data set is
given in Tables S3 and S4 (Supporting Information), and a sum-
mary is given in Figure 2 with the proteomic and transcriptomic
experimental data as well as number of interacting proteins. First,
Figure 2 shows oncogenes that are known to interact with
ERBB2, and the oncogenes that show a high degree of interaction
(EGFR, ERBB3, ERBB2IP, GRB2, GRB7, KRAS) are denoted
by a shorter line. A relatively high RNA-Seq measurement is
shown by the size of the circle, e.g., ERBB2, GRB7 andMYC, and
those oncogenes with a proteomics value are shown with a black
outline, e.g., ERBB2, GRB7, CRKL, TOP2A (see Table 1 for
numerical values). For each oncogene, the number of interac-
tions with proteins observed in the proteomic studies of either
SUM149 or 190 is given in the circle as a percentage of the total
oncogene interactions. As shown in Figure 2 the top 3 oncogenes
with the greatest number of interactions with observed proteins
are MYC, GRB2 and EGFR with 268, 235, and 143 interactions,

Figure 3. Ratio of number of protein observations per number of genes for each chromosome. Solid bar: total number of proteins identified in each
chromosome for proteomic analysis in SKBR3. Squares: ratio of proteins identified in proteomic experiments relative to total gene numbers for each
chromosome (as a percentage).
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respectively, for SUM149. The basis for this approach has been
used by others in the development of bioinformatic processes for
prioritizing cancer associated genes with gene expression data
combined with protein−protein interaction network informa-
tion,34 as well as the observation that proteomic data when
combined with genomic information can add further discrim-
ination to pathway analysis.35 Thus in our approach we have
combined mapping of oncogenes with RNA-Seq levels and
identification of interacting proteins in the proteomic data set,
and we will now use this data to search for additional pathways of
interest in breast cancer.

Identification of Pathways That Contain ERBB2, EGFR, GRB2
and MYC Interactors

As an example of our process we describe the selection process
for ERBB2 interactors. From the proteomic data set 35 proteins
were found to be interacted with ERBB2 on the basis of I2D and
STRING databases. We then selected a subset of 14 proteins
according to levels of protein expression (spectral counts) and
RNA-Seq values in the two IBC cell lines, SUM149, 190 and the
model cell line SKBR3 (see Table S3, Supporting Information).
The process was repeated for the 3 other oncogenes with greatest
number of interactors with the proteomic data set (Figure 2),
namely, EGFR, GRB2 and MYC that resulted in 172, 289, and
336 strong interactors with significant RNA-Seq or proteomics
levels, respectively.
Table S3 (Supporting Information) also lists the chromosome

locations of the interacting proteins, and it is noteworthy that

many of the genes in these pathways are located on cytoband
17q12, which is the site of the ERBB2 amplicon.21,36 Of this
group of chromosome 17 genes, ERBB2, GRB7, STAT3 and
KRT17 are located in the same chromosome region (17q12 to
q21.2) and have the following Novoseek tumor associations
based on literature text-mining (Genecards): 5807, 22, 693,
and 24. The next stage in our process was to select disease
relevant pathways based on our integration of transcriptomic,
proteomic and interaction data. Our goal was to find at least one
pathway for each of the 4 oncogenes that were well represented by
the proteins listed inTable S3 (Supporting Information) andwe used
Cytoscape and Pathway Commons in this search. The pathways that
we have selected are ERBB2, MYC, and PI3K signaling pathways
from NCI Pathway Interaction Database, EGFR from the Cancer
Cell Map and Integrin Signaling (GRB2) from GeneGo.
In Table 3 we have listed all the proteins identified in EGFR1

signaling pathway as well as oncogenes (including those only
observed with significant levels of transcript) in order of the ratio
of SUM149/190 RNA-Seq values. This approach allows us to
take advantage of the much greater dynamic range for RNA-Seq
vs proteomics to compare differences between the two cell lines.
We then compared these ratios with the proteomics data ob-
tained for these two cell lines. The control cell line SKBR3
expresses high levels of ERBB2 transcript (300) and lower levels
of EGFR (1.4) and shows proteomic values that are mostly inter-
mediate between SUM149 and 190. In Table 3 we highlighted in
yellow the proteins with higher expression in SUM149 and in

Table 3. EGFR1 Signaling from NCI

aSpectral counts. bRPKM values. cRPKM values are used to show the expression differences in two IBC cell lines, and the values in the ratio column
are calculated as follows: Ratio (149/190) = log2

((RPKM SUM149 + 1)/(RPKM SUM190 + 1)). dProteins with higher expression in SUM149 are highlighted in
yellow and in blue those with higher levels in SUM190. eKnown oncogene.
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blue those with higher levels in SUM190. In general there was
good agreement between RNA-Seq and proteomic values, e.g.,
CAV1, PLEC for higher ratios of EGFR vs ERBB2 and GRB7,
CRKL and CTNND1 for higher ratios of ERBB2 vs EGFR.
CRKL has been shown to associate with lamellipodia formation
in breast carcinoma,37 and coactivation of CRKL and estrogen

receptor alpha has been shown to be a promoter of tumori-
genesis.38 These observations are supported by literature reports,
such as CTNND1 was genomically correlated to breast cancer
and cell proliferation in ERBB2 positive breast cancer cell
lines.39−41 The overexpression of caveolin-1 (CAV1) is fre-
quently related to breast cancer42 and has been reported to be

Table 4. Integrin Outside-In Signalinga

aThis pathway was retrieved from GeneGo in January, 2012. bSpectral counts. cRPKM values. dRPKM values are used to show the expression
differences in two IBC cell lines, and the values in the ratio column are calculated as follows: Ratio (149/190) = log2

((RPKM SUM149 + 1)/(RPKM SUM190 + 1)).
eProteins with higher expression in SUM149 are highlighted in yellow and in blue those with higher levels in SUM190. fKnown oncogene.

Table 5. Validated Targets of C-MYC Transcriptional Activation (A Subpathway of c-MYC Pathway)

aSpectral counts. bRPKM values. cRPKM values are used to show the expression differences in two IBC cell lines, and the values in the ratio column
are calculated as followed: Ratio (149/190) = log2

((RPKM SUM149 + 1)/(RPKM SUM190 + 1)). dProteins with higher expression in SUM149 are highlighted in
yellow and in blue those with higher levels in SUM190.
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associated with EGFR activation.43 Interestingly, the over-
expression of both CAV1 and CAV2 has been discovered in
triple negative (TN) invasive breast cancer.44 In our study,
SUM149 is only the TN cell line, and CAV1 is only identified by
proteomics in this cell line and a RPKM value (33.6) that is much
higher than for two ERBB2+ cell lines, i.e., SUM190 (0.2) and
SKBR3 (0.4). At the other extreme of Table 3, higher levels of
ERBB2 transcript are associated with the proteomic measure-
ment of GRB7, growth factor receptor-bound protein 7, which is
part of the ERBB2 amplicon in breast cancer.45 In addition most
of the proteins in Table 3 have been reported to interact with
EGFR (30/34) and had literature associations with cancer (27/34).
Table 4 shows a similar analysis of the Integrin outside-in

signaling pathway, which was selected as an example of the
oncogene GRB2, and shows an elevation of filamin A (FN1),
actinin alpha1 (ACTN1) in both the transcriptome and pro-
teome of SUM149 vs 190 cell lines. Of interest, Filamin A phos-
phorylation has been shown to mediate the effects of caveolin-1
on cancer cell migration.46 For the c-MYC pathway (Table 5) the
higher ratios of EGFR transcript were associated with increased
proteomic levels of branched chain amino-acid transaminase 1
(BCAT1), cytosolic, carbamoyl-phosphate synthetase 2 (CAD)
and nucleolin (NCL), while higher ERBB2 ratios are associated
with transferrin receptor (TFRC) and metadherin (MTDH).

Examples of the significance of these proteins include the ob-
servation that nucleolin colocalizes with BRCA1 in breast
carcinoma tissue,47 and metahedrin is a valuable marker of breast
cancer progression, and high expression may play a role in
tumorigenesis of breast cancer.48,49 As was observed for the
EGFR pathway, most of the proteins in Table 4 (GRB2) and
Table 5 (MYC) contained a significant number of interactors
(12/17 and 28/31) and literature associations with cancer (16/
17 and 24/31) respectively.
A similar analysis of the p53 pathway is shown in Table 6. This

pathway is a subpathway of Class I PI3K signaling events
mediated by Akt and was selected as an example of the oncogene
PTEN (phosphatase and tensin homologue). Tumor suppressor
PTEN has been observed to be deleted in TN breast cancer,
which shown related to resistance of EGFR targeting therapy.50

In our data set, SUM149, which is a classic TN breast cancer, has
a very low level transcript expression of PTEN (0.8), compared
to SUM190 (6.1). Interestingly, another tumor suppressor,
SERPINB5 (Serpin B5), which has been reported to be neg-
atively correlated with both ER and PGR genes in a quantitative
DNA analysis,51 was only observed in SUM149 (proteomics
and trancriptomics), which is the only TN cell line in the
study. Likewise, amplification of S100A2 (Protein S100-A2) was
observed in both proteomics and transcriptomics experiments.

Table 6. p53 Pathway (A Subpathway of Class I PI3K Signaling Events Mediated by Akt)

aSpectral counts. bRPKM values. cRPKM values are used to show the expression differences in two IBC cell lines, and the values in the ratio column
are calculated as followed: Ratio (149/190) = log2

((RPKM SUM149 + 1)/(RPKM SUM190 + 1)). dProteins with higher expression in SUM149 are highlighted in
yellow and in blue those with higher levels in SUM190. eKnown oncogene.
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This protein, as one of S100 families, has been reported to be
upregulated in mRNA expression in ER-negative breast cancer
patients and potentially promote cancer metastasis.52 SFN (14-3-
3 protein sigma), which acts as p53-regulated inhibitor of G2/M
progression, has been reported to be silencing due to DNA
hypermethylation in breast cancer.53,54 A similar silencing due to
methylation for PYCARD (or TMS1) has been observed in
breast cancer cells.55 However, both overexpression of SFN and
PYCARD in transcript and proteomic level was detected in
SUM149, which could provide a potential diagnostic marker for
TN breast cancer. Similarly, EPH2, which overexpresses in more
than 60% of breast cancer patients,56 has been listed as potential
clinical target in TN breast cancer.44 Expression of EPH2 has
been observed to be stimulated by the activation of EGFR.57 This
is consistent with the EPH2 expression in our experiment, in
which EPH2 was only identified in SUM149 (proteomics) and
greatly amplified in transcriptomic level.

■ CONCLUSION
In view of the importance of EGFR/ERBB2 heterodimer
signaling in breast cancer, it is of interest to explore the
transcriptomic and proteomic analysis of two primary cell lines
isolated from inflammatory breast cancer patients, one
(SUM149) that expresses high levels of EGFR transcript with
much lower levels of ERBB2 (1/4), while the other expresses
very high levels of ERBB2 transcript (SUM190) and no
detectable EGFR transcript. As a control we used a SKBR3 cell
line that expressed high levels of ERBB2 transcript and low levels
of EGFR. Analysis of the transcript levels indicated that the most
likely signaling pathway for SUM190 involved the ERBB2/
ERBB3 heterodimer, while SUM149 had several possibilities
with involvement of EGFR dimers, ERBB2 heterodimers with
EGFR and ERBB2 or ERBB3. We then explored the proteome of
the two cell lines in terms of correlations between the trans-
criptome and proteomic measurements, identification of a panel
of 21 oncogenes expressed in the two cell lines, interaction
analysis of the observed proteins with this panel of oncogenes
and selection of relevant cancer pathways. The analysis resulted
in 4 pathways in addition to ERBB2 signaling (EGFR, integrin,
MYC signaling, and PI3K signaling, see Tables 4−6) that
contained many of the oncogene interacting proteins. In general
there was reasonable agreement between the RNA-Seq and pro-
teomic values shown in these tables except for some house-
keeping proteins (see Discussion section). We list here those
proteins that were correlated with higher levels of EGFR or
ERBB2 transcript, respectively. EGFR signaling: caveolin 1
(CAV1), plectin (PLEC) (EGFR); growth factor receptor-
bound protein 7 (GRB7), Crk-like protein (CRKL) and Catenin
delta-1 (CTNND1) (ERBB2). Integrin signaling: filamin A
(FLNA) and actinin alpha1 (ACTN1) (EGFR). MYC signaling:
branched chain amino-acid transaminase 1 (BCAT1), carba-
moyl-phosphate synthetase (CAD), nucleolin (NCL) (EGFR);
transferrin receptor (TFRC), metadherin (MTDH) (ERBB2).
p53 signaling: S100-A2 protein (S100A2), caveolin 1 (CAV1),
Serpin B5 (SERPINB5), stratifin (SFN), PYD and CARD
domain containing (PYCARD), and EPH receptor A2 (EPHA2)
(EGFR). While the depth of the proteomic analysis was limited
partly because of technical issues with analysis of the primary cell
lines, this study was designed to use proteomics to identify higher
level protein expressions that correlated with the transcriptome
study. In this study we have demonstrated that one of the goals of
the chromosome-centric human proteome project (C-HPP),
which is to integrate RNA-Seq with proteomics measurement, is

of value. We plan in a future study to explore the potential of the
proteins identified in this study as markers of ERBB2 and EGFR
signaling as well as activation of the oncogenes MYC and GRB2
in a study of breast cancer tumor samples.
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